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Abstract—As learning enabled cyber physical systems become
more prolific, modeling for the purposes of verification and
validation (V&V) becomes a primary barrier. A key challenge
is to model cyber physical systems at the appropriate level
of abstraction while maintaining a clear and understandable
linkage between the human designer and the system under design.
Fuzzy logic is a framework to synthesize linguistic, natural
language requirements into machine learning models. It has
been shown that fuzzy logic is a suitable method to learn the
behavior of a nonlinear system when a model is not present.
The implementation of a constrained fuzzy inference system
presented in this paper is a specific class of machine learning
architecture that provides a mechanism to relate a system model
to human specified requirements. It is not at all dissimilar to more
popular neural network architectures. The goal of this paper is to
introduce a framework for constrained learning that enables both
fast approximation of real valued systems while simultaneously
enabling the modeling and analysis of safety properties. This
paper focuses on a foundational constrained intelligent learn-
ing framework. The framework describes an alternative and
constrained machine learning architecture capable of producing
highly efficient structures that are also amenable to verification.
This paper will focus on the efficiency of the computational
structure while future papers will demonstrate the verifiability.

I. INTRODUCTION

With the recent surge in the domain of deep learning with
neural network architectures, new advances in data driven
learning have emerged. However, many of the learning archi-
tectures pose a significant verification and reliability concern.
The “hidden” layers of a deep neural network produce insuffi-
cient traceability between the resultant data driven model and
the requirements by which the model must perform safely.
At the same time, hybrid systems applicability has inspired
a great deal of research in the modeling and verification of
mixed signal systems [1] [2] [3]. In an effort to leverage hybrid
system theory and verification with machine learning, the most
promising work to date has been the approximation of a neural
network as a hybrid system abstraction [4]. We propose that
this framework is a direct translation to a more deterministic
Hybrid System model.

Additionally, it is proposed that a constrained fuzzy logic
architecture enables increased computational efficiency over
traditional machine learning methods, provided the follow-
ing conditions are satisfied: the fuzzification process uses a
triangular membership function, the sum of the membership
values over the universe of discourse at any instant for a
control variable is equal to one, and the defuzzification method

uses a modified center of area method [5] [6]. In this paper,
we will demonstrate how constraining the learning algorithm
architecture increases the computational efficiency while not
sacrificing performance. Traditional machine learning architec-
tures require all activation functions to be calculated at each
time step, thereby, making the size of the network compu-
tationally prohibitive, especially on embedded devices. The
number of activation function computations per cycle increases
exponentially with the number of inputs and the number of
layers. Our approach constrains the learning architecture such
that the number of activation functions per layer and or input to
only two, regardless of the number of total activation functions
or layers. For example, for two inputs fuzzy system with 11
membership (activation) functions each, there are 112 = 121
fuzzy rules (or equivalent computations). However, for four
inputs fuzzy system with 11 membership functions each, there
are 114 = 14, 641 fuzzy rules. Using Matlab on a 3.6 GHz
CPU and 16 GB RAM, it takes 60 microeconds to produce an
output for a 2-input systems. However, this times increases to
1200 microseconds for a 4-input system. This is not unique
to fuzzy based machine learning algorithms. However, this is
only true in the general case where little assumptions about the
design architecture are made. KM-Logic (a Mamdani based
computationally efficient, real-time recursive algorithm [7]),
was developed to implement fuzzy inference systems. The
algorithm constrains the general case to a specific fuzzy logic
design. Within KM-Logic, input uncertainty is completely
bounded within mathematically defined, adjacent triangular
norm membership functions in which a maximum of two
membership functions have non-zero membership value and
the sum of the membership values is always equal to one.
Thus, only two fuzzy rules from each input need to be
considered to determine the firing values for each rule. Addi-
tionally, KM-Logic assumes weighted average defuzzification,
providing an efficient representation that significantly reduces
computation time. This significantly reduces the computational
time. For example, using Matlab, it takes 30 microseconds
to produce an output for a 2-input systems and this times
increases almost linearly to only 120 microseconds for a 4-
input system. Additionally, KM-Logic can be represented as a
piecewise affine hybrid system, where each mode of the hybrid
system is described as a piecewise nth order polynomial,
where n is governed by the number of inputs and or the
number of layers of the network. This feature enables not only
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increased computational efficiency but true transparency.
The paper is organized as follows: KM-Logic, a computa-

