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Abstract—Image super resolution is one of the most popular
topics in the field of image processing. However, most of the
existing super resolution algorithms are designed for the situation
where sufficient training data is available. This paper proposes
a new image super resolution approach that is able to handle
the situation with sparse training data, using the recently devel-
oped ANFIS (Adaptive Network based Fuzzy Inference System)
interpolation technique. In particular, the training image data
set is divided into different subsets. For subsets with sufficient
training data, the ANFIS models are trained using standard
ANFIS learning procedure, while for those with insufficient data,
the models are obtained through ANFIS interpolation. In the
literature, little work exists for image super resolution on sparse
data. Therefore, in the experimental evaluations of this paper, the
proposed approach is compared with existing super resolution
methods with full data, demonstrating that this work is able to
produce highly promising results.

Index Terms—ANFIS Interpolation, Image Super Resolution,
Sparse Training Data

I. INTRODUCTION

Image Super Resolution (SR) techniques are used to trans-
form any Low Resolution (LR) image into High Resolution
(HR) image. LR images are very common in real world
applications due to various reasons amongst them budget
constraints to purchasing high definition camera is the most
common one. In order to improve the resolution of such
images, various SR techniques have been proposed in the
literature [1]–[6]. Along with the development of advanced
machine learning technqiues, the learning based approach has
become one of the most popular SR methods.

Learning based SR aims to produce trained mappings that
simulate the underlying relationship between the LR and HR
image, through the use of a large amount of training data.
Particularly, linear mappings are firstly proposed to describe
the relationship of LR and HR images [2]. Whilst it is very
simple to implement such methods often suffer from inaccurate
results. This raises the requirement of developing more accu-
rate, non-linear mappings. For instance, a deep convolutional
neural network (CNN) is used in [3] to generate nonlinear
mappings between LR and HR images, representing the state
of the art techniques in SR. However, such a strategy requires
a huge amount of training data to work, whilst the resulting
mappings are not easy to interpret despite their accuracy. A
possible alternative is to explore fuzzy rule based approaches

[5] which can produce non-linear mappings through the use
of a set of fuzzy rules, while making both the training process
and the application of learned mappings interpretable.

Following this motivation, to ensure the accuracy of learned
fuzzy rules that depict the non-linear mappings between LR
and HR images, ANFIS [7] (Adaptive Network based Fuzzy
Inference System) has recently been employed [8]. As with
most existing methods in the literature, it also assumes that
the image SR problems are addressed with sufficient training
data. Unfortunately, in many real world situations, certain
images or certain parts of an image are very difficult to obtain.
Thus, the SR task over such insufficient image training data
is still a challenging problem. The most recently introduced
ANFIS interpolation [9] technique may provide a possible
solution to this type of problem, being capable of constructing
ANFIS models with only a small number of training data
(termed sparse training data) in certain problem space through
exploiting well trained ANFIS models in the neighbouring
areas.

Inspired by the above observation this paper proposes a
new image SR approach with sparse training data, using the
ANFIS interpolation technique. In particular, the training data
is divided into a number of sub-datasets. Then for those subsets
with sufficient training data, the corresponding mappings are
learned using the standard ANFIS learning method, whilst for
those subsets with sparse training data, the corresponding map-
pings are interpolated using the proposed ANFIS interpolation
approach.

The rest of this paper is organised as follows. Section II
presents an overview of the ANFIS interpolation technique.
Section III details the proposed SR approach, including both
the training and testing phases. Experimental investigation is
reported and discussed in Section IV, including the SR exper-
iments with full data as well as sparse data for comparison.
Finally, Section V concludes the paper.

II. ANFIS INTERPOLATION

ANFIS interpolation [9] is an extension of classical Fuzzy
Rule Interpolation (FRI) methodology [10], [11], aiming to
construct an effective target ANFIS At under the situations
of data shortage, by interpolating two neighbouring source
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ANFISs As1 and As2. The general ANFIS interpolation
process can be summarized in the following 3 steps.

