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Abstract—Noise fuzzy clustering is a useful scheme for an-
alyzing intrinsic data structures through robust estimation of
fuzzy c-partition. In this paper, a novel noise rejection scheme for
improving fuzzy co-clustering is proposed, which is useful in such
cooccurrence information analysis as document classification,
where multi-topic co-cluster structure extraction by probabilistic
latent semantic analysis (pLSA) is achieved through rejection of
the influences of noise objects. Supported by the uniform noise
distribution concept in noise fuzzy clustering, a noise cluster
having uniform item occurrence probabilities is newly introduced
into the pLSA-induced fuzzy co-clustering model. Several numer-
ical experiments demonstrate the advantage of tuning the noise
sensitivity of the pLSA-induced objective function.

I. INTRODUCTION

Fuzzy clustering is an effective method for capturing char-
acteristics of data sets by revealing their intrinsic structures,
and enables more flexible data analysis than crisp partitioning
through estimation of ambiguous classification boundaries
utilizing fuzzy memberships [1]. Fuzzy c-Means (FCM) and its
variants [2], [3] incorporate the concept of fuzzy partitioning
into k-Means [4]. By updating cluster centroids and object
memberships using a process similar to the EM algorithm [5],
such as k-Means, we can obtain classification results as the
local optimal solutions of objective function minimization.

Since FCM adopts the clustering criterion of squared Eu-
clidian distances among objects and cluster centroids, FCM
sometimes yields poor results under the influences of noise or
outliers in a manner similar to other least square models [6].
Noise fuzzy clustering [7], [8] has been proposed for obtaining
robust cluster centroids without noise influences, where the un-
favorable influences are reduced by introducing an additional
noise cluster for rejecting noise objects in extraction of normal
clusters. Assuming that the noise cluster is equidistant from
all objects, noise objects distant from all centroids are dumped
into the noise cluster.

In the analysis of cooccurrence information of object×item
such as frequency information of document × keyword
in document analysis and purchase history transactions of
customer × product in market analysis, the purpose is not
only the extraction of clusters of similar objects but also the
feature analysis of clusters by correlating remarkable items
in each cluster. Fuzzy c-Means-based fuzzy co-clustering [9],

[10] extracts co-clusters, which are composed of the set of
strongly related pairs of objects and items, by estimating not
only object memberships but also item memberships through
maximization of the cluster-wise aggregation degrees instead
of the FCM clustering criterion. Fuzzy co-clustering induced
by Multinomial Mixture Models (FCCMM) [11] is another
direction of co-clustering, which is theoretically supported
by the similarity between the aggregation degree criterion
of FCM-based fuzzy co-clustering and the pseudo-likelihood
function for the maximum likelihood estimation in Multi-
nomial Mixture Models (MMMs) [12]. With the goal of
reducing the influences of noise objects in fuzzy co-clustering,
FCCMM was extended to a robust model [13], where the
noise clustering concept is utilized with equal occurrence
probabilities instead of uniform noise distribution.

In addition to uni-topic partition models, such as MMMs
and Dirichlet mixtures [14], topic models have been shown
to be more powerful in revealing intrinsic topic structures
in document analysis. Probabilistic Latent Semantic Analy-
sis (pLSA) [15] is a representative topic model, and shows
high classification performances by enhancing the occurrence
probabilities of objects and items with MMMs from the
viewpoint of latent topic estimation. Recently, pLSA was
further extended to pLSA-induced fuzzy co-clustering [16],
[17], which improves the interpretability and the initialization
robustness of pLSA solutions by adjusting the intrinsic fuzzi-
ness degree of the dual partition nature. Additionally, it was
also reported that the partition quality of co-clusters can be
improved compared to pLSA under the deterministic annealing
approach [18].

In this paper, a novel noise rejection scheme for pLSA-
induced fuzzy co-clustering is proposed for further improving
its partition quality by introducing the noise fuzzy clustering
concept.

The main contribution of this paper is summarized as
follows:

• The conventional pLSA-induced fuzzy co-clustering
model is enhanced into a robust clustering model, where
a noise cluster is introduced in a similar manner to the
noise rejection model for FCCMM.
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• By introducing a noise cluster having uniform item
occurrence probabilities, noise objects are shown to be
dumped into the noise cluster.

• The partition quality is demonstrated to be improved
through several numerical experiments.