tionally efficient, real-time recursive algorithm to implement
fuzzy inference systems for 1- and 2-input fuzzy system is
described in section 2; hybrid system representation of KM-
Logic is presented in section 3; the results based on Matlab
simulations are given in section 4 and finally summary and
conclusions are given in section 5.

II. KM-LOGIC

KM-Logic1 (a Mamdani based computationally efficient,
real-time recursive algorithm [7]), was developed to implement
fuzzy inference systems in an efficient, verifiable way. KM-
Logic is based on the fundamental theory from [5] and the
foundational concepts from the book “NeuroFuzzy Adaptive
Modeling and Control” where the concept of “knots” was
introduced as a method to create constrained, fuzzy modes
[6]. Fuzzy logic is a method of synthesizing natural language
and intuitive requirements and specifications into an abstract
model of desired behavior. Mamdami’s [8] work introduced
this control technology that Zadeh [9] [10] pioneered with
his work in fuzzy sets. The KM-Logic algorithm constrains
the general case fuzzy logic to a specific architectural
design. Within KM-Logic, input uncertainty is completely
bounded within mathematically defined adjacent triangular
norm membership functions, in which a maximum of two
membership functions have non-zero membership value and
the sum of the membership values is always equal to one. The
architecture of the KM-Logic algorithm constrains both the
fuzzification and defuzzification processes. These constraints
are summarized as follows.

Constraint 1: The input values from the sensors are consid-
ered crisp values. Therefore, fuzzification consists of matching
the values to the input fuzzy membership functions over the
domain of the input variables.
Constraint 2: The fuzzification process uses the triangular
membership function.
Constraint 3: The width of a fuzzy set extends to the peak
value of each adjacent fuzzy set and vice versa. Therefore, the
sum of all membership over the universe of discourse at any
instant for a control variable will always be equal to one. This
constraint is referred to as fuzzy partitioning in this paper.
Constraint 4: The defuzzification method used is the
modified center of area (weighted average) method.

In reality, there is not much difference between specific
classes of Neural Network architectures and fuzzy logic. No-
tably, the relu activation function has been long since acknowl-
edged as a practical constraint on neural network architectures
for both speed [11] and verification reasons. The relu activation
function is not unlike the fuzzy logic “triangular membership”
function. In fact, KM-Logic leverages the implementation of

1Provisional patent pending, Patent Application No: 62/313,183 and
62/362,267

adjacent triangular norm membership functions. Figure 1 a
version of the KM-Logic architecture represented in the Neural
Network visualization paradigm.

Fig. 1. Neural Network representation of KM-Logic.

The following sections provide examples of how KM-Logic
is executed for 1 and 2 inputs. It should be noted that this
method allows for the computation of n-input fuzzy systems
by drastically reducing the computational complexity, reducing
the number of rules to a fixed exponential growth dictated only
by the number of inputs and not by number of membership
functions as well.

A. 1-input, 1-output fuzzy system

If X1(j) are the membership functions in the input1 (x1)
fuzzy set shown in Figure 2 and U(o) are the membership
functions in the output (u) fuzzy set shown in Figure 3, the
linguistic rules describing a 1-inputs, 1-output (n=1) fuzzy
system in natural language are of the form:

Rj : if input1 x1 is X1(j) then output u is U(o)
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Fig. 2. Five triangular input membership function.

