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Abstract—Fuzzy-set theory was invented to represent more
meaningful representations of knowledge for human reason-
ing, which can also be applied and utilized for handling the
quantitative database. In this paper, an efficient fuzzy mining
(EFM) algorithm is presented to fast discover the multiple
fuzzy frequent patterns from quantitative databases under type-
2 fuzzy-set theory. A compressed fuzzy-list (CFL)-structure is
developed to maintain complete information for rule generation.
Two pruning techniques are developed to reduce the search space
and speed up mining progress. Several experiments are carried
out for the purpose of verifying the efficiency and effectiveness
of the designed approach in terms of runtime and the number
of examined nodes under different minimum support thresholds
and the results indicated the designed EFM achieves the best
performance compared to the existing models.

Index Terms—fuzzy-set theory, fuzzy data mining, fuzzy-list
structure, pruning strategies.

I. INTRODUCTION

Pattern mining or called Knowledge Discovery in Databases

(KDD) [1], [2], [4] has been treated as an important issue in

many tasks since it can discover the potential and implicit

information from the datasets, and the first fundamental algo-

rithm is called Apriori [1], which is used to find associations

of the item(sets) in the databases. Since the Apriori is a level-

wise approach, which needs higher computational costs to first

generate the candidates then evaluates them level-by-level, an

improved algorithm called FP-growth [18] was implemented

to improve mining efficiency by compressing the relevant

transactions into a tree structure (called FP-tree). For the most

works regarding ARM, they mostly focus on mining the FIs or

ARs from binary databases, which only considers whether an

item(set) appears in the databases. The other import factors

such as interestingness, weight, importantness, and quantity

are not considered as the major factors in ARM. In real-

life domains and applications, an item can be purchased with

several amounts in the shopping behaviors, for instance, five

bottles of the beer or two boxes of the milk. It is thus not a

trivial task to discover the knowledge and information from

the quantitative databases. Fuzzy-set theory [15], [28], [40]
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was thus designed and used in many intelligent systems such

as engineering fields, manufacturing, or medical diagnosis

since the represented knowledge based on fuzzy-set is more

interpretable for human reasoning. Furthermore, it can be used

to convert the quantitative value of items into meaningful

linguistic terms with the corresponding degrees, which is

easier for managers and retails to make efficient decisions.

Several algorithms were studied to handle the quantitative

database based on the fuzzy-set theory for mining the fuzzy

frequent itemsets. Many methods were respectively developed

to mine fuzzy frequent patterns based on different structures

and pruning strategies to reduce the computational cost [17],

[26], [27], [29]. However, the above approaches only consider

one linguistic term with the maximal scalar cardinality of an

item, thus the discovered information may be incomplete for

decision-making. Several algorithm considered the multiple

fuzzy frequent itemsets (MFFIs) [20], [21], [30], [31] to

derive more complete and sufficient knowledge. Based on this

mechanism, more complete rules can be mined and the useful

decisions can thus be produced.

The above methods mostly consider the type-1 fuzzy-set

theory to discover the required information and knowledge,

i.e., ARs or FIs. The algorithms used the conventional type-1

fuzzy-sets still, however, they treated the linguistic term with

a discrete value. Mendel and John then designed the type-

2 fuzzy-set theory [34] by involving the uncertain factor to

mine the required information for decision-making. Chen et

al. [8] integrated the type-2 fuzzy-sets model and considered

the pattern mining problem to handle the quantitative database

based on the level-wise approach. However, this approach still

holds the single linguistic term of an item, thus the derived

information may still be incomplete. Lin et al. [33] then

developed a list-based method for efficiently mining type-

2 fuzzy frequent patterns, which can speed up the mining

performance compared to the level-wise approach. It does not,

however, have the successful pruning methods to reduce the

size of the search area; many unpromising candidates are still

identified.

In this paper, we present a compressed fuzzy-list (CFL)-
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structure to keep more information for later mining progress.

Two effective pruning strategies and an efficient mining (EFM)

algorithm have been developed to mine the multiple fuzzy

frequent patterns (MFFPs). Experiments are then conducted to

show that the designed approach outperforms the level-wise-

like and conventional list-based approaches in terms of runtime

and number of examined candidates.