The remaining parts of this paper are organized as follows:
Section II presents a brief review of several fuzzy clustering
models induced by statistical clustering concepts. Section III
introduces noise fuzzy clustering schemes and proposes a
novel noise rejection scheme for pLSA-induced fuzzy co-
clustering. The characteristic features of the proposed model
are demonstrated through several numerical experiments in
Section IV and the summary conclusion is given in Section V.

II. PROBABILISTIC MIXTURE-INDUCED FUZZY
CLUSTERING MODELS

A. C-means Clustering Models

Assume that the goal is to partition n objects xi =
(xi1, . . . , xim)⊤, i = 1, . . . , n with m-dimensional obser-
vation vectors into C clusters. In C-means clustering, the
prototype of cluster c is defined as the mean vector bc =
(bc1, . . . , bcm)⊤, and the fuzzy membership of object i to
cluster c is represented by uci (uci ∈ [0, 1]), which generally
follows the probabilistic constraint of

∑C
c=1 uci = 1. Under

different partition assumptions, we have several variants of the
C-means clustering family, where their clustering criteria are
constructed using squared Euclidean distances among objects
and mean vectors.

1) Crisp Partition: In k-Means (Hard c-Means) [4], the
objective function to be minimized is defined as a linear func-
tion with respect to memberships uci, and crisp memberships
uci ∈ {0, 1} are then given even if these memberships are
generalized into such fuzzy values as uci ∈ [0, 1]:

Lkm =

C∑
c=1

n∑
i=1

uci∥xi − bc∥2, (1)

where Voronoi regions are obtained by dividing the data space
according to perpendicular bisectors of the line segments
connecting cluster centroids. In crisp partitions, since noise
and outliers are also assigned to either of clusters with the
highest memberships (uci = 1), cluster centroids can often be
strongly distorted due to noise influences, which also give rise
to many local minima, compared to the case where no outliers
are present.

2) Probabilistic Fuzzy Partition: Fuzzy partition is an ex-
tension of crisp partition, where the responsibility of each ob-
ject in cluster centroid calculation is fairly shared with multiple
clusters considering fuzzy memberships. In Bezdek’s Fuzzy
c-Means (FCM) [2], the k-means objective function was non-
linearized with respect to membership uci for realizing fuzzy
C-partitions by introducing weighting exponent θ (θ > 1) on
memberships uci as:

Lfcm =

C∑
c=1

n∑
i=1

uθ
ci∥xi − bc∥2, (2)

where θ = 2 is generally recommended. A smaller θ yields a
crisper partition, and the model is reduced to the conventional
k-means with θ = 1. On the other hand, a larger θ yields a
fuzzier partition. The object with xi = bc has the maximum
membership uci = 1 to the cluster c, whereas outliers distant
from all centroids tend to have relatively smaller memberships
uci → 1/C to all clusters. Then, the unfavorable influences of
noise to cluster centroids can be reduced.

In addition to Bezdek-type fuzzification, Miyamoto et al.
[19] proposed a regularization approach by introducing a non-
linear penalty into the k-Means objective function. When the
(negative) entropy term is added with adjustable weight λ, the
entropy regularized FCM (eFCM) objective function is given
as:

Lefcm =

C∑
c=1

n∑
i=1

uci∥xi − bc∥2 + λ

C∑
c=1

n∑
i=1

uci log uci, (3)

where, as the penalty weight λ (λ > 0) increases, the partition
becomes fuzzier. In contrast to the Bezdek-type model, no
object has the maximum membership uci = 1 at the point of
xi = bc while the membership at a point far from bc can
approach uci → 1 [20].

The objective function implies a close connection with
Gaussian Mixture Models (GMMs) [21]. Hathaway [22] in-
terpreted the pseudo-log-likelihood function in GMMs as the
modified hard c-means objective function with an entropy
penalty term such that GMMs is a C-means family with soft
partition natures. From the GMMs viewpoint, the fuzzification
weight λ is identified with the double variances of Gaussian
components, and we can then adjust the fuzziness degree in
eFCM through comparison with GMMs. For example, an FCM
model can be fuzzier than GMMs when the weight λ is larger
than twice the cluster-wise variances.

B. Fuzzy Co-clustering Induced by Probabilistic Concepts

Given an n ×m cooccurrence matrix R = {rij} of cooc-
currence information among n objects and m items, instead of
the coordinate values in the multidimensional data space, the
goal of cluster structure analysis can be to extract C pairwise
co-clusters of familiar objects and items.