If both the input and output variables have five membership
functions, the list of 5 rules (R1 · · ·R5) in natural language
may be written as:

R1 : if input1 x1 is X1(1) then output u is U(1)

R2 : if input1 x1 is X1(2) then output u is U(2)

R3 : if input1 x1 is X1(3) then output u is U(3)

R4 : if input1 x1 is X1(4) then output u is U(4)

R5 : if input1 x1 is X1(5) then output u is U(5) (1)

Note that the number of fuzzy rules depend only on the
number of membership functions in the input and do not
depend on the number of output membership functions. There-
fore, the number of membership functions in output fuzzy set
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Fig. 3. Five triangular output membership functions.

do not have to be equal to the number of membership functions
in input fuzzy sets. For example, for a 1-input fuzzy system
with 5 fuzzy sets (NB, NM, Z0, PM and P) for input and
output shown in figures 2 and 3, the rule-base can be written
as 

Rule Location
L1

L2

L3

L4

L5




x1

X1(1)
X1(2)
X1(3)
X1(4)
X1(5)




u

U(1)
U(2)
U(3)
U(4)
U(5)

⇒

x1
NB
NM
ZO
PM
PB




u
NB
NM
ZO
PM
PB

 (2)

Now, if the input x1 lies within the center points of member-
ship functions X(2) and X(3), then the two active rules from
the list of rules given in equation (2) are given byRule Location

L2

L3

 x1
X1(2)
X1(3)

 u
U(2)
U(3)

 (3)

The location of the first active rule is L1 = 2 and the
location of the second active rule is L2 = 3. For this
example, if u(2) and u(3) are the center points of output fuzzy
membership functions U(2) and U(3), respectively in equation
(2), the active rule-list needed to find the output of the fuzzy
system is represented as 2 × 1 matrix in equation (4) as

A1 =

[
u(2)
u(3)

]
=

[
u(L1)
u(L2)

]
(4)

where L1 = index1 is the value of the first active membership
function and L2 = index1 + 1. Using weighted average
defuzzification, the output of the 1-input, 1-output fuzzy
system is given by

Output = µx1(index1)× u(L1) + µx1(index1 + 1)× u(L2)

=
[
µx1(index1) µx1(index1 + 1)

]
×A1 (5)

= f(1)

where

f(i) = µx1(index1)× u(Li) + µx1(index1 + 1)× u(Li + 1) (6)

is the output of the two adjacent active rules for input1 (2nd

and 3rd rules for this example).

1-input, 1-output fuzzy system example:

For an input value of x1 = 0.6 in Figure 2, the first
membership function that has non-zero value is X1(4). The
fuzzification module determines the value of index1 = 4. The
membership values in membership functions X1(index1) and
X1(index1 + 1) as µx1(4) = 0.597 and µx1(5) = 0.403,
respectively. From the output fuzzy set, u((L1) = u(4) = 0.5
and u((L2) = u(5) = 1. Therefore, using equation (5), the
output of the 1-input, 1-output fuzzy system is given by

Output = µx1
(index1) × u(L1) + µx1

(index1 + 1) × u(L2)

=
[
0.5 1

] [0.597
0.403

]
= 0.7015 (7)

The control surface of one-input, one-output system is shown
in Figure 4. It can be seen from this figure that the control
surface is piecewise linear and the maximum and minimum
output is 1 and -1, respectively. This is due to the fact that
the center values of the PB and NB is restricted to 1 and
-1, respectively. It can also be seen from this figure that if the
input and fuzzy sets are equally spaced, the output is linear
(output = input) for an input between -1 and 1, i.e, the gain
of the fuzzy system is equal to 1.
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Fig. 4. Control surface of one-input, one-output fuzzy system.