A. Rule Dictionary Generation

The underlying fuzzy rules of the learned ANFISs As1 and
As2 (named source ANFISs) are firstly extracted, which are
to be subsequently used for generating a rule dictionary. For
the present application problem of image SR, it is reasonable
to assume that the ith extracted rule Ri of the TSK type [12]
can be expressed in the following format:

Ri : if x is Ai, then zi = pix+ ri (1)

where the input variable x stands for a certain LR grey value,
Ai denotes a fuzzy set value of x, zi represents the output of
the ith rule or the HR grey value given the fuzzy value of x,
and ri is a constant coefficient within the linear combination
of the rule consequent. The SR problem is assumed to be a
regression from the LR image to the HR image, and pi and
ri are the regression coefficients.

A rule dictionary D = {Da, Dc} can then be generated
by reorganising the above extracted fuzzy rules, with an an-
tecedent part Da and a consequent part Dc, each collecting all
the antecedents and consequents of those rules. Suppose that
two source ANFISs consist of n1 and n2 rules, respectively,
then there will be totally N = (n1 + n2) rules in the rule
dictionary. That is, Da consists of the antecedent parts of all
the rules:

Da = {A1 A2 · · · AN} (2)

and the consequent part Dc consists of the consequents of the
rules:

Dc =

[
p1 p2 · · · pN
r1 r2 · · · rN

]
(3)

where each column denotes the linear coefficients in the
consequent part of a certain rule.

B. Intermediate ANFIS Generation

Having obtained the above rule dictionary, the next step
of ANFIS interpolation is to interpolate a group of fuzzy
rules to equivalently form an intermediate ANFIS. Firstly, the
sparse training data (expressed by {(x, z)}) are divided into C
clusters using the K-means algorithm (although if preferred,
any other numeric value-based clustering method may be used
as the alternative to perform clustering). For the centre of each
cluster, a new fuzzy rule is interpolated. Then, by aggregating
all interpolated rules, an intermediate ANFIS results.

More concretely, for each cluster Ck, k ∈ {1, . . . , C}, com-
pute its centre, resulting in c(k). Given the previously obtained
antecedent part rule dictionary Da, the first subroutine to
create the intermediate ANFIS is to select L closest rule
antecedents {Ai ∈ Da, i = 1, . . . , L} with respect to c(k). This
is done on the basis of a distance metric, say for simplicity,
di = d(Ai, c

(k)) = |Rep(Ai) − c(k)|, where Rep(Ai) stands
for the representative value of the fuzzy set Ai [13]. The L rule
antecedents {Ai} with the smallest distances di are chosen,

whose index set is denoted by L. For computational simplicity,
L is usually taken to be just two [14].

From this, the next subroutine is set to find the best
reconstruction weights for the chosen closest rules. This is
achieved by solving the following optimisation problem under
the constraint that the sum of all the weights equals to 1:

w(k) = min
w(k)
||c(k) −

∑
i∈L

Rep(Ai)w
(k)
i ||

2, s.t.
∑
i∈L

w
(k)
i = 1

(4)
where w(k)

i denotes the relative weighting of Ri. The solution
of this constrained least square problem is as follows:

w(k) =
G−11

1TG−11
(5)

where G = (c(k)1T − Y )T (c(k)1T − Y ) is a defined Gram
matrix, 1 is a column vector of ones, and the columns of Y
are the selected rule antecedents.

Following conventional FRI approaches as per [11], [15],
the weights w(k) are applied onto both the antecedent part and
the consequent part in interpolating a new rule to summarise
the kth cluster:

Rk : if x is Ak, then zk = pkx+ rk (6)

where the parameters are generated by:

Ak =
∑
i∈L

w
(k)
i Ai, pk =

∑
i∈L

w
(k)
i pi, rk =

∑
i∈L

w
(k)
i ri (7)

with k = 1, 2, · · · ,C.

