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Abstract—In this study, the robust stochastic H infinity refer-
ence tracking control design is proposed for stochastic polynomial
fuzzy system (SPFS) under external disturbance and continuous
and discontinuous random fluctuations. To simplify the tracking
control design, the desired reference trajectory is generated by
a reference polynomial system. Under the concept of H infinity
control, the designed control strategy aims to attenuate the effect
of all possible finite energy disturbance on the tracking error to
a prescribed level. Based on the polynomial Lyapunov function,
with the help of Itô-Lévy formula, the sufficient conditions for
robust stochastic H infinity reference tracking control design
of SPFS is transformed to Hamilton-Jacobi inequalities (HJIs)
problem. Due to the difficulties in solving HJIs problem, by using
quadratic Lyapunov function, the solvable sum-of-squares (SOS)
conditions are established for the robust stochastic H infinity
reference tracking control design and it can be efficiently solved
via MATLAB SOSTOOLS toolbox. An investment tracking
strategy design for the stochastic financial system is provided
to validate the effectiveness of proposed method.

Index Terms—Polynomial fuzzy system, reference tracking
control, stochastic system, sum-of-squares, robust control.

I. INTRODUCTION

For the past two decades, Takagi-Sugeno (T-S) fuzzy model
has been widely employed to describe a broad class of
nonlinear system [1]. By linearizing the nonliear system at
several operation points, the nonlinear system can be repre-
sented as a combination of local linearized systems with the
corresponding IF-THEN rules. Under the concept of parallel
distributed compensation (PDC) design in fuzzy-model-based
(FMB) control [2], for each local linearized system, a specific
controller is designed according to control purpose. Then,
the fuzzy controller can be constructed by combining these
local linear controllers with the corresponding IF-THEN rules.
Further, these local linear controllers can be easily obtained by
solving a set of linear matrix inequalities (LMIs) constrained
problem [3]. There have a lot of fruitful results of FMB control
on many control issues such as stabilization problem [4], [5],
tracking control [6], [7], robust control [8], [9], etc.
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Recently, T-S fuzzy model has been extended to polynomial
fuzzy model [10], [11]. Different than the conventional T-
S fuzzy models, the polynomial fuzzy model enables the
polynomial variables to be included in the local systems and
this makes the polynomial fuzzy model be able to describe
a more general class of nonlinear system. Further, by us-
ing the polynomial Lyapunov function for polynomial fuzzy
model, the more relaxed sum-of-squares (SOS) conditions
can be obtained for the control design. By applying third-
party MATLAB SOSTOOLS toolbox [12], the derived SOS
conditions can be numerically solved. Various control design
problems of polynomial fuzzy model have been addressed. For
example, the robust stabilization problem [13], [14], [15] and
the tracking control problem [16], [17].

However, to the best of authors’ knowledge, very few
researches address the control design of stochastic polynomial
fuzzy model. In fact, for the most of physical systems in
real world, these systems suffer from not only environmental
noise but also stochastic intrinsic fluctuations. For example, the
stochastic fluctuations in financial market system are inevitable
due to the rumors in the market, change of policy, uncertain
tax rate, etc. In general, these effects are always formulated as
state-dependent Brownian motion and Poisson process. Hence,
from a practical point of view, the stochastic internal fluctu-
ations in system should be considered for the control design.
By using the Itô-Lévy type stochastic differential equation
[18], the continuous and discontinuous random fluctuations in
the system plant can be described as the Wiener process and
Poisson process, respectively. The stochastic control becomes
a popular field and there have many interesting issues [19],
[20].