1) Fuzzy Clustering of Categorical Multivariate Data
(FCCM): In order to extend the FCM clustering concept to
co-clustering tasks, Fuzzy Clustering for Categorical Multi-
variate data (FCCM) [9] adopts two different types of fuzzy
memberships: uci for the membership of object i to cluster
c, and wcj for the membership of item j to cluster c. With
the goal of extracting dense co-clusters, the FCM clustering
criterion was replaced with the following aggregation degree
of objects and items:

J =

C∑
c=1

n∑
i=1

m∑
j=1

uciwcjrij , (4)

where the criterion becomes large when the familiar pair of
object i and item j having large cooccurrence rij belongs to
the same cluster, i.e., cluster c.



The original FCCM objective function was defined by
adopting entropy-based regularization as [9]:

Lfccm =

C∑
c=1

n∑
i=1

m∑
j=1

uciwcjrij

− λu

C∑
c=1

n∑
i=1

uci log uci

− λw

C∑
c=1

m∑
j=1

wcj logwcj . (5)

Here, λu and λw are the penalty weights, which tune the
fuzziness of the dual C-partition of objects and items. As the
weights increase, the partition becomes fuzzier. Here, uci and
wcj should follow different types of constraints in order to
avoid a trivial whole data cluster. Object memberships uci

can be constrained under
∑C

c=1 uci = 1 likewise FCM, while
item memberships should be constrained under

∑m
j=1 wcj = 1

in order to represent the relative importance among items in
each cluster.

Although the FCCM model is a simple extension of the
FCM clustering concept to co-clustering, there is no counter-
part of probabilistic mixture models, i.e., we have no theoret-
ical supports of corresponding statistical models in fuzziness
tuning. Then, it is often difficult to tune fuzziness weights λu

and λw by trial and error in real implementation.
2) Fuzzy Co-Clustering Induced by Multinomial Mixture

Models (FCCMM): Honda et al. [11] proposed Fuzzy Co-
Clustering induced by Multinomial Mixture models (FC-
CMM), which is a fuzzy co-clustering model induced from a
statistical co-clustering model of Multinomial Mixture Models
(MMMs) [12]. FCCMM can achieve fuzzy co-clustering by
introducing an adjustable fuzziness weight to the pseudo-log-
likelihood functions of MMMs as follows:

Lfccmm =

C∑
c=1

n∑
i=1

m∑
j=1

ucirij logwcj

+λu

C∑
c=1

n∑
i=1

uci log
αc

uci
, (6)

where λu is the penalty weight, which tunes the fuzziness
degree of the object partition, and the K-L information
term contributes to fuzzification of object memberships uci,
whereas, unlike FCCM, fuzzification of item memberships
wcj is realizes by the non-linearity of the log function. αc

represents the volume of cluster c, i.e., the priori probability
for cluster c. The model is reduced to the conventional
MMMs when λu = 1. As the weight increases, the object
partition becomes fuzzier. Besides the fuzziness degree of
object partition, the item partition fuzziness can also be tuned
by modifying the non-linearity of the log function.

In Ref. [11], it was demonstrated that the interpretability of
co-cluster partition can be improved, as compared to MMMs,
by properly tuning the degree of the partition fuzziness.

3) pLSA-induced Fuzzy Co-clustering Model: Recently,
another statistical co-clustering model of topic model has

become popular, as compared to MMMs and its variants, for
document analysis. In the mixture of uni-topic models such
as MMMs and Dirichlet mixtures [14], maximum likelihood
estimation is performed by assuming that each object belongs
to a single class, where item j occurs with a probability of
wcj . On the other hand, probabilistic Latent Semantic Analysis
(pLSA) [15] assumes that each object i can be connected with
certain C topics at ratios of uci. Then, the probability pij of
occurring item j in conjunction of object i is given as:

pij =

C∑
c=1

uciwcj . (7)

For example, in document classification, a document (object)
can be connected with multiple topics (clusters), where certain
words (items) occur with a topic, but other words may be
responsible for different topics.

Then, the log-likelihood function to be maximized is defined
as:

Lplsa =

n∑
i=1

m∑
j=1

rij log

C∑
c=1

uciwcj . (8)

Since the updating rules cannot be directly obtained by differ-
entiating this likelihood function, the lower bound of Lplsa is
estimated by maximizing the following pseudo-log-likelihood
function under the support of Jensen’s inequality [23]:

Lplsa′ =

C∑
c=1

n∑
i=1

m∑
j=1

ϕcijrij log(uciwcj)

−
C∑

c=1

n∑
i=1

m∑
j=1

ϕcij log ϕcij , (9)

where ϕcij corresponds to a posteriori probability of class c
given item j with object i, and is a latent variable used to
update uci and wcj . Since the second term is interpreted as
the entropy penalty term, which adjusts the fuzziness degree
of latent variable ϕcij , the intrinsic fuzziness degree of the
pLSA partition can be adjusted by tuning the responsibility of
the entropy term.