B. 2-inputs, 1-output fuzzy system

For a 2-inputs 1-output fuzzy system (n=2), the linguistic
rules can be described in natural language as

if input2 (x2) is X2(k) and input1 (x1) is X1(j) then output is U(o)

If each input fuzzy set has five membership functions, there
are 25 rules (R1 . . . R25). Note that the rules are listed
in the order of the first membership function of input2 and
all membership functions of input1 (5 rules in this case)
followed by the second membership functions of input2 and
all membership functions of input1 (5 rules in this case) and
so on. Note again that the number of active rules (22 = 4 for
two inputs) depend only on the number of inputs and not on
the no of rules. Once the location of the first active rule is
known, the location of the rest of the rules can be obtained



from the list of rules. The location of the first active rule, L1,
can be obtained using the following equations

L1 = (index1 + (index2 − 1) × (no of membership functions in input1) (8)

where index1 is the value of the first active membership
function in input1 fuzzy set and index2 is the value of the
first active membership function in input2 fuzzy set. Since
two adjacent membership functions are active for each input,
the location of the second active rule is always equal to
L2 = L1 + 1. The location of the third active rule is given
by L3 = L1 + no of membership functions in input1 and the
location of the fourth active rules is equal to L4 = L3 + 1.
Let u(L1), u(L2), u(L3) and u(L4) are the center points
of output fuzzy sets for fuzzy rules RL1 , RL2 , RL3 and
RL4 , respectively. and can be represented as 2 × 2 matrix in
equation (9) as

[
u(L1) u(L3)
u(L2) u(L4)

]
=
[
A1(1) A2(1)

]
(9)

where A1(1) is a 2× 1 vector containing the center points of
the output membership functions of the two active rules:“if
input2 is X2(index2) and input1 is X1(index1) and if
input2 is X2(index2) and input1 is X1(index1 + 1), and
A2(1) is a 2 × 1 vector containing the center points of the
output membership functions of the two active rules - “if
input2 is X2(index2 + 1) and input1 is X1(index1) and if
input2 is X2(index2 + 1) and input1 is X1(index1 + 1).
Using weighted average defuzzification, the output of 2-inputs
KM-Logic system is given by equation (10).

out(2) = µx2(index2) (µx1(index1)u(L1) + µx1(index1 + 1)u(L2))

+ µx2(index2 + 1) [µx1(index1)u(L3) + µx1(index1 + 1)u(L4)]

=
[
µx2(index2) µx2(index2 + 1)

]
×[[

µx1(index1) µx1(index1 + 1)
]
× A1(1)[

µx1(index1) µx1(index1 + 1)
]
× A2(1)

]

=
[
µx2(index2) µx2(index2 + 1)

] [f(1)
f(3)

]
(10)

where f(1) is the output using the membership values of
two active membership functions of input1 (µx1(index1)
and µx1(index1 + 1) and the center points of the first two
adjacent active output membership functions (22/2) obtained
from the list of rules using equation (8) and f(3) is the
output using the membership values of input1 (µx1(index1)
and µx1(index1 + 1), and the center points of the next two
adjacent active output membership functions obtained from
the list of rules. Note that f(1) and f(3) are found using
the membership functions of input1 only using equation (6).
These two output are then multiplied with the membership
values of two adjacent active membership functions of input2
((µx2(index2) and µx2(index2 + 1)). This procedure has
been implemented as a computationally efficient recursive
algorithm for a n-input, 1-output system by selecting the
center points of the output membership functions for the 2n

active rules from the rule list and finding the 2n/2 values of
f(i) and then multiplying them to the corresponding input
membership functions as explained in equation (10).