II. LITERATURE REVIEW

Association-rule mining (ARM) [1], [2], [4] is a basic

methodology for knowledge discovery, which shows the re-

lationships among the itemsets in binary databases. The first

algorithm is named Apriori [2] that uses the level-wise ap-

proach to discover the numerous association rules (ARs). This

approach is progressed by a level-wise approach, thus the

computational cost is very high to produce ARs. To solve the

limitation of Apriori, the FP-growth [18] was presented to

speed up mining performance. Several extensions of frequent

itemsets mining (FIM) are then further studied and devel-

oped in many different applications and domains [10], [11],

[13], [25], and most of them focus on mining the required

information from the binary database. In realistic situations,

an item may, however, be purchased with several quantities

in a transaction [12], [14], [38]. It is thus a non-trivial task

to retrieve the information from the quantitative databases

since the downward closure (DC) property is required to be

maintained for ensuring the correctness and completeness of

the discovered knowledge.

In the past decades, the fuzzy-set theory [15], [40] has

been utilized in many applications and domains since its

interpretable for human reasoning. Srikant et al. [35] intro-

duced the approach for defining ARs by partitioning and

transforming the problem into a binary database. Au and

Chan [3] designed the F-APACS to mine fuzzy ARs (FARs)

by employing linguistic terms to identify the discovered

regularities and exceptions. Kuok et al. [23] developed an

algorithm to process the quantitative attributes and concluded

that fuzzy sets has better capability to handle the numerical

values than existing methods. Hong et al. [17] implemented a

fuzzy mining algorithm to mine the fuzzy rules that replies on

the generate-and-test approach for handling the quantitative

databases then proposed a GDF approach [20]. The GDF

uses the gradual concept to mine the multiple fuzzy frequent

itemsets (MFFIs) that also reduces the size of the processed

database gradually; the computational cost can thus be reduced

since some unpromising linguistic terms can be also deducted

together in the mining progress. Chen et al. [7] developed a

fusion model to improve the mining progress of multi-level

fuzzy association rules based on a cumulative distribution of

probabilities. Watanabe and Fujioka [37] have established the

redundancy equivalence and theorems for FARs. Chang et

al. [6] developed an ISPFTI algorithm by adopting the fuzzy-

set theory to mine sequential patterns (frequent sequences)

within fuzzy time intervals. Several algorithms based on the

fuzzy-set theory for mining the required information in differ-

ent applications and domains were then studied and developed

in progress [5], [16], [24], [32], [36], [39].

To speed up the generate-and-test methodology for mining

the fuzzy frequent itemsets (FFIs), Lin et al. then developed

the fuzzy frequent pattern tree (FFP)-tree algorithm [26] to

compress the fuzzy 1-itemsets into a tree structure for later

mining process. This approach has produced a loose tree struc-

ture, thus a compressed fuzzy frequent pattern tree (CFFP)-

tree algorithm [27] was proposed to reduce the size of the

tree nodes. However, CFFP-tree approach still needs the extra

memory usage for the attached array; it sometimes has the

memory leakage problem. To solve this problem, the upper-

bound fuzzy frequent pattern tree (UBFFP)-tree algorithm [29]

was designed to keep a more condense tree structure, thus

reducing the memory leakage problem for handling the big

datasets.

The above works only reply to the type-1 fuzzy-set theory

that does not take the uncertainty into account. The member-

ship functions of type-1 fuzzy-set theory are entirely crisp that

is inadequate in realistic applications to manage uncertainty

models. To better present, the discovered knowledge with the

uncertainty, type-2 fuzzy-set theory [19], [22], [34] was then

proposed and developed. To incorporate the type-2 fuzzy-

sets with pattern mining, Chen et al. [8] first developed the

conventional level-wise (or Apriori-like) approach to mine

the fuzzy type-2 frequent patterns level-wisely. This approach

requires, however, to generate the amounts of candidates with

high time complexity, which is not efficient for the mining

task. Also, it uses the maximal scalar cardinality approach

to retrieve only a single linguistic term of an item, which

may produce insufficient knowledge for decision-making. Lin

et al. then presented a list-based approach [33] to maintain

the complete information for the mining progress. However,

without the efficient pruning strategies and the loose upper-

bound value on the unpromising patterns, this approach still

has to examine many candidates for deriving the actual fuzzy

frequent patterns.