Then, the pLSA-induced Fuzzy Co-clustering Model (FC-
CpLSA) [16], [17] introduced the fuzzification weight λϕ to
the entropy term, and the objective function to be maximized
is defined as:

Lfccplsa =

C∑
c=1

n∑
i=1

m∑
j=1

ϕcijrij log(uciwcj)

−λϕ

C∑
c=1

n∑
i=1

m∑
j=1

ϕcij log ϕcij , (10)

where a larger λϕ yields a fuzzier dual partition of objects and
items.

In Ref. [17], it was demonstrated that the partition quality of
co-clusters can be improved as compared to pLSA by starting
with a higher fuzziness degree and by gradually decreasing
under the deterministic annealing approach [18].



III. NOISE REJECTION IN FUZZY CLUSTERING AND
FUZZY CO-CLUSTERING

Noise rejection is an important issue in applying fuzzy
clustering to real world problems. According to the least
squares principle, the conventional frameworks of C-means
clustering often suffers from the unfavorable influences of
noise and outliers. In this section, the noise fuzzy clustering
scheme proposed by Davé [7], [8] is reviewed and is extended
to robust fuzzy co-clustering.

A. Noise Fuzzy Clustering

In order to reject the influences of noise in FCM clustering,
Davé [7] proposed noise fuzzy clustering, which introduced
a noise cluster for dumping noise objects far from all cluster
centroids. Assuming that the Cth cluster is a noise cluster,
to which all objects are equidistant (γ), the FCM objective
function of Eq.(2) is modified as:

Lnfcm =

C−1∑
c=1

n∑
i=1

uθ
ci∥xi − bc∥2 + γ

n∑
i=1

uθ
Ci, (11)

where cluster C is the noise cluster, whereas other clusters, i.e.,
clusters 1, . . . , C−1, are normal clusters. Under the constraint
of

∑C
c=1 uci = 1, the sum of memberships to normal clusters

is
∑C−1

c=1 uci < 1 and uCi is the membership degree to the
noise cluster. Since each object should belong to at most one
cluster including the noise cluster, all clusters are mutually
exclusive and noise objects have almost zero memberships to
the normal clusters when they are more distant than γ from
all normal clusters. Then, the centroids of the normal clusters
are robustly estimated without influences of noise.

In Ref. [8], noise distance γ is recommended to be cal-
culated considering the variance determined by the following
equation:

γ = δ

[∑C
c=1

∑n
i=1 ∥xi − bc∥2

n× C

]
, (12)

where δ is the noise sensitivity weight and is often set as
δ = 1.

Here, from the statistical clustering viewpoint, the noise
clustering model can be regarded as estimation of the mixture
distributions considering Gaussian components and a uniform
noise distribution. As shown in Fig.1, each normal cluster is
assumed to have a Gaussian peak at its centroid, whereas the
noise cluster has equal probabilities over all regions [24]. If the
Gaussian probability of the occurrence of an object is larger
than the noise probability, then the object is assigned to a
normal cluster.

In the remaining part of this paper, noise rejection schemes
are designed for fuzzy co-clustering following the above
statistical interpretation of noise fuzzy clustering.

B. Noise Rejection in FCCMM

First, let us review the noise rejection scheme in FCCMM,
which is the fuzzy co-clustering based on the concept of uni-
topic mixture models. Honda et al. [13] proposed a noise

Fig. 1. Image of noise distribution [24]

fuzzy co-clustering model supported by the uniform noise
distribution. Although each co-cluster is assumed to have
high aggregation of objects and items with a certain bias of
item cooccurrence probabilities, noise objects are expected to
cooccur with random items under uniform item occurrence
probabilities. Then, assuming the Cth cluster to be a noise
cluster, item occurrence probabilities are uniform for all items,
i.e., wCj =

1
m , and the aggregation degree in the noise cluster

can be represented by
(∑m

j=1 rij log
1
m

)
.