Example of 2-input 1-output fuzzy system:

Now Consider a 2-input, 1-output fuzzy system with input1
and output fuzzy sets shown in Figures 2 and 3, and the
input2 fuzzy set shown in Figure ??. Since each input
variable has five membership functions, there are 25 rules
(R(1) . . . R(25)). Let the center points of the output
membership functions for the 25 rules are given by the rule
list given in equation (11) as

u =[−1,−1,−1,−0.5, 0,−1,−1,−0.5, 0, 0.5,

− 1,−0.5, 0, 0.5, 1,−0.5, 0, 0.5, 1, 1, 0, 0.5, 1, 1, 1]
(11)

For an input value of x1 = 0.6 and x2 = −0.25,
index1 = 4 and index2 = 2 and the membership val-
ues of two active membership functions for each input are
given by µx1

(index1) = 0.597, µx1
(index1 + 1) = 0.403,

µx2
(index2) = 0.5, and µx2

(index2+1) = 0.5. The locations
of the four active rules are given by L(1) = 4+(2−1)∗5 = 9,
L(2) = 10, L(3) = 9 + 5 = 14 and L(4) = 15. The center
values of the output membership functions for the four active
rules are underlined in equation (11) and are given by

[
A1(1) A2(1)

]
=

[
u(L1) u(L3)
u(L2) u(L4)

]
=

[
0 0.5
0.5 1

]
(12)

The output of the 2-input fuzzy system can be calculated
by first finding f(1) and f(3) (equation (13)) using the
membership values of input1 and the center points of the
four output membership function given in equation (12) and
then multiplying these values with the membership values of
the active membership functions in input2 fuzzy set given in
equation (14).

f(1) =
[
µx1(index1) µx1(index1 + 1)

]
×A1(1)

=
[
0.597 0.403

] [ 0
0.5

]
= 0.2015

f(3) =
[
µx1(index1) µx1(index1 + 1)

]
×A2(1)

=
[
0.597 0.403

] [0.5
1

]
= 0.7015 (13)

Output =
[
0.5 0.5

] [0.2105
0.7015

]
= 0.4515 (14)

The control surface of a 2-input, 1-output fuzzy system
described above is shown in Figure 5. It can be seen from
this figure that the control surface is nonlinear at the cor-
ners.marked by mode numbers 1, 2, 5, 12, 15, 16. This is
due to the fact that the output of the fuzzy system has been
restricted to a maximum and minimum values of 1 and -1,
respectively. Since four rules are active for any mode, the
center points of the output membership functions of all four



rules at the corner are -1 or 1, respectively for any input
combinations in modes 1 and 16. Therefore, the output of
the fuzzy system for any combination of input1 between -
1 and -0.33, and input2 between -1 and -0.5 is equal to -1.
Similarly, the output of the fuzzy system for any combination
of input1 between 0.33 and 1 and input2 between 0.5 and 1
is equal to 1. The output of the fuzzy system for modes 2, 5,
12 and 14 is nonlinear because of the output of the three rules
are restricted to -1 or 1.N o n l i n e a r R u le - B a s e

0 0
.
a

' n p St 'i

1 0
- I O

Fig. 5. Nonlinear surface of 2-input fuzzy system.

III. HYBRID SYSTEM REPRESENTATION OF KM-LOGIC

A hybrid system is a system with dynamics that are de-
pendent upon both continuous and discrete state variables.
[12]. A hybrid automaton is a modeling formalism for hybrid
systems which is defined in [13] by the octuple: H =
(Q,X, f, Init,D,E,G,R), where

• Q is a finite set of discrete variables;
• X is a finite set of continuous variables;
• f : Q×X → X is a vector field defining the dynamics

of the continuous variables;
• Init ⊂ Q×X is the set of initial states;
• D : Q→ P (X) defines the domain of the discrete modes
• E ⊂ Q×Q is a set of edges;
• G : E → P (X) defines guard conditions for discrete

transitions;
• R : E ×X → P (X) is a reset map defining discontinu-

ities in the continuous state of the system during discrete
transitions.