III. PRELIMINARY AND DEFINITION

Assume that I is considered as a finite set with m distinct

items in the database D such that I = {i1, i2, . . . , im}. The

database with quantitative values of the items is considered

as D, in which D has n transactions such that D = {T1, T2,

. . . , Tn}, and each Tq contains a unique identifier called the

TID. Each item ij in Tq has its purchase amount, which is

denoted as: q(ij , Tq). A k-itemset is denoted as X such that

X = {i1, i2, . . . , ik}, in which each ij is the distinct item

in X, X ⊆ I and X ⊆ Tq . A membership functions used

in type-2 fuzzy-set theory is denoted as μ. A threshold is

denoted as δ, which is used as the minimum support to verify

whether an itemset is considered as the fuzzy frequent pattern.

A simple example is illustrated in Table I, which consists of

ten transactions and six distinct items, denoted from a to f.
Suppose that the minimum support threshold in Table I is set

as δ (= 20%), and the type-2 fuzzy-sets used in the example

are illustrated in Fig. 1. Here, three linguistic terms called



Low(L), Middle(M) and High(H) are used in the μ. Note

that the user can specify the number of the linguistic terms

based on different domains, requirements, or applications.

TABLE I: An illustrated quantitative database.

TID Items with the purchase amounts
T1 a:5, c:4, e:1
T2 a:3, e:1
T3 a:1, e:2, f :2
T4 b:2, c:1, e:3
T5 a:4, b:5, c:5, d:3, e:3
T6 b:4, d:1, e:4
T7 c:4, e:2
T8 b:4, e:4, f :3
T9 b:3, c:4, e:2, f :1
T10 e:5, f :5

Fig. 1: A membership functions with three linguistic terms.

Definition 1: The i is an attribute (item) in the database such

that i ⊆ I , which is also treated as the linguistic variable and

its value is the set of fuzzy terms represented as the natural

language such that Ri1, Ri2, . . . , Rih. This fuzzy terms can be

transformed by the pre-defined μ (membership functions).

Definition 2: The viTq
is represented as the quantitative

value of i, which shows the quantitative of the item (linguistic

variable) i in a transaction Tq .

Definition 3: The fiTq
is considered as the set of fuzzy

linguistic terms with their membership degrees (fuzzy values)

that was transformed from the quantitative value viTq
of the

linguistic variable i by μ as:

fiTq
= μi(viTq

)(=
(fvlower

iTq 1 , fvupperiTq 1 )

Ri1
+· · ·+

(fvlower
iTqh , fvupperiTqh )

Rih
),

(1)

in which h represents as the number of fuzzy terms of i
transformed by μ, Ril shows the l-th fuzzy terms of i, fvlower

iTq l

indicates the lower membership degree (fuzzy value) of viTq

for i in the l-th fuzzy terms Ril, fvupperiTq l
states the upper

membership degree (fuzzy value) of viTq
for i in the l-th fuzzy

terms Ril, fv
lower
iTq l

≤ fvupperiTq l
, and fvlower

iTq l
, fvupperiTq l

⊆ [0, 1].

For the given example in Table I, each transaction in the

database is then transformed by the membership functions

of Fig. 1. The final results after transformation are shown in

Table II.

In 2016, Lin et al. [33] developed a list-based structure to

mine the multiple fuzzy frequent patterns based on the type-

2 fuzzy-set. However, it does not provide efficient pruning

strategies to reduce the size of the search space, thus many

unpromising candidates are still examined. Also, the upper-

bound values on the candidates are over-estimated. In this

paper, to efficiently mine the required multiple fuzzy frequent

patterns from the database by considering the membership

functions of type-2 fuzzy-set theory, an efficient structure is

further developed to keep the complete information, and the

efficient pruning strategies should be designed to reduce the

size of the search space, thus improving the pattern mining

performance.