In this study, the robust stochastic H∞ reference tracking
control design is proposed for the stochastic polynomial fuzzy
system (SPFS). At first, the polynomial reference model is
employed to generate the desired tracking trajectory. To effec-
tively attenuate the effect of external disturbance during the
reference tracking process, the designed robust H∞ tracking
control strategy aims to attenuate the effect of all possible
external disturbances on the tracking error to a prescribed
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level. Due to the differential compensation terms of stochastic
processes in Itô-Lévy formula, in the case of polynomial
Lyapunov function, the robust stochastic H∞ reference track-
ing control design problem of SPFS is transformed to solv-
ing a set of Hamilton-Jacobi inequalities (HJIs). In general,
HJI problem can not be solved numerically or analytically.
Thus, by using the quadratic Lyapunov function, the solvable
SOS conditions are established for the robust stochastic H∞
reference tracking control design and it can be effectively
solved by MATLAB SOSTOOLS toolbox. In the simulation,
an investment tracking strategy design for stochastic financial
system is provided to validate the proposed robust stochastic
H∞ reference tracking control design.

Notation: AT denotes the transpose of matrix A; A ≥ 0
denotes symmetric semi-positive definite matrix A; E{·} is
the expectation operator, LFt

2 (R≥0,Rnx) = {v : R≥0 →
Rnx

∣∣∣E[
∫ tf

0
vT vdt]

1
2 <∞}; ∂f(x)

∂x denotes the gradient col-

umn vector of differentiable function f(x) ∈ R1; ∂
2f(x)
∂x2 is the

Hessian matrix of twice-differentiable function f(x(t)) ∈ R1;
A monomial in x = [x1, · · · , xn] is a function of the form∏n
i=1 x

di
i with non-negative integers {di}ni=1 and it’s degree

is defined as d =
∑n
i=1 di; A polynomial P (x) is defined

as a finite linear combination of monomials in x with real
coefficients. P (x) is sum of squares (SOS) if and only if
P (x) =

∑m
i=1 f

2
i (x) where {fi(x)}mi=1 is a set of polynomial

functions of x and m ∈ N.

II. PRELIMINARY

A. Stochastic Polynomial Fuzzy Model

Consider the following nonlinear stochastic system:

dx(t) = [f(x(t)) + g(x(t))u(t) + h(x(t))v(t)]dt (1)
+i(x(t))dw(t) + j(x(t))dn(t)

where x(t) ∈ Rnx denotes the state vector, u(t) ∈ Rnu is
the control input, v(t) ∈ LFt

2 (R≥0,Rnx) represents the finite
energy external disturbance, w(t) ∈ R1 is standard 1-D Wiener
process and n(t) ∈ R1 is Poisson counting process with jump
intensity λ ∈ R+. The 1-D Wiener process w(t) and Poisson
counting process n(t) are defined on a complete probability
space (Ω,F ,Ft,P) where Ω denotes the sample space, P is
probability measure on Ω, the σ − field Ft are generated by
w(s) and n(s) , for s ≤ t, and F = {F t̄}t̄≥0. It is assumed
that two stochastic processes w(t) and n(t) are mutually
independent. The functions f(x(t)), g(x(t)), h(x(t)), i(x(t))
and j(x(t)) in (1) are Lipschitz continuous functions with
appropriate dimensions.

Under the concept of sector nonlinearity [1], the following
local stochastic polynomial fuzzy system (SPFS) are provided
to exactly describe the nonlinear stochastic system in (1):

Plant Rule i
If z1(t) is $1,i, and · · · and, zg(t) is $g,i

Then
dx(t) = [Ai(x(t))x(t) +Bi(x(t))u(t) +Bv,i(x(t))v(t)]dt

+ Ci(x(t))x(t)dw(t) +Di(x(t))x(t)dn(t)
(2)

where i = 1, · · · , r, r is the number of plant rules, zj(t) is
the premise variable , for j = 1, · · · , g, g is the number of
premise variables, the membership function $j,i is associated
with the jth premise variable zj(t) in the ith plant rule
and Ai(x(t), Bi(x(t)), Bv,i(x(t)), Ci(x(t)), Di(x(t)) are
polynomials matrices in x(t), for i = 1, · · · , r. Then, after
the defuzzification process, the nonlinear stochastic system in
(1) can be inferred as follows:

dx(t) =
r∑
i=1

µi(z(t)){[Ai(x(t))x(t) +Bi(x(t))u(t)