The state of the system is the collection of continuous and
discrete states and will be denoted by (x, q) ∈ X × Q. The
formal hybrid automaton which defines the thermostat system
is

• Q = {qon, qoff};
• X = R;
• f(qon, x) = c1x,
f(qoff, x) = −c2x;

• Init = qoff × {x ∈ X : x ≤ Thigh};
• D(qon) = {x ∈ X : x ≤ Thigh},
D(qoff) = {x ∈ X : x ≤ Tlow};

• E = {(qon, qoff), (qoff, qon)};
• G(qon, qoff) = {x ∈ R : x ≥ Thigh},
G(qoff, qon) = {x ∈ R : x ≤ Tlow};

HEATER OFFHEATER ON

x > THIGH

x < TLOW

ẋ = c1x ẋ = −c2x

Fig. 6. Illustration of simple heater/thermostat hybrid automaton.

• R(qon, qoff, x) = R(qoff, qon, x) = x.
A common example of a hybrid system is a simple ther-

mostat as shown in figure 6 where the control of the heater
is represented by discrete states of (Heater On) and (Heater
Off). The dynamics of the heat in the room is represented by
the differential equations in each state.

A. Hybrid System representation of a 1-input KM-Logic sys-
tem

The piecewise linear surface shown in Figure 4 has 4
(number of membership functions in (input1 - 1)) linear pieces
called the modes. The output of mode m can be represented
by Output(m) = K1(m)x1 +Const(m), where K1(m) and
Const(m) are the gain and the constant terms, respectively
of mode m. In this example, mode 1 (m = 1) represents
input values between -1 and -0.33, mode 2 (m = 2) represents
input values between -0.33 and 0, mode 3 (m = 3) represents
input values between 0 and 0.33 and finally mode 4 (m = 4)
represents input values between 0.33 and 1. The expressions
for K1(m) and Const(m) are derived by substituting the
expression for µx1

(m) and µx1
(m+ 1) into equation (7) as

Out(m) =
x1(m+ 1) − x1

x1(m+ 1) − x1(m)
u(m) +

x1 − x1(m)

x1(m+ 1) − x1(m)
u(m+ 1)

=
1

x1(m+ 1) − x1(m)
[(u(m+ 1 − u(m))x1

+ (x1(m+ 1)u(m) − x1(m)u(m+ 1))]

Therefore,

K1(m) =
u(m+ 1)− u(m)

Den

=
1

Den

[
−1 1

]  u(m)

u(m+ 1)

 (15)

and

Const(m) =
x1(m+ 1)u(m)− x1(m)u(m+ 1)

Den

=
1

Den

[
x1(m+ 1) −x1(m)

]  u(m)

u(m+ 1)


(16)



where Den = x1(m + 1) − x1(m). Note that K1(m) can
be obtained directly from equation (5) by replacing the
membership values by -1 and dividing the result by the
difference of the center values of input membership functions
X1(m + 1) and X1(m). Also, the value of the Const(m)
term can be obtained directly from equation (5) by replacing
the membership value µx1

(m) by the center value of input
membership function X1(m + 1) and the membership value
µx1(m + 1) by -1 times the center value of the input
membership function X1(m) and dividing the result by the
Den. The hybrid representation of a one-input one-output
system is shown in Figure 7.

>
>

<<
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   x             x   <   1
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+ Const(m)

Output(m) = K  (m) 1

<

Fig. 7. Piecewise linear representation of one-input, one-output fuzzy system.

For example, If x1 = 0.6, m = 4 and the values of K1(4)
and Const(4) can be calculated as

K1(4) =
1

0.67

[
−1 1

] 0.5
1


= 0.74626

Const(4) =
1

0.67

[
1 0.33

] 0.5
1


= 0.25373

These values can be used to find the output of the system
for the values of input between o.33 and 1. Therefore, for
x1 = 0.6, the output of the fuzzy system is given by

Output = 0.74626× 0.6 + 0.25373

= 0.7015

Note that this value is exactly the same as the value obtained
earlier in equation (14).