IV. PROPOSED EFFICIENT FUZZY MINING MODEL

The purchase amount of each item in the database D is

first transformed as the set of fuzzy linguistic terms with their

fuzzy interval values by the pre-defined membership functions.

For instance, the original database shown in Table I was then

transformed using the membership functions of type-2 fuzzy-

set shown in Fig. 1. After that, the results are stated in Table II.

Since it is not a trivial task to elaborate the interval fuzzy value

in the mining progress, the centroid type-reduction method [8]

is then applied to reduce the complexity for mining MFFPs of

the interval values. Definition is stated as follows.

Definition 4: The membership degree of a linguistic term

Ril in a transformed database D′ is denoted as fvciTq l
, and

defines as:

fvciTq l
=

fvlower
iTq l

+ fvupperiTq l

2
. (2)

To evaluate whether a pattern is a MFFP, the scalar car-

dinality of each linguistic term is then summed up for the

evaluation. The definition is then given below.

Definition 5: The scalar cardinality of each linguistic term is

the summed up value of the transformed membership degrees

and can be represented as the support value of a linguistic

term as:

Sup(Rjl) =
∑

Rjl⊆Tq∧Tq∈D′
fmvciql, (3)

To discover the complete information of MFFPs, the multi-

ple linguistic terms of an item (set) is considered in the derived

knowledge. The strategy called MultiTerm is then adopted here

to keep the complete information for later mining progress of

the developed EFM, which is described below.

Strategy 1 (Multiple terms with scalar cardinality, Multi-
Term): To mine more and complete information, each linguis-

tic term Rin of an item i, whose scalar cardinality (Sup) is no

less the predefined minimum support count (minSup×|D|) is

considered to be represented of the item. Thus, each linguistic

variable may have at least one represented fuzzy term with its

membership degree (fuzzy value).

To maintain the downward closure property for building the

compressed fuzzy-list (CFL)-structure, the linguistic terms in



TABLE II: Transformed database from Table I.

TID Transformed fuzzy linguistic terms
T1

(0,0.25)
a.M

+
(1,1)
a.H

,
(0.5,0.63)

c.M
+
(0.5,0.63)

c.H
,
(1,1)
e.L

+
(0,0.25)
e.M

T2
(0,0.25)

a.L
+
(1,1)
a.M

+
(0,0.25)

a.H
,

(1,1)
e.L

+
(0,0.25)
e.M

T3
(1,1)
a.L

+
(0,0.25)
a.M

,
(0.5,0.63)

e.L
+
(0.5,0.63)

e.M
,

(0.5,0.63)
f.L

+
(0.5,0.63)

f.M

T4
(0.5,0.63)

a.M
+
(0.5,0.63)

a.H
,
(0,0.25)
b.M

+
(1,1)
b.H

,
(1,1)
c.L

+
(0,0.25)
c.M

,
(0,0.25)

e.L
+
(1,1)
e.M

+
(0,0.25)

e.H

T5
(0.5,0.63)

a.M
+
(0.5,0.63)

a.H
,
(0,0.25)
b.M

+
(1,1)
b.H

,
(0,0.25)
c.M

+
(1,1)
c.H

,
(0,0.25)
e.M

+
(1,1)
d.H

,
(0,0.25)

e.L
+
(1,1)
e.M

+
(0,0.25)

e.H

T6
(0.67,0.75)

b.M
+
(0.33,0.5)

b.H
,
(1,1)
d.L

+
(0,0.25)
d.M

,
(0.5,0.63)

e.M
+
(0.5,0.63)

e.H

T7
(0.5,0.63)

e.L
+
(0.5,0.63)

e.M
,
(0.5,0.63)

c.M
+
(0.5,0.63)

c.H

T8
(0.67,0.75)

b.M
+
(0.33,0.5)

b.H
,
(0.5,0.63)

e.M
+
(0.5,0.63)

e.H
,
(0,0.25)

f.L
+
(1,1)
f.M

+
(0,0.25)

f.H

T9
(0.33,0.5)

b.L
+
(0.67,0.75)

b.M
,
(0.5,0.63)

c.M
+
(0.5,0.63)

c.H
,

(0.5,0.63)
e.L

+
(0.5,0.63)

e.M
,
(1,1)
f.L

+
(0,0.25)
f.M

T10
(0,0.25)
e.M

+
(1,1)
e.H

,
(0,0.25)
f.M

+
(1,1)
f.H

the transactions are sorted in ascending order by ASCorder
strategy, which is described below.

