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Abstract—In this paper the authors are proposing approxi-
mate method for road artefacts detection and their location by
analyzing acceleration values recorded in the car during driving
over the road fragment using the smartphone mounted in the car.
The new method called F-THRESH has been introduced, which
is adaptively adjusting threshold for road artefacts detection by
the fuzzy system means, allowing for outlier detection in chaotic
time streams. First, the road quality is being calculated, then the
difference between the current data point and mean acceleration
is calculated and those two values are used as the input for the
fuzzy system, which is calculating threshold to classify data point
as an outlier. The proposed method has been compared to the
previously implemented method and has an accuracy over 94%
with 1.3% of False Positive Rate for the same problem which
makes it a great candidate to be implemented in the IoT Edge
scenarios, for reducing amount of data being sent to the cloud
analyzing system.

Index Terms—fuzzy, thresholding, accelerometer, road artefact,
road quality

I. INTRODUCTION

The road network around the world is very dense today – in
the example of Poland, there is more than 300 000 kilometers
of roads, mostly supervised by territorial government units,
where sub-funding is prevalent, so the continuous monitoring
of the road state is a very difficult task. To cope with
that, to find road artefacts, e.g. potholes, several researchers
are proposing usage of crowdsourcing and citizens as data
source, especially with the rise of popularity of smartphones
and similar devices, using IoT principles. The bases for the
pothole detection systems are usually vibration-based methods
or visual recognition systems, where the first are based on
measuring of acceleration during ride over the potholes, the
latter based on visual detection methods.

Road artefacts are hard to describe without mentioning the
fuzzy and indeterministic methods, as potholes for example
have different, inequal shape, depth, profile and their physical
location in the road’s axis; every single of them is different,
Fig. 1. Difference is also between road users: every car type
has a slightly different wheelbase and track, but also a set
of all other parameters like wheel diameter, tire pressure and
type and finally load and suspension wear. In the authors

Funded by the National Science Centre, Poland under CHIST-ERA pro-
gramme (Grant no. 2018/28/Z/ST6/00563).

proposal, exact description of both potholes and other road
artefacts, as well as characteristics of the traction of the
vehicle, would require too broad number of different decision
variables and parameters. Such complex mathematical model
will also be hard to apply to aggregated road quality indices
understandable for the typical vehicle operator.

In this paper, the authors will describe their own approach
for road artefacts detection. Because of fuzzy characteristic
of structure and road surface and many uncertainties due
to usage of smartphones’ sensors, vehicle characteristics and
users unique driving type the heterogenous data streams will
be used, with a vibration-based information to be the primary
source.

Fig. 1. Example of the potholes on a dirt road.

For road anomaly detection using smartphones based on
vibration data two main solutions are proposed in the litera-
ture: threshold-based, and classification-based [1]. The whole
road artefacts detection can be also performed directly on the
smartphone, the acquisition device, or in the cloud processing
system. If the processing is done in a data center, a large
amount of data needs to be transferred for processing, but
in the other case — application must use resources of the
device, which are also still very limited. To cope with that the
authors believe that the best results are the hybrid systems,
where rough, approximate algorithm detects road artefacts
directly on the acquisition device, and then data is being sent to
cloud processing system for final assessment, greatly reducing
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amount of data being exchanged with the cloud system.
The goal of the work is to improve existing techniques of

road artefacts detection. The proposed F-THRESH method is
based on the classification based on adaptive threshold for
acceleration data with the fuzzy system means to calculate
the threshold value. In a series of numerical experiments, we
show its advantages, namely high efficiency and potential to
applicability.

The structure of the paper is as follows. In Section II
we recall the related literature. In Section III covered is the
problem of data acquisition. The novel algorithm of anomaly
detection is discussed in Section IV. The results of numerical
experiments are presented in Section V. Sections VI is devoted
to conclusions while Section VII covers summary and future
work directions.