C. ANFIS Fine-turning

The interpolated intermediate ANFIS is then used as the
initial network to be fine-tuned to construct the final ANFIS
At using the standard ANFIS training algorithm as described
in [7]. This fine-tuning process involving limited training data
is now possible because the intermediate ANFIS provides an
initial setup for the expected network. The entire process of
ANFIS interpolation is summarized as Alg. 1.

III. PROPOSED APPROACH

This section presents the proposed SR algorithm dealing
with sparse training data, including a training phase using
the ANFIS interpolation technique, and a testing phase. The
flowchart of the proposed approach is shown in Fig. 1.

A. Training Phase with ANFIS Interpolation

The training image data set is constructed by the following
steps (assuming the application domain is for natural image
analysis): 1) Collect 75 Bitmap images as the training images,
including all kinds of sharp natural images such as people,
buildings, plants, and animals. 2) Down sample the HR images
with a scale factor of s; 3) Up scale the down sampled LR
images to a certain desired size using bicubic interpolation, so
that the LR and the desired HR images are of the same size
but the former are of lower resolution.



Fig. 1. Flowchart of proposed approach

Algorithm 1: ANFIS Interpolation
Input:

1. Two source ANFISs: As1,As2

2. Sparse training data
1) Rule Dictionary Generation

1. Extract fuzzy rules {Ri} from As1 and As2;
2. Construct antecedent part Da by Eqn. (2);
3. Construct consequent part Dc by Eqn. (3);

2) Intermediate ANFIS Generation
1. Divide sparse training data into C clusters;
2. For each cluster centre c(k), interpolate rule Rk:

(a) Select L closest atoms in Da;
(b) Compute weights w(k) for chosen atoms;
(c) Generate new rule Rk using weights w(k):

3. Integrate all interpolated rules.
3) ANFIS Fine-tuning
Output:

Interpolated ANFIS: At

The resulting LR-HR image pixel pairs form the training
data set. They are partitioned into a number of sub-datasets
forming the source domains which each contain sufficient
training data and the target domains which each contain
limited training data. For those containing sufficient training
data, it is straightforward to generate an effective ANFIS
per subset using the standard ANFIS training procedure as
described in [7]. However, for those subsets that lack sufficient

training data, i.e., those only being associated with sparse
data, the accuracy of the ANFIS directly learned using just
the standard ANFIS learning procedure may be rather poor.
Therefore, ANFIS interpolation is employed here in an effort
to improve the performance of such ANFIS mappings with
sparse training data.

For each of sparse data subsets, two neighbouring well
trained ANFISs are chosen as the source ANFISs. Here, the
neighbourhood relationships are decided on the basis of topo-
logical locations of the relevant image pixel subsets (which
may be simply implemented using the Euclidean distance met-
ric between the centres of any two subsets). Then the ANFIS
mapping of a target subset (that has limited training data
contained) can be interpolated using the ANFIS interpolation
technique previously described in Section II. Unless otherwise
stated, the number of closest antecedents to be selected from
Da is set to 2, which is a common practice in the literature
and which is indeed sufficient if an advanced weighted FRI
mechanism such as that of [16] is utilised to perform individual
rule interpolation [14].

Note that to decide on whether a subset is sparse it might
be simple to manually set a threshold. However, this would
reduce the level of the algorithm’s automation. In this work,
the following method is utilized instead. First, calculate the
number of data points in each sub-datasets. Then, calculate
the average number na, if the number of data points in ith

sub-dataset ni < αna then the ith sub-dataset is judged as a
sparse dataset, where α is a pre-set small co-efficient.



Algorithm 2: Image SR with Sparse Data
A. Training Phase
Input:

Training image data set {Z}
1. Extract LR-HR pixel pairs from training set;
2. Divide pixel pairs into P subsets: {Pi|

∑
i Pi = P}

using K-Means clustering algorithm;
3. For each subset Pi with sufficient data:

Train ANFIS Ai with standard learning method;
4. For each Pi with sparse data:

Choose 2 closest ANFISs as source ANFISs;
Interpolate ANFIS using ANFIS interpolation.