Strategy 2 (Sort in ascending order, ASCorder): Each lin-

guistic term of transactions in the transformed database D′

is then sorted in ascending order of their support value, and

denoted as ≺ which can be used for later processing of CFL-

structure construction phase.

The revised and sorted transactions are indicated in Ta-

ble III.

TABLE III: The sorted database.

TID Linguistic terms
T1

0.56
c.H

, 1
e.L

, 0.13
e.M

T2
1

e.L
, 0.13
e.M

T3
0.56
e.L

, 0.56
e.M

T4
0.13
b.M

, 0.13
e.H

, 0.13
e.L

, 1
e.M

T5
0.13
b.M

, 0.13
e.H

, 1
c.H

, 0.13
e.L

, 1
e.M

T6
0.71
b.M

, 0.56
e.H

, 0.56
e.M

T7
0.56
c.H

, 0.56
e.L

, 0.56
e.M

T8
0.71
b.M

, 0.56
e.H

, 0.56
e.M

T9
0.71
b.M

, 0.56
c.H

, 0.56
e.L

, 0.56
e.M

T10
1

e.H
, 0.13
e.M

After the original database is revised and sorted, the al-

gorithm is processed to construct the CFL-structure. Each

remaining 1-itemset is used to construct its relevant CFL-

structure for maintaining the complete information. Properties

of the CFL-structure are given below.

Definition 6: Assume that X is considered as the set of the

linguistic terms and T is set as a transaction such that X ⊆ T .

Thus, the remaining set for all linguistic terms in T after X is

denoted as T/X .

The definition of the developed CFL-structure is then de-

scribed below.

Definition 7: Each element in the CFL-structure of X has

three attributes (ordered) as: tid, fmv, and rmrfv.

• tid shows that the term X is in a transaction T.

• fmv shows the fuzzy membership value of X in a trans-

action T.

• rmrfv shows the relative maximum remaining fuzzy mem-

bership value after X in a transactionT, which is the

minimum value between rmrfv(X,T ) and fmv(X,T ).

Here, Sup is defined as the sum up value of fmv in the

CFL-list structure, and rSup is the sum up value of rmrfv
in the CFL-list structure. From the above definition, the new

developed CFL-structure is shown in Fig. 2. For instance in

Fig. 2, the fuzzy term {b.M} appears in transactions T4, T5,

T6, T8, and T9, and its elements are (4, 0.13, 0.13), (5, 0.13,

0.13), (6, 0.71, 0.56), (8, 0.71, 0.56) and (9, 0.71, 0.56),

respectively. The Sup and rSup are 0.239 and 0.194. In this

example, the Sup is greater than the minSup (= 0.2) that

means the {b.M} is considered as the MFFP. However, since

its rSup is less than 0.2, it is not necessary to explore the

extensions of {b.M}; the size of the search space can thus

be greatly deducted. The construction algorithm of the CFL-

structure is then stated in Algorithm 1.

b.M e.H c.H e.L e.M

tids fmv rmrfv

Fig. 2: A built CFL-structure.

After a CFLs-structures being generated, a pruning strategy

will be taken to reduce the space searching, which uses the

Supt and rSup of such a list X to decide whether to search

the extension of X . The strategy is described as Lemma 1.
Lemma 1: For an termset X , if Sup(X) or rSup(X) is

less than the minimum support threshold, then any supersets

(extension) of X is not multiple fuzzy frequent pattern and

should be pruned.
The proof of Lemma 1 is shown below.
Proof 1: ∀ transaction T ⊇ X ′,

∵ X ′ is an extension of X , (X ′ − X) = (X ′/X), we can

obtain that X ⊆ X ′ ⊆ T ⇒ (X ′/X) ⊆ (T/X),
∴ fmv(X ′, T ) = fmv(X,T ) ∪ fmv((X ′ − X), T ) =
min(fmv(X,T ), fmv(X ′/X, T )) ≤ fmv(X,T ) and

min(fmv(X,T ), fmv(X ′/X, T )) ≤ fmv(X ′/X, T ) =



Algorithm 1: Construction of the 1-pattern CFL-

structure.