II. RELATED WORKS

To build a solution which can be easily implanted directly
on the acquisition device, the authors are willing to concentrate
on threshold-based methods. Many systems are using custom-
designed hardware [2], [3], but since the smartphone spread
most of them switched to smartphones and their sensors [4],
[5] as the acquisition and pre-processing devices.

The classification-based methods, like Support Vector Ma-
chines or k-Nearest Neighbors are not currently feasible
for implementation for the low-power IoT devices [6], thus
thresholding is a good start. Four algorithms were proposed
in [7] for a threshold-based road anomaly detection based on
acceleration measured by the smartphone:

• Z-THRESH, where detection occurs when value of z
component of acceleration exceeds a specified threshold,

• Z-DIFF, where there is a need for difference between two
consecutive values to be greater than threshold to classify
as a pothole detection,

• Z-STDDEV, based on the standard deviation in a small
sliding window,

• And G-ZERO detecting free fall motion.
In [1] it was proposed a modification to the previous

methods by usage of Grubbs test. The authors earlier already
implemented a modified version of the Z-THRESH method,
called MOD-Z-THRESH [8], where threshold value was cal-
culated relatively to the overall road surface quality in a set of
tumbling windows, instead of using strictly defined threshold.
Other threshold-based methods include mostly also just Z-axis
acceleration [9], but it must be noted that some more complex
features extracted from accelerometer signals, for example
time domain features, such as mean, median etc. [10], could
be used in the described problem.

In [11] the fuzzy system was proposed, where whole un-
certainty and noisiness of data was handled by the system
itself. The capability of fuzzy systems to converse and make
decisions with imprecise data, which is a base for fuzzy
logic [12] was also mentioned in [13]. In the fuzzy logic
field, the usage of it to perform thresholding is also prevalent
[14], however mostly in visual recognition systems and image
analysis [15].

Accuracy of the proposed road artefact detection systems
differ: Nericell [16] uses thresholding with 5-10% of false
positive rate. The SmartPatrolling [17] using Dynamic Time
Warping is providing 88.89% and 88.66% of accuracy on
speed breakers (speed bumps) and potholes respectively. An-
other techniques accuracy is ranging from 91.43% in the
case of the rough road [18], to 94% when Artificial Neural
Networks and similar techniques are used [19]. The authors’
own method MOD-Z-THRESH [8] can provide an average
accuracy of about 93.2%.

The authors however would like to prepare a hybrid system,
where candidates for the detection are found directly on the
acquisition device in the real time, where usage of calculation
heavy methods is impractical – the overall system accuracy
will be higher and allow for usage of heavily computational
methods, but the goal of the proposed research is to provide a
method possible to be implemented on the acquisition devices
itself. Because of this requirement, high accuracy and low
number of false positives is required to lower amount of data
to be sent to the cloud processing system.

Based on the two above proposals, the authors would like to
implement adaptive fuzzy system for road artefacts detection
based on acceleration data thresholding, called F-THRESH.

III. DATA ACQUISITION

Because of difference between cars and their parameters,
every data can be understood as averaged fuzzy information.
The data acquisition procedure was based on the concept
already implemented in [8], where smartphone, Lumia 820,
was mounted in the car in a stable position, which was the
only requirement, and in case of the experiments presented in
this paper it was in the central console.

The orientation of the acquisition device in the car was
mitigated using the orientation sensor and translation of the
data to the global coordinate system [20], see Fig. 2.

Fig. 2. The global coordinate system [20]

The global coordinate system is based on three axes:
magnetic north, magnetic earth, and perpendicular to the
Earth’s surface (which will be marked Z2). Reorientation of
the data from the sensors is performed using the rotation
matrix. Acquisition device was calibrated as described in the
previous paper to cope with a slight data oscillation of the
accelerometer.