Output:
Multiple learned ANFIS models {Ai}

B. Testing Phase
Input:

Testing LR image X
1. Extract pixels from X;
2. Divide pixels into P subsets as per training phase;
3. For each pixel xi ∈ Pi:

Choose relevant ANFIS model Ai;
Inference using Ai;

4. Integrate HR pixels to form HR image Y ;
5. Post-processing:

Suppress noise using NLM filter;
Refine resulting image using IBP.

Output:
HR image Y

B. Testing Phase

In the above training phase, the training dataset is grouped
into several clusters, these cluster centers are recorded, and
for each cluster, an ANFIS is trained or interpolated. After
obtaining the multiple learned ANFIS mapping models {Ai},
they are subsequently employed in the testing phase, which is
implemented according to the following principle: if xi (given
input LR pixel) is close to vk (the kth cluster center), then
the relationship between yi (estimated HR pixel) and xi is
expressed as:

yi = Ak(xi)

In particular, given a testing image X , and the learned ANFIS
mappings {Ai}, running the proposed SR algorithm involves
the following implementation details. Firstly, extract pixels
from the LR image and divide them into subsets as done
in the training phase. Euclid distances between the input LR
pixel and the cluster centers are calculated with the ANFIS
corresponding to the cluster with the smallest distance chosen
for inference. Then feed each input pixel to the selected ANFIS
mapping to compute the output that is to be part of the
computed raw SR image. The algorithm determines whether a
directly trained ANFIS or an interpolated ANFIS is to be used
according to whether a testing sample falls within a subset
that corresponds to an area of dense training data or not. This

process is repeated for all image pixels, and after that, a raw
reconstructed SR image results. Thirdly, a Non Local Means
(NLM) filter [17] is employed for suppressing the noise caused
by the inference process. Finally, the Iterative Back Projection
(IBP) method is used as a post processing technique to refine
the resulting SR image. The entire process of the proposed
approach is outlined in Alg. 2.

IV. EXPERIMENTAL STUDIES

This section presents experimental evaluations of the pro-
posed approach, with respect to two commonly used perfor-
mance criteria.

A. Performance Criteria

Peak Signal to Noise Ratio (PSNR) and Structure SIMilarty
(SSIM) are the two most commonly used image SR metrics
to evaluate the SR performance in most cases and hence, are
adopted here as well. Generally speaking, the larger the values
of both, PSNR and SSIM, the better the results.

1) PSNR: It estimates the ratio of signal to noise by
computing the following Mean Square Error (MSE) between
the original (ground truth) HR image Y and the calculated
HR image Ŷ:

MSE =
‖ Y − Ŷ ‖2F

MN
(8)

where M and N are the respective length and width of
an image, and ‖ . ‖F represents the Frobenius norm of a
matrix. Considering the nature of PSNR which has a wide
and dynamic range of values, the following logarithmic decibel
scale is used to measure the performance:

PSNR = 10 log10(
2552

MSE
) (9)

where 255 is the maximum possible pixel values of an image.
2) SSIM: It computes the similarities between the original

(ground truth) HR image Y and the estimated HR image Ŷ,
and is defined by

SSIM =
4µYµŶσY,Ŷ

(µ2
Y + µ2

Ŷ
)(σ2

Y + σ2
Ŷ
)

(10)

where µY and µŶ are the mean, and σY and σŶ are the corre-
sponding standard deviation values of Y and Ŷ respectively.
The SSIM values vary in the range between 0 and 1.

B. Experimental Results

Ten commonly used test images in the problem domain are
chosen for testing. Both experimental results from the use
of full data and sparse data are considered. The main goal
of the proposed algorithm is to deal with the sparse dataset.
However, experiments with full-dataset (all sub-datasets are
with sufficient data) are also conducted in order to indicate
that the proposed algorithm can give competitive performance
when compared with existing SR algorithms. This leads to two
sets of separate experiments. Note that K-means clustering
algorithm is employed for the partition of the training data
set, and that the sparse sub-dataset is constructed by deleting



a large portion of dataset in the simulation experiments.
Common parameters used in the experiments are: the number
of image subsets P = 3 (for easy illustration); the size of
ground truth images (Y) = 256 × 256 each; and the scale
factor for all experimental cases = 2.