B. Hybrid System implementation of a 2-input KM-Logic
system

An alternate way to use the recursive algorithm explained
above is to generate piecewise polynomial gains governed by
the input modes as described below to create a hardcoded
lookup table of coefficients. It can be seen from Figure 5
that there are 16 modes (m1 × m2), where m1 = (no of
fuzzy membership functions in (input1 - 1)) = 4 and m2

= (no of fuzzy membership functions in (input2 - 1)) =
4. The output of the 2-input fuzzy system for mode m

can be written as Output(m) = K1(m)x1 + K2(m)x2 +
K12(m)x1 x2 + Const(m), where K1(m) is the gain for
input1, K2(m) is the gain for input2, K12(m) is the gain of
the nonlinear term and Const(m) is the constant term of mode
m. The expressions for gain and constant terms are derived by
substituting the expression for µx1

(index1), µx1
(index1+1),

µx2(index2), µx2(index2 + 1), u(L1), u(L2), u(L3) and
u(L4) into equation (10). After simplification gives,

K1(m) =
1

Den

[
x2(index2 + 1) −x2(index2)

]

[
−1 1

] [u(L1)
u(L2)

]
[
−1 1

] [u(L3)
u(L4)

]


=
1

Den

[
x2(index2 + 1) ×

(
u(L2) − u(L1)

)
− x2(index2) ×

(
u(L4) − u(L3)

)]

K2(m) =
1

Den

[
−1 1

]

[
x1(index1 + 1) −x1(index1)

] [u(L1)
u(L2)

]
[
x1(index1 + 1) −x1(index1)

] [u(L3)
u(L4)

]


=
1

Den

[
x1(index1 + 1) ×

(
u(L3)) − u(L1)

)
− x1(index1) ×

(
u(L4) − u(L2)

)]

K12(m) =
1

Den

[
−1 1

]

[
−1 1

] [u(L1)
u(L2)

]
[
−1 −1

] [u(L3)
u(L4)

]


=
1

Den

[(
u(L4) − u(L3)

)
−
(
u(L2) − u(L1)

)]
and

Const(m) =
1

Den

[
x2(index2 + 1) −x2(index2)

]
×

[
x1(index1 + 1) −x1(index1)

] [u(L1)
u(L2)

]
[
x1(index1 + 1) −x1(index1)

] [u(L3)
u(L4)

]


=
1

Den

x1(index1+1)(x2(index2+1)u(L1)−x2(index2)u(L3))

−x1(index1)l(x2(index2+1)u(L2)−x2(index2)u(L4))


where

Den = [(x2(index2 + 1) − x2(index2)] × [(x1(index1 + 1) − x2(index1)] .

If input1 lies between 0.33 and 1 and input2 between -0.5
and 0, the output is defined by mode m = 8. The values of
K1(8), K2(8), K12(8), and Const(8) can be calculated as

K1(8) =
1

0.335

[
0 0.5

]

[
−1 1

] [ 0
0.5

]
[
−1 1

] [0.5
1

]




= 0.74626

K2(8) =
1

0.335

[
−1 1

]

[
1 0.5

] [ 0
0.5

]
[
1 0.5

] [0.5
1

]


= 1.0

K12(8) =
1

0.335

[
−1 1

]

[
−1 1

] [ 0
0.5

]
[
−1 1

] [0.5
1

]


= 0

Const(8) =
1

0.335

[
0 0.5

]

[
−1 1

] [ 0
0.5

]
[
−1 1

] [0.5
1

]


= 0.25374

These values can be used to find the output of the system for
0.33 ≤ x1 ≤ 1 and −0.5 ≤ x2 ≤ 0. Therefore, for x1 = 0.6
and x2 = −0.25, the output of the system is given by

Output = 0.74626 × 0.6 + 1 × (−0.25) + 0 × (0.6) × (0.25) + 0.25374

= 0.4515

Note that this value is exactly the same as the value obtained
earlier in equation (14).

IV. SIMULATION RESULTS

A detailed KM-Logic architecture is described in this paper.
This architecture is suitable for classification and machine
learning with increased performance and computational speed.
The algorithm increases the computational efficiency while
not sacrificing performance. Traditional machine learning ar-
chitectures require all activation functions to be calculated
at each time step, thereby, making the size of the network
computationally prohibitive, especially on embedded devices.