The FCCMM objective function of Eq.(6) is modified as:

Lnfccmm =

C−1∑
c=1

n∑
i=1

uci

 m∑
j=1

rij logwcj


+ γ

n∑
i=1

uCi

 m∑
j=1

rij log
1

m


− λu

C∑
c=1

n∑
i=1

uci log uci, (13)

where γ tunes the noise sensitivity. A smaller γ implies a
higher probability of noise distribution and more objects are
removed as noise.

In Ref. [13], it was demonstrated that the noise rejection
scheme worked to improve the pureness of co-cluster cores
by rejecting the unfavorable influences of noise objects in
document clustering tasks.

C. Noise Rejection in pLSA-induced Fuzzy Co-clustering

In this paper, the above scheme is further enhanced to
the multi-topic mixture models and a novel noise rejection
model for pLSA-induced fuzzy co-clustering is proposed.
For example, in document classification, some documents
(objects) can be noises, which are not relevant to any dominant
topics, and should be rejected from topic extraction. Then, in
the proposed method, a noise cluster, i.e., a noise topic, is
introduced such that the Cth cluster is the noise cluster where
all items have uniform occurrence probabilities of wCj =

1
m .

The aggregation degree of the noise cluster is∑n
i=1

∑m
j=1 ϕCijrij log

uCi

m , and the objective function
of Eq.(10) is modified as:



Lnfccplsa =

C−1∑
c=1

n∑
i=1

m∑
j=1

ϕcijrij log(uciwcj)

+γ

n∑
i=1

m∑
j=1

ϕCijrij log(
uCi

m
)

−λϕ

C∑
c=1

n∑
i=1

m∑
j=1

ϕcij log ϕcij , (14)

where object and item memberships are derived under the
same constraint with the conventional pLSA-induced fuzzy
co-clustering as

∑C
c=1 uci = 1 and

∑m
j=1 wcj = 1, re-

spectively. Here, if object i is a noise, then uCi of noise
membership becomes large and the remaining memberships
follow

∑C−1
c=1 uci < 1 in normal clusters. Then, robust

topic estimation is expected to be achieved by rejecting the
influences of noise objects.

The penalty weight γ is adopted in the same manner as that
of the FCCMM type, so that γ can tune the noise sensitivity.
A smaller γ implies a higher probability of noise distribution
and more objects are removed as noise.

Since the latent variable ϕcij represents the posteriori prob-
ability of component c given uci and wcj , its constraint is still∑C

c=1 ϕcij = 1 without modification.
Following a similar process as the EM algorithm for pLSA,

the updating formulas in maximizing the objective function of
Eq. (14) are given as follows:

1) Updating Formula for Latent Variable ϕcij: For normal
clusters,

ϕcij =
(uciwcj)

(rij/λϕ)

C−1∑
k=1

(ukiwkj)
(rij/λϕ) + (

uCi

m
)(γrij/λϕ)

. (15)

For the noise cluster,

ϕCij =
(
uCi

m
)(γrij/λϕ)

C−1∑
k=1

(ukiwkj)
(rij/λϕ) + (

uCi

m
)(γrij/λϕ)

. (16)

2) Updating Formula for Object Memberships uci: For
normal clusters,

uci =

m∑
j=1

rijϕcij

C−1∑
k=1

m∑
j=1

rijϕkij + γ

m∑
j=1

rijϕCij

. (17)

For the noise cluster,

uCi =

γ

m∑
j=1

rijϕCij

C−1∑
k=1

m∑
j=1

rijϕkij + γ

m∑
j=1

rijϕCij

. (18)

(a) Noiseless R0 (b) Noisy R1

Fig. 2. Artificial cooccurrence matrices

3) Updating Formula for Item Memberships wcj: For nor-
mal clusters,

wcj =

n∑
i=1

rijϕcij

m∑
ℓ=1

n∑
i=1

riℓϕciℓ

. (19)

For the noise cluster,

wCj =
1

m
. (20)

4) Algorithm: Then, a sample procedure of the proposed
algorithm is written as follows:

[pLSA-induced Fuzzy Co-clustering Based on Noise
Clustering (NFCCpLSA)]

Step 1. Initialize fuzzy memberships uci, c = 1, . . . , C, i =
1, . . . , n and wcj , c = 1, . . . , C, j = 1, . . . ,m such
that they satisfy

∑C
c=1 uci = 1, ∀i and

∑m
j=1 wcj =

1, ∀c. Choose the fuzziness penalty weight λϕ, noise
sensitivity γ, number of clusters C and termination
criterion ε.

Step 2. Update latent variable ϕcij , c = 1, . . . , C, i =
1, . . . , n, j = 1, . . . ,m by Eqs.(15) and (16).