1) Experiments with Full Data: This subsection concerns
with the experiments that involve the use of full data (i.e., all
subsets are covered with sufficient training data). This is in
order to provide the best possible solution for the problem at
hand for comparison with the case where only sparse data is
available for the target region that is to be presented later. Here,
the results of running ANFIS models that are trained with
sufficient data are compared against bicubic interpolation and
two other popular image SR methods: 1) sparse representation
based SR [1], and 2) fuzzy rule based SR [5].

Quantitative measurements are listed in Table I (where SD
stands for Standard Deviation), whilst visual results are shown
in Fig. 2 with detailed patches on the up right corner. In nut-
shell, it can be observed from Table I that the average PSNR
and SSIM values over all ten images using ANFIS outperform
the existing methods. If comparing the performances (again, in
terms of both PSNR and SSIM) over individual images then
ANFIS beats the others in half of the total images, namely
child, couple, baboon, Girl 2 and RS. If only considering
SSIM value then ANFIS performs better on eight out of the ten
images, with slightly less well performance for the butterfly
and hat images only. In this case, the SD is the smallest also,
indicating the robustness of the approach. These results clearly
show the strengths of utilising ANFIS to implement image SR
when sufficient training data is available.

2) Experiments with Sparse Data: The purpose of the
present work is however to deal with situations where only
sparse training data is available for certain areas of the images.
Yet, the above results of using full data are very useful still,
as the ANFIS trained under that condition is taken as the ref-
erence model given its superior performance over the existing
alternative methods. To conduct experimental evaluation, the
proposed SR approach that utilises ANFIS interpolation while
working with just sparse training data is herein compared with
such a reference model and also, with the ANFIS that is trained
by employing the original ANFIS learning method without
interpolation, using the same sparse data.

For illustrative simplicity, given the number of image sub-
sets P being 3, suppose that there are sufficient training data
for subsets 1 and 3, but the training data over subset 2 is
sparse. In order to simulate the situation in which only sparse
training data is in subset 2, a large portion (98%) of the data
is deliberately removed in this set of experiments.

The visual results are shown in Fig. 3 with a detailed patch
on the up right corner, while the PSNR and SSIM values are
listed in Table II. It can be observed from this table that the
average PSNR and SSIM values of both the proposed and
the reference model are extremely close. Apart from this,
the proposed approach significantly outperforms the ANFIS
trained with the original learning method without interpolation.
Results of Table II demonstrate that the proposed ANFIS

interpolation technique offers a powerful means for image
super resolution with sparse training data.

Note that the post-processing technique is important to
improve the SR performance, which is also been widely used
in SR algorithms. In this work, such post-processing is used
in all 3 compared methods. So the improved performance
is related to the interpolation technique. Note also that the
computation complexity of the ANFIS interpolation has been
analyzed in paper [9]. The contribution of the proposed method
is that it can deal with SR problems with sparse training data,
while most existing methods only consider the situation with
sufficient training data.

V. CONCLUSION

This paper has proposed a novel ANFIS interpolation based
method for single frame image super resolution, particularly in
cases where the available training data is sparse. Comparative
experimental investigations have been carried out. The results
have shown that the use of ANFIS for SR is at least, on a
par with popular existing approaches when sufficient training
data is available throughout the problem domain. More signif-
icantly, the use of ANFIS interpolation leads to superior SR
outcomes than the original ANFIS model when only sparse
training data is provided in certain areas of the problem space,
almost the same as those achievable using an ANFIS trained
with full data. However, the present approach performs ANFIS
interpolation in a static manner, that is, all training data is
provided at the start of the learning process. How to develop a
dynamic ANFIS interpolation method (e.g., following the idea
of [18]) for image SR is of great importance in the applied
field. Also, how such work may be adapted to help support
more effective SR techniques that are implemented with deep
learning (which nonetheless require substantial training data
[19]) remains active research.
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