Input: D′, a revised and sorted dataset.

Output: the CFLs-structures for 1-patterns and large

1-patterns L′.
1 for each linguistic term tjn of item j do
2 if Sup(tjn)≥ minSup then
3 put tjn into L′, and keep L′ as Sup-ascending

order;

4 for each linguistic term tjn of L′ in each T of D′ do
5 add element (tid, fmv of tjn in T , rmrfv of tjn

in T ) to tjn-CFL-structure;

6 CFLs = CFLs
⋃
tjn-CFL-structure;

7 return L′, constructed CFLs ;

rmrfv(X,T ).

Suppose that X.tids denotes the set of tids of X ,

∵ X ⊆ X ′ ⇒ X ′.tids ⊆ X.tids,

∴
∑

id(T )∈X′.tids fmv(X′,T )

N ≤
∑

id(T )∈X.tids fmv(X,T )

N ⇒
Sup(X) < minSup.

Furthermore, we can obtain that∑
id(T )∈X′.tids rmrfv(X′,T )

N ≤
∑

id(T )∈X.tids rmrfv(X,T )

N ⇒
rSup(X) < minSup.

From the given example, the search space for mining the

required MFFPs is based on the enumeration tree, which is

shown in Fig. 3.

b.M e.H c.H e.L e.M

b.M
e.H

b.M
c.H

b.M
e.L

e.H
c.H

c.H
d.L

c.H
e.M

b.M
e.H
c.H

b.M
c.H
e.L

b.M
e.M

b.M
e.H
e.M

b.M <e.H <c.H < e.L < e.M

Fig. 3: The size of search space in the running example.

To perform and generate the k-itemsets(k ≥ 2), the terms of

Px and Py are used to generate the CFL-structure, forming as

Pxy . The fuzzy terms are first examined to determine whether

the valid Pxy.CFL is generated. If Px and Py appear in

the same transactions (TIDs), the simple join operation is

then performed to calculate the fmv of each transaction T .

Furthermore, the minimum operation is also adopted to find

the remaining rmrfv of the Pxy in T . This process is then

described below.

• Exy.tid=Ex.tid(or Ey.tid).

• Exy.fmv=min(Ex.tid, Ey.tid).

• Exy.rmrfv = min(Ex.rmrfv, Ey.rmrfv).

Here, we can note that if the sum of fmv is no larger than

the pre-defined minimum support count, it is not considered

as the MFFP and the supersets will be discarded and ignored,

directly without any further exploration. This progress is then

executed recursively until no candidates can be generated.

After the CFL-structure is generated, we then present an-

other pruning strategy to reduce the size of the search space by

using the Sup and rSup of such a list X to decide whether to

search the extension of X . The strategy is described as Lemma

2.

Lemma 2: For a termset X , if Sup(X) or relative remaining

support rSup(X) is less than the minimum support threshold,

then any supersets (extension) of X is not a F2FP and should

be discarded.

Proof 2: ∵ X ⊆ X ′ ⇒ X ′.tids ⊆ X.tids,

∴ Sup(X ′) =
sumid(T )∈X.tidsfmv(X′,T )

N =
∑

id(T )∈X′.tids min(fmv(X,T ),fmv(X′/X,T )

N ≤
sumif(T )∈X′.tidsmin(fmv(X,T ),rmfv(X,T )

N =∑
id(T )∈Q′ fmv(X,T )+

∑
id(T )∈Q′′ rfmv(X,T )

N = rSup(X) ≤
minSup.

Note that suppose Q′ ∪ Q′′ = X ′.tids and

Q′ ∩ Q′′ = , T ∈ Q′, fmv(X,T ) < rmfv(X,T ), and

T ∈ Q′, fmv(X,T ) ≥ rmfv(X,T ).

Algorithm 2: Developed EFM algorithm.

Input: CFLs, the built CFL-structure.