Step 3. Update wcj , c = 1, . . . , C, j = 1, . . . ,m by
Eqs.(19) and (20).

Step 4. Update uci, c = 1, . . . , C, i = 1, . . . , n by Eqs.(17)
and (18).

Step 5. If maxc,i | uNEW
ci − uOLD

ci |< ε, then stop.
Otherwise, return to Step 2.

IV. NUMERICAL EXPERIMENTS

A. Artificial Data Sets

First, the proposed model was applied to an artificially
generated data set composed of 100 objects (n = 100) and 60
items (m = 60). Figure 2 shows visual images of the 100×60
cooccurrence matrices R0 and R1, where black and white cells



(a) Ideal object membership uci

(b) Ideal item membership wcj

Fig. 3. Ideal memberships derived from R0 without noise

TABLE I
RAND INDEX IN CONJUNCTION WITH REJECT RATE (ARTIFICIAL DATA)

(a) FCCMM and NFCCMM (with γ)
λu

0.5 1.0 2.0 3.0
FCCMM 0.950 0.940 0.940 0.950

0.98 0.977 (0.14) 0.988 (0.16) 0.976 (0.15) 0.977 (0.12)
γ 1.00 0.958 (0.05) 0.978 (0.10) 0.978 (0.09) 0.957 (0.06)

1.02 0.959 (0.02) 0.959 (0.03) 0.948 (0.03) 0.949 (0.02)

(b) FCCpLSA and NFCCpLSA (with γ)
λϕ

1.0 1.1 1.3 1.5
pLSA 0.960 0.970 0.960 0.960

0.98 0.966 (0.12) 0.989 (0.10) 0.968 (0.05) 0.958 (0.04)
γ 1.00 0.969 (0.04) 0.969 (0.03) 0.970 (0.00) 0.960 (0.01)

1.02 0.980 (0.00) 0.970 (0.01) 0.970 (0.00) 0.960 (0.00)

depict rij = 1 and rij = 0, respectively. The base matrix
R0 without noise includes roughly four co-clusters (C = 4)
in diagonal blocks, where some items are shared by multiple
clusters. The noisy matrix R1 to be analyzed was generated
from R0 by replacing rij = 1 with rij = 0 at a rate of 50%
and rij = 0 with rij = 1 at a rate of 10%. The goal is to
estimate the plausible memberships from the noisy data set,
whose ideal values are shown in Fig. 3 by grayscale.

The performances of the proposed NFCCpLSA are com-
pared with the conventional FCCMM, NFCCMM and FC-
CpLSA. The number of clusters was C = 4 for FCCMM
and FCCpLSA, and C = 5 for NFCCMM and NFCCpLSA
including a noise cluster. The algorithms were implemented
with λu ∈ {0.5, 1.0, 2.0, 3.0} and γ ∈ {0.98, 1.0, 1.02} for
FCCMM and NFCCMM, and with λϕ ∈ {1.0, 1.1, 1.3, 1.5}
and γ ∈ {0.98, 1.0, 1.02} for FCCpLSA and NFCCpLSA.
Figures 4 and 5 compare the derived object memberships
through grayscale, where black and white indicate maximum
and zero values, respectively. In the figures, the partition
fuzziness was demonstrated to be weak to heavy through
upper to lower subfigures while the noise rejection was heavier
enforced from left to right subfigures.

In addition, the ratio of matching between the derived parti-
tion and the ideal object partition under maximum membership
assignment (Rand Index) are compared in Table I, where the
best performances in 10 trials with different initializations are
presented in conjunction with the noise rejection rate (Reject
Rate) shown in brackets.

The partition quality was shown to be improved by properly
adjusting the noise sensitivity and fuzziness weights. In the

TABLE II
RAND INDEX IN CONJUNCTION WITH REJECT RATE (CORA DATASET)

(a) FCCMM and NFCCMM (with γ)
λu

1.5 2.0 3.0
FCCMM 0.491 0.495 0.513

0.98 0.532 (0.013) 0.534 (0.009) 0.555 (0.008)
γ 1.00 0.528 (0.008) 0.545 (0.004) 0.557 (0.003)

1.02 0.534 (0.003) 0.525 (0.003) 0.552 (0.002)

(b) FCCpLSA and NFCCpLSA (with γ)
λϕ

1.0 1.1 1.3
pLSA 0.528 0.520 0.556

0.92 0.558 (0.278) 0.605 (0.260) 0.596 (0.210)
γ 0.94 0.528 (0.200) 0.552 (0.155) 0.579 (0.129)

0.96 0.522 (0.008) 0.541 (0.082) 0.571 (0.066)

proposed method, the noise sensitivity weight successfully
worked for tuning the rejection rate such that as the noise
sensitivity γ decreased, the number of objects removed as
noise increased. Moreover, a much higher fuzziness weight
such as λu = 3.0 and λϕ = 1.5 can cause poor local solutions,
where structural information was violated.