To test the computational efficiency of KM-Logic, a fuzzy
logic system was implemented using KM-Logic and the tra-
ditional methods. The following hypotheses are tested:

1) Using KM-Logic, the computational time to implement
a fuzzy system remains almost the same as the number
of membership functions are increased to fuzzify inputs.
However, in the case of traditional methods, the com-
putational time increases substantially as the number of
membership functions are increased.

2) The implementation time increases linearly with the
number of inputs in the case of KM-Logic, whereas
this time increases almost exponentially for traditional
implementations.

3) For a linear fuzzy system, only 1-mode is needed to im-
plement this system, i.e., only 2 membership functions
are needed for each input.

To test these hypotheses, first a fuzzy system is obtained
for the function f(x) = x4 by learning the rule-base for one,
two, three and four inputs. First, the output data is obtained
over the input domain of −1 to 1 in step of 1 msec. Using
this input/output data, a learning algorithm is used to obtain
the rule-base. The execution times for each input is shown in
the figure 8. It can be seen from this figure that KM-Logic
only takes 0.097 milliseconds to perform each computation.
The computation time only increases to 0.105 milliseconds
when the number of membership functions increases to 9 for
each input. On the other hand, for a traditional implementa-
tion, the computation time is almost 8 orders of magnitude
slower. It should be noted that most of the constraints are
still enforced for both implementations. Specifically, adjacent
triangular membership functions. For a more general Fuzzy
Logic design, the computational cost would be significantly
higher. Also, to achieve the same performance, most classical
neural networks use 128x128 activation functions at minimum;
which further increase the computational cost unnecessarily.
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Fig. 8. Execution times of fuzzy systems with 4 inputs, comparing KM-Logic
to Traditional Fuzzy Logic

The execution time for both the traditional implementation
and KM-Logic was also obtained using Matlab for 4-input
systems with 3, 5, 7 and 9 membership functions for each
input. and the results are shown in figure 9. It can be seen
from this figure that the execution time increases linearly with
the number of inputs in the case of KM-Logic, whereas this
time increases almost exponentially for a traditional imple-
mentation.

Leveraging the direct Hybrid System equivalance of the
KM-Logic framework, The function f(x) = x4 can actually
be modeled with only one membership function per input if
each input is a copy of x. In other words, it is possible, in
many cases to obtain an exact or near exact approximation of
the modeled function through direct mathematical translation.

V. SUMMARY AND CONCLUSIONS

One of the drawbacks of fuzzy inference systems and neural
networks is the computation time it takes to combine the
membership values of every input to form the firing value
of each rule. For a given number of membership functions
in each input fuzzy set, the number of fuzzy rules increase
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Fig. 9. Exponential vs Linear computation of classical to KM-Logic Fuzzy
framework
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Fig. 10. Comparison of the KM-Logic Approximation vs the actual output

geometrically with the number of inputs. This geometric
progression of the number of rules becomes an obstacle for
practical application of multiple-input systems because of the
time it takes to implement these systems. For a four input
fuzzy system with 3 membership function in each input, using
Matlab it took 0.11 microseconds to implement the fuzzy sys-
tem. However, this time increased to 750 microseconds if each
input is fuzzified using 9 membership function. To overcome
this geometric progression, a novel recursive algorithm, KM-
Logic, was developed. Simulation results have shown that this
method significantly reduces the implementation time. Using
Matlab, for a 4-input fuzzy system with 3 membership func-
tion each, it takes 0.097 milliseconds to implement the fuzzy
system and this time increases to only 0.105 milliseconds if
each input is fuzzified using 9 membership functions. Also, it
was shown that the implementation time increases linearly as
the number of inputs are increased using KM-Logic whereas
in the case of traditional implementations, the computational
times increases exponentially.
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