Finally, a set of heterogenous data is being acquired:



• Acceleration in the X, Y, and Z axis of the device,
measured in g, unit relative to the Earth’s acceleration
factor (9.81 m/s2),

• Acceleration in the global coordinate system: N, E and
Z2,

• Current location from the GNSS (Global Navigation
Satellite System),

• Current speed (in m/s), magnetic course and time.
Data are being acquired every 100 milliseconds. However,

GNSS system frequency is only about 1 Hz due to smartphone
operating system limitations.

Data was divided into two sets: primary, which is Z2 axis
(axis perpendicular to the Earth’s surface) acceleration value
and current GNSS location and secondary – N and E axis
acceleration, current speed, course and time.

The dataset presented in Table I is a data taken when the
car was driving over a road artefact example - the speed
bump, which is visible when data from Z2 is presented in
Fig. 3. The data acquisition frequency for this dataset was
10 Hz for an acceleration values and they are during the drive
of the discrete geographical location – due to GNSS system
receivers, geographical points have both lower accuracy and
much lower sampling rate than acceleration values. However,
discrete geographical data points will be used later as a base
for calculation of detection of road artefacts in the desired
location.

Fig. 3. Z acceleration value when driving over the road artefact.

In the presented case, there is a value rise in the first 3 data
points which is a representation of the car going “up“’ when
driving, then there is going down when acceleration values are
greater than -1 g in the absolute value and then up again when
the second pair of wheels is meeting the surface of the road
artefact.

IV. THE OUTLIER DETECTION ALGORITHM

In case of MOD-Z-THRESH, the main concept was based
on adapting the threshold based on the current road quality
as measured by the average acceleration value. The ZS value
was calculated as the absolute difference between the current
Z2 (Z reoriented to be perpendicular to the Earth’s surface)

axis acceleration value minus the average acceleration value
in that axis, as presented in (1).

ZS = |Z − avg(Z)| (1)

The current data point was marked as potential road artefact
when ZS was greater than threshold defined as multiplication
of standard deviation for the current road fragment (σ) by a
defined factor (t).

ZS > σZ · t (2)

That factor was experimentally validated to get best values
when about 4.3 [8].

In the proposed method, the similar approach will be used
but the threshold (t) should not be expressed as the static value,
but it should be calculated automatically by the fuzzy system,
and to perform this, a few solutions have been proposed and
validated.

Every calculation for the algorithm is performed based on
a tumbling window principle – a set of windows which are
not overlapping, which is a basic technique of analyzing data
on the fly. Size of the tumbling window may be different, and
different options have been tested later.

In the proposed algorithm for the inputs for the fuzzy system
two variables will be taken into consideration: road quality,
based on the RRUI (Road Relative Unevenness Index) as
defined in [8], but expressed as the number instead of a letter
scale. RRUI scale classified road quality as an integer from 0
to 7, where 0 is the best quality and 7 is the worst quality.

The proposed system architecture is presented in the Fig. 4.
The vertical acceleration signal is derived from the smartphone
sensors, which readings are being reoriented by the usage of
rotation matrix for calculation of Z2, acceleration value in the
axis perpendicular to the Earth’s surface. Then, this value is
divided into a set of tumbling windows. For each tumbling
window, the average Z2 is used in calculation of the relative
road quality, classified into a numerical value and then for
each acceleration value the in a window the fuzzy system
is fed with its ZS value calculated by (1) for current Z2

value and road quality for currently analyzed window, which
is calculating the threshold value. The system is then finding
the threshold and if the current data point threshold is met by
(2), the current geographical location is marked as possible
road artefact. Then, aggregation of the road artefacts in the
same geographical position is performed, to group all possible
artefacts in the near neighborhood and remove duplicates. In
the final version of the system, the notification of the new road
artefact should be also presented on the user’s screen, but it
is not used in the presented research.

A. Road Quality Classification

The road quality classification values were divided into
three classes introducing fuzzy numbers by linguistic variables
(“good”, “mediocre”, and “poor”) by membership functions
presented in the Fig. 5 and Fig. 6.