Output: MFFPs, the set of multiple fuzzyfrequent

patterns.

1 for each list X in CFLs do
2 if Sup(X) ≥ minSup then
3 add items of X into MFFPs;

4 if rSup(X) ≥ minSup then
5 exCFLs ← null;
6 for each CFL-structure Y after Xin CFLs

do
7 exCFLs ←

exCFLs+ Constrcut(X,Y );

8 EFM(exCFLs);

9 return F2FPs.

The developed EFM algorithm is then shown in Algo-

rithm 2. First, the algorithm begins with the initially con-

structed CFL-structures, and for each termset (such as X),

the Sup(X) is firstly compared with the minSup to examine

whether X is frequent. After that, the relative remaining

support value of X , called rSup(X), is then utilized to decide

whether the extensions of X should be explored. After the

extensions of the termset X is constructed, the algorithm



is processed again for next k-itemsets until all the required

MFFPs are determined.

V. EXPERIMENTAL EVALUATION

In this section, the developed EFM is then performed

compared to the level-wise algorithm [8] and list-based ap-

proach [33] in several datasets. The algorithms were imple-

mented in JAVA language, performing on a PC with Intel

Core i5-3470 @ 3.20GHz and 4 GB main RAM. All the

implemented algorithms are performed on 32-bit Microsoft

Windows 7 operating system. Three real-life [9] chess, mush-

room and foodmart were conducted for the experiments.

The characteristics of the conducted datasets are shown in

Table IV.

TABLE IV: Characteristics of used datasets.

Dataset #|D| #|I| AvgLen MaxLen Type
chess 3196 75 37 37 dense

mushroom 8,124 119 23 23 dense
foodmart 21,556 1559 4 11 sparse

The purchase amount of each item in the quantitative

database is first transformed according to the defined type-2

membership functions. In the experiments, the linguistic 2-

terms shown in Fig. 4 is used to show the performance of the

designed model. Note that the linguistic terms can be defined

by the user’s preference.

Fig. 4: The membership function of linguistic 2-terms.

A. Execution time

The execution time of the compared algorithms for 2-terms

membership functions is first illustrated in Fig. 5 at different

minimum support thresholds. It can be seen from the above

results that the developed EFM algorithm has better execution

time than the conventional level-wise and the state-of-the-art

list-based algorithm for mining MFFPs with fuzzy linguistic

2-terms for all conducted datasets. From the observation of the

above results, it can be seen that the execution time decreases

along with the increase of the minimum support threshold.

This is acceptable since as the increasing of minimum support

threshold, the number of MFFPs decreases since fewer patterns

satisfy the condition with a higher threshold. From the results,

we can thus observe that the designed EFM needs fewer

computations than the compared approaches.

B. Number of examined nodes

In this section, the number of examined nodes in the

search space of the enumeration tree for the three compared

algorithms are then determined. Results under linguistic 2-

terms membership functions are then stated in Fig. 6. It can

be easily observed that the designed EFM has generated fewer

nodes for examination in the search space compared to the

other two approaches. Thanks to the advantage of the designed

two pruning strategies, they are effective to reduce some

unpromising candidates for examination in the search space

of the MFFPs.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, an efficient fuzzy mining (EFM) algorithm

is presented to discover the set of multiple fuzzy frequent

patterns (MFFPs) based on the type-2 fuzzy-set theory. A

compressed fuzzy-list (CFL) is also maintained for storing the

satisfied fuzzy frequent itemsets that reduces the conventional

limitation of multiple database scans. Two effective pruning

strategies are also designed to early reduce the unpromising

candidates, thus the search space to find the required MFFPs

can be deducted. Experiments are then performed to conduct

six datasets regarding varied minimum thresholds to verify

the performance of the designed EFM method compared to the

previous two works in terms of execution time and the number

of examined nodes of the search space. Furthermore, we will

then explore the more condense structure and tighter upper-

bound values on the patterns to speed up mining efficiency.

It is also a big challenge to maintain sufficient information

for incremental mining in the dynamic database or efficiently

synthesizing the discovered knowledge (i.e., MFFPs) from

different branches.

REFERENCES
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