B. Document Classification Benchmark Data Sets

Next, the proposed model was applied to two
document classification benchmark data sets: Cora and
CiteSeer, which are available from LINQS webpage
of Statistical Relational Learning Group @ UMD
(http://linqs.cs.umd.edu/projects//index.shtml). Cora is a
2708 × 1433 cooccurrence matrix, which consists of 2708
machine learning papers and 1433 feature words, and is
classified into one of seven classes. CiteSeer is a 3312×3703
cooccurrence matrix, which consists of 3312 scientific
journals and 3703 feature words, and is classified into one of
six classes. Cooccurrence information is presented as rij = 1
if the document i contains the feature word j and is presented
as rij = 0 if the document i does not contain the feature
word j. The number of documents in each class is { 298,
418, 818, 426, 217, 180, 351 } in Cora, and { 701, 668, 596,
590, 508, 249 } in CiteSeer.

1) Cora dataset: The number of clusters was C = 7 for
FCCMM and FCCpLSA, and C = 8 for NFCCMM and
NFCCpLSA including a noise cluster. The algorithms were im-
plemented with λu ∈ {1.5, 2.0, 3.0} and γ ∈ {0.98, 1.0, 1.02}
for FCCMM and NFCCMM, and with λϕ ∈ {1.0, 1.1, 1.3}
and γ ∈ {0.92, 0.94, 0.96} for FCCpLSA and NFCCpLSA.
The ratio of matching between the derived partition and the
ideal object partition under maximum membership assignment
(Rand Index) are compared in Table II, where the best perfor-
mances in 10 trials with different initializations are presented
in conjunction with the noise rejection rates (Reject Rate)
shown in brackets.

Table II shows that the classification performance of pLSA-
induced fuzzy co-clustering was better than that of FCCMM.
Moreover, introducing the noise clustering schemes, the clas-
sification performances of FCCMM and the proposed model



(a) λu = 0.5 (FCCMM) (b) λu = 0.5, γ = 0.98 (c) λu = 0.5, γ = 1.00 (d) λu = 0.5, γ = 1.02

(e) λu = 1.0 (FCCMM) (f) λu = 1.0, γ = 0.98 (g) λu = 1.0, γ = 1.00 (h) λu = 1.0, γ = 1.02

(i) λu = 2.0 (FCCMM) (j) λu = 2.0, γ = 0.98 (k) λu = 2.0, γ = 1.00 (l) λu = 2.0, γ = 1.02

(m) λu = 3.0 (FCCMM) (n) λu = 3.0, γ = 0.98 (o) λu = 3.0, γ = 1.00 (p) λu = 3.0, γ = 1.02

Fig. 4. Object memberships uci in FCCMM and NFCCMM

(a) λϕ = 1.0 (FCCpLSA) (b) λϕ = 1.0, γ = 0.98 (c) λϕ = 1.0, γ = 1.00 (d) λϕ = 1.0, γ = 1.02

(e) λϕ = 1.1 (FCCpLSA) (f) λϕ = 1.1, γ = 0.98 (g) λϕ = 1.1, γ = 1.00 (h) λϕ = 1.1, γ = 1.02

(i) λϕ = 1.3 (FCCpLSA) (j) λϕ = 1.3, γ = 0.98 (k) λϕ = 1.3, γ = 1.00 (l) λϕ = 1.3, γ = 1.02

(m) λϕ = 1.5 (FCCpLSA) (n) λϕ = 1.5, γ = 0.98 (o) λϕ = 1.5, γ = 1.00 (p) λϕ = 1.5, γ = 1.02

Fig. 5. Object memberships uci in FCCpLSA and NFCCpLSA.

were improved by properly adjusting the noise sensitivity
and fuzziness weights. Then, the advantage of the proposed
model was demonstrated in a real-world application, where the
numbers of class elements are not constant. Moreover, it was
also confirmed that the partition quality of both models can
be improved with slightly fuzzier settings than the statistical
MMMs and pLSA, but can be degraded with heavily fuzzier
settings.