TABLE I
EXAMPLE DATASET

X Y Z N E Z2 Latitude Longitude Time
0.05537 0.00898 -0.9998 0.01728 0.0473 -1.00011 51.27294 22.54432 2015-01-24 09:29:13;854
-0.03643 -0.02422 -0.99492 -0.07287 0.06645 -0.99099 51.27294 22.54432 2015-01-24 09:29:13;952
0.05732 -0.04961 -0.88555 0.00227 -0.01717 -0.88862 51.27294 22.54432 2015-01-24 09:29:14;048
0.15107 -0.02227 -1.07305 0.09636 -0.04815 -1.07849 51.27294 22.54432 2015-01-24 09:29:14;159
0.03975 0.05781 -1.15313 0.04665 0.06677 -1.15238 51.27294 22.54432 2015-01-24 09:29:14;251
-0.05205 0.04512 -1.16484 -0.03391 0.09776 -1.16228 51.27294 22.54432 2015-01-24 09:29:14;348
-0.02373 -0.01348 -0.98516 -0.04081 0.03077 -0.98421 51.27294 22.54432 2015-01-24 09:29:14;449
0.07393 0.08613 -0.89727 0.09052 0.06121 -0.89779 51.27294 22.54432 2015-01-24 09:29:14;549

0.196 -0.08184 -0.90215 0.10269 -0.1417 -0.91014 51.27294 22.54432 2015-01-24 09:29:14;651

Fig. 4. The proposed system architecture.

On the other hand, a difference between current reading and
average value of acceleration in Z axis will be classified into
two classes: “low” and “high”, by simple membership function
as presented in the Fig. 7.

The system will be calculating output parameter, the thresh-
old value, by the means of fuzzy system, based on the mem-
bership functions dividing values into three classes: “low”,
“medium” and “high”.

The system set of rules was defined by two simple rules:

Fig. 5. Membership function for the road quality indicator (variant 1).

Fig. 6. Membership function for the road quality indicator (variant 2).

• IF quality is poor or reading is high, THEN threshold
will be high,

• IF quality is good or reading is low, THEN threshold will
be low.

Defuzzification operation was implemented using the stan-
dard centroid method. The threshold value was calculated for
every datapoint and if the current Z axis acceleration was
greater than current threshold, that data point was classified
as a possible road artefact.



Fig. 7. Membership function for the difference between reading and average
value of the acceleration in the current window.

B. Threshold calculation

Several variants of the membership functions for the output
parameter were proposed, as presented in the Fig. 8–11. First
one is a simple function based on three triangular functions,
the second is a combination of triangular functions and
gaussian function. Variants 3 and 4 are using three gaussian
functions where medium value in both cases is based over
mean of 4.3 and deviations of 0.3 and 0.5, respectively.

Fig. 8. Membership function for the calculated threshold (variant 1).

C. Possible road artefacts aggregation

A crucial final step is also the possible data points aggrega-
tion to remove possible duplicates. There is a possibility for
detection of one road artefact as a several ones. For example,
based on a data from Table I, there is a possibility for the
algorithm that detection will be true for datapoints number 3,
5 and 8 – but they are all in the same location. Aggregation
of the points which are in the geographical neighborhood may
be performed dynamically, based on current GNSS system
accuracy or based on the static neighborhood size.

V. EXPERIMENTAL RESULTS

The algorithm was implemented in Python using scikit-
fuzzy package, every experiment was performed using 64-

Fig. 9. Membership function for the calculated threshold (variant 2).

Fig. 10. Membership function for the calculated threshold (variant 3).

Fig. 11. Membership function for the calculated threshold (variant 4).



bit Python 3.8.0 under Windows 10. From every possible
artefact being detected by the tested algorithms only GNSS
coordinates were extracted. Because detecting location of the
road artefact is the most crucial element of the experimental
validation, grouping the artefacts was performed, where every
road artefact in the range of 20 meters was combined into one.

Proposed algorithms were compared to the previously im-
plemented methods by the basis of counting number of True
Positives (detected position of a road artefact and there is an
artefact in that position), False Positives (detected position of
road artefact, but there is no artefact in that position), False
Negatives (not detected road artefact in the position, but there
is one) and True Negatives (not detected road artefact and
there is no artefact in the position).

For every algorithm, the same set of experimental data
were used for validation, consisted of data recorded during
the preliminary experiments in 2015 and 2016. Experimental
dataset was divided into 13 parts. Each of them has a slightly
different overall road quality and different types of road
artefacts to be detected, however in the same class (potholes,
speed bumps). Number of separate geographical positions
were ranging from 100 to 640, number of road artefacts in
the dataset were ranging from 2 to 13. The dataset has been
published at [21].

Two parameters were chosen as the base for the comparison:
Accuracy (ACC), defined as the number of True Positives and
True Negatives divided by the sum of TP, TN, FP and FN.
Second one was False Positive Rate (FPR), number of False
Positives by the sum of False Positives and True Negatives.
Accuracy should be highest, while False Positive Rate should
be as low as possible.

The algorithm was tested over a set of different tumbling
window size -– 50, 100 and 200 samples. These sizes, with an
acquisition data frequency of 10 Hz will represent 5, 10 and 20
seconds of driving, which, assuming average road traffic speed
of 10 m/s, is relative to the vehicle size, two times the vehicle
size and 4 times the vehicle size. Longer windows were used
to analyze the possibility of further aggregation of longer road
segments quality indices. All possible variants for F-THRESH
algorithm – usage of variant 1 and 2 of the road quality
indicator membership functions, usage of every variant of the
threshold membership functions, usage of different window
sizes - are presented in Table III.

The important element to mention is that all proposed
algorithms were strictly deterministic, that means for the
same dataset always the same road artefacts were detected or
undetected, removing necessity for multiple trials for every
possible combination of algorithm, data window size and
membership functions variants.

The best results in terms of accuracy and false positive rate
are presented in the Table II, compared to the authors’ previous
method, the MOD-Z-THRESH, on the same test cases.

In the Fig. 12, there is a presentation of the values of
threshold in relation to calculated ZS values, showing how
adaptive system is working:

• the grey values are the pure ZS values,

TABLE II
COMPARISON OF ALGORITHMS’ ACCURACY AND FALSE POSITIVE RATE

Algorithm ACC FPR
MOD-Z-THRESH with 4.3 threshold factor 93.26% 3.51%

F-THRESH with 50-samples window,
road quality function 2, threshold function 3

94.21% 1.41%

F-THRESH with 50-samples window,
road quality function 2, threshold function 4

94.16% 1.33%

F-THRESH with 50-samples window,
road quality function 1, threshold function 3

94.15% 1.39%

TABLE III
COMPARISON OF F-THRESH’S ACCURACY AND FALSE POSITIVE RATE

Window Size
Road Quality
Membership

Threshold
Membership

ACC FPR

50 1 1 93.86% 2.20%
100 1 1 93% 3.85%
200 1 1 92.45% 4.39%
50 2 1 93.81% 2.25%

100 2 1 93% 3.85%
200 2 1 92.32% 4.52%
50 1 2 93.90% 2.15%

100 1 2 92.96% 3.89%
200 1 2 92.45% 4.39%
50 2 2 93.86% 2.24%

100 2 2 92.96% 3.89%
200 2 2 92.33% 4.52%
50 1 3 94.15% 1.39%

100 1 3 93.93% 2.53%
200 1 3 93.35% 3.35%
50 2 3 94.21% 1.41%

100 2 3 93.93% 2.53%
200 2 3 93.33% 3.25%
50 1 4 94.14% 1.33%

100 1 4 93.99% 2.39%
200 1 4 93.56% 3.01%
50 2 4 94.16% 1.33%

100 2 4 93.99% 2.39%
200 2 4 93.52% 3.06%

• green are thresholds, calculated by MOD-Z-THRESH
with factor 4.3

• blue are thresholds, calculated using new F-THRESH
• with 50 samples window, quality function 2 and threshold

function 3,
• yellow is standard deviation of Z2.