2) CiteSeer: The number of clusters was C = 6 for
FCCMM and FCCpLSA, and C = 7 for NFCCMM
and NFCCpLSA including a noise cluster. The algorithms
were implemented with λu ∈ {1.0, 1.5, 2.0, 3.0} and γ ∈
{0.90, 0.92, 0.94, 0.96} for FCCMM and NFCCMM, and with
λϕ ∈ {1.0, 1.1, 1.3, 1.5} and γ ∈ {0.92, 0.94, 0.96, 0.98} for
FCCpLSA and NFCCpLSA. The ratio of matching between
the derived partition and the ideal object partition under



TABLE III
RAND INDEX IN CONJUNCTION WITH REJECT RATE (CITESEER DATASET)

(a) FCCMM and NFCCMM (with γ)
λu

1.0 2.0 3.0
FCCMM 0.358 0.505 0.546

0.90 0.392 (0.151) 0.533 (0.137) 0.591 (0.133)
γ 0.92 0.371 (0.066) 0.517 (0.050) 0.565 (0.046)

0.94 0.362 (0.021) 0.508 (0.019) 0.557 (0.015)
0.96 0.359 (0.008) 0.504 (0.005) 0.552 (0.006)

(b) FCCpLSA and NFCCpLSA (with γ)
λϕ

1.0 1.1 1.3
pLSA 0.584 0.623 0.634

0.92 0.653 (0.235) 0.666 (0.223) 0.666 (0.196)
γ 0.94 0.637 (0.106) 0.652 (0.114) 0.657 (0.103)

0.96 0.628 (0.043) 0.638 (0.049) 0.648 (0.046)
0.98 0.642 (0.016) 0.628 (0.018) 0.644 (0.018)

maximum membership assignment (Rand Index) are compared
in Table III, where the best performances in 10 trials with
different initializations are presented in conjunction with the
noise rejection rates (Reject Rate) shown in brackets.

Table III shows that the classification performance of pLSA-
induced fuzzy co-clustering was better than that of FCCMM.
In the same manner as the Cora data set, the advantages of
the proposed noise rejection scheme were confirmed again
such that the classification performances of FCCMM and the
proposed model were improved by properly adjusting the noise
sensitivity and fuzziness weights.

V. CONCLUSION

This paper proposed a robust model for pLSA-induced
fuzzy co-clustering by introducing a noise rejection mecha-
nism based on noise fuzzy clustering. Numerical experiments
showed that the classification performance of the proposed
model can be better than that of the conventional model by
properly adjusting noise sensitivity γ and fuzziness weight
λϕ. Additionally, slightly fuzzier models were demonstrated
to be better than the statistical pLSA model, even if the noise
rejection scheme is adopted. In an experimental result shown
in Figs. 4 and 5, plausible results could be given with certain
ranges of γ and λϕ.

However, the partition quality can be degraded when the
fuzziness degree is much larger than a plausible setting and the
noise sensitivity is over-emphasized. Possible future research
includes the development of a systematic process for auto-
matically selecting the plausible settings for such parameters.
Another possible study may be the introduction of possibilistic
partition [25], [26], instead of the noise fuzzy clustering con-
cept, which is expected to be useful for independently extract-
ing intrinsic topics. In a previous study on NFCCMM [13],
possibilistic noise rejection scheme worked for selecting the
optimal cluster number through a sequential implementation
with different cluster numbers. A similar process is expected
to be available in the proposed method.
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[8] R. N. Davé and R. Krishnapuram, “Robust clustering methods: a unified
view,” IEEE Trans. on Fuzzy Systems, vol.5, pp.270-293, 1997.

[9] C.-H. Oh, K. Honda and H. Ichihashi, “Fuzzy clustering for categorical
multivariate data,” Proc. of Joint 9th IFSA World Congress and 20th
NAFIPS International Conference, pp. 2154-2159, 2001.

[10] K. Kummamuru, A. Dhawale and R. Krishnapuram, “Fuzzy co-
clustering of documents and keywords,” Proc. 2003 IEEE Int’l Conf.
Fuzzy Systems, vol. 2, pp. 772-777, 2003.

[11] K. Honda, S. Oshio and A. Notsu, “Fuzzy co-clustering induced by
multinomial mixture models,” Journal of Advanced Computational In-
telligence and Intelligent Informatics, vol. 19, no. 6, pp. 717-726, 2015.
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