It may be noticed, that for two presented data windows (data
points 1-50 and 50-100, respectively), the standard deviation
differs. The most important conclusion may be however seen
in the difference between thresholds calculated by the new
method (blue) and the old one (green) – the new thresholds are
changing more dynamically, respecting changes in the overall
road quality faster. Because of more accurate calculation
of threshold, there is a possibility to find a road artefact



Fig. 12. ZS values (gray), calculated threshold by F-THRESH (blue), calculated threshold by MOD-Z-THRESH (green), standard deviation of Z2 (yellow)
and detected road artefacts over two data windows analyzed.

not detected by the previous method, as is presented in the
Fig. 12 near data point number 31, where grey ZS values are
exceeding threshold value for F-THRESH (blue) but not the
threshold value for the previous method, MOD-Z-THRESH
(green).

VI. CONCLUSIONS

The proposed method of fuzzy adaptive thresholding is
connecting both overall road quality in a specified windows
size and real-time vibrations. Uncertainty of data is handled by
the fuzzy system, allowing for increased accuracy and lower
false positive rate than in methods based on thresholding with
a given-factor threshold. The proposed method is also one of
the best methods when compared to the related works – there is
also a possibility of implementation of this method directly in
the IoT Edge scenarios, as it is not as computationally complex
as ANN for example.

The presented results are allowing us to form the following
conclusions:

• F-THRESH method is better in terms both of accuracy
and false positive rate than previously proposed MOD-Z-
THRESH method in 16 out of 24 overall cases (66%),

• The best results are achieved for smaller window sizes
— the longer the tumbling window size, the differences
in the road quality are detected worse,

• In the terms of accuracy, the difference between the
proposed method and MOD-Z-THRESH method is better
by 0.95 percentage point for the best scenario (quality
function 2, threshold function 3),

• In the terms of false positive rate, the difference between
the proposed method and MOD-Z-THRESH is 2.18 per-
centage point for the best-case scenario (membership
function 2, threshold function 4),

• For the best accuracy scenario, the false positive rate also
dropped by 2.1 percentage point, which is 40% drop rate,
thus the authors believe that the best method could be

described as: road quality membership function variant 2
(Fig. 6) and threshold membership function variant 3
(Fig. 10).

Finally, implementation of the fuzzy logic system improved
accuracy and false positive rate for the thresholding method
in the case of road artefacts detection.

VII. SUMMARY AND FUTURE WORKS

Fuzzy threshold algorithm to detect anomalies in an on-
the-fly, adaptive fashion without a priori knowledge of the
underlying data has been proposed and tested in comparison
to the previous method, allowing for improvements in terms
both of accuracy which rose by about 1%, but mostly for the
false positives, which dropped by 40%.

Such interesting results will be applied in the real-world
prototype implemented directly on the smartphone, allowing
for “stretch-of-road” continuous road quality control, addition-
ally allowing that that acquisition software will only send to
the server data which may hold the real road artefacts, without
sending “noise”, allowing for further reduction of data usage
for a such system.

In the proposed method, no implementation of driver’s own
driving style has been taken into account, as well as no
information about braking and avoiding the potholes – that
means the system will take into the account only the potholes
or other road artefacts the driver already “found”. This is a
serious limitation to the proposed method, as driving just over
the artefacts is finally not a desirable behavior. Trying to detect
possible road artefacts from only the car behavior similar to
pothole avoidance will be a goal of the author’s next work.

Finally, an interesting future work direction is to consider
an application of other fuzzy-set or Granular Computing-
based methods to find the anomalies in the road and transport
information such as Fuzzy Set-Based Isolation Forest [22] or
others enabled to work with spatio-temporal datasets contain-
ing categorical information.
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