+Bv,i(x(t))v(t)]dt+ Ci(x(t))x(t)dw(t)
+Di(x(t))x(t)dn(t)}

(3)

with

µi(z(t)) =

g∏
j=1

ψj,i(zj(t))

r∑
k=1

g∏
j=1

ψj,k(zj(t))
, µi(z(t)) ≥ 0

r∑
i=1

µi(z(t)) = 1, for i = 1, · · · , r

where z(t) = [zT1 (t), · · · , zTg (t)]T , {µi(z(t))}ri=1 denote the
normalized grade membership functions, ψj,i(zj(t)) is the
grade membership function corresponding to the membership
function $j,i.

To generate the desired tracking trajectory, the following
polynomial reference model is employed in this study [16]:

dxr(t) = [Ar(xr(t))xr(t) +Br(xr(t))r(t)]dt (4)

where xr(t) ∈ Rnx denotes the desired trajectory to be
tracked, Ar(xr(t)) and Br(xr(t)) are the polynomial system
matrices and r(t) ∈ Rnx is the reference signal. It is assumed
the reference model in (4) is stable. In (4), according to
the designer’s requirement, the desired trajectory xr(t) is
generated by the reference signal r(t) with specific system
matrices Ar(xr(t)) and Br(xr(t)). Especially, if r(t) is the
desired trajectory to be tracked, then the matrices can be
chosen as Ar(xr(t)) = −I and Br(xr(t)) = I. In this
case, xr(t) is identical to the r(t) at the steady state, i.e.,
xr(t) = r(t) at steady state.

By utilizing PDC technique, the following polynomial state-
feedback controller is constructed by utilizing the states infor-
mation of the SPFS in (3) and reference model in (4):

Control Rule j
If z1(t) is $1,j , and · · · and, zg(t) is $g,j

Then
u(t) = Ke

j (x(t))e(t) +Kr
j (x(t))xr(t)

(5)

where e(t) = x(t) − xr(t) denotes the tracking error and
Ke
j (x(t)) and Kr

j (x(t)) are polynomial controller gains to be
designed, for i = 1, · · · , r. After the defuzzification process,
the polynomial state-feedback controller can be written as:

u(t) =
r∑
j=1

µj(z(t)){Ke
j (x(t))e(t) +Kr

j (x(t))xr(t)} (6)



Then, by (3), (4), (6), the SPFS can be written as:

dx(t) =
r∑
j=1

r∑
i=1

µj(z(t))µi(z(t)){[Ai(x(t))x(t)

+Bi(x(t))(Ke
j (x(t))e(t) +Kr

j (x(t))xr(t))
+Bv,i(x(t))v(t)]dt+ Ci(x(t))x(t)dw(t)

+Di(x(t))x(t)dn(t)}

(7)

B. Problem formulation

In general, the external disturbance v(t) in (3) is inevitable
during the reference tracking process and it may deteriorate the
tracking performance. Besides, the reference signal r(t) is un-
predictable for the stochastic fuzzy polynomial system in (3).
Thus, the following robust stochastic H∞ reference tracking
control is proposed to effectively attenuate the aforementioned
effect on the tracking process:

J∞(u(t)) = sup
v̄(t)

∈ LFt
2 (R≥0,R2nx)

E{
∫ tf

0
[x(t)− xr(t)]T

×Q [x(t)− xr(t)]
+uT (t)Ru(t)dt
−V (x(0), xr(0))}
E{
∫ tf

0
v̄T (t)v̄(t)dt}

(8)
where Q ≥ 0 and R > 0 denotes the weighting matrices
of state tracking performance and control effort, respectively,
v̄(t) = [rT (t), vT (t)]T denotes the augmented external dis-
turbance and the positive function V (x(0), xr(0)) denotes the
effect of initial condition to be excluded.

For the robust stochastic H∞ reference tracking control
performance in (8), we aims to find a robust stochastic H∞
tracking control strategy u(t) to attenuate the effect of all finite
energy disturbance v̄(t) ∈ LFt

2 (R≥0,R2nx) on the tracking
process. If one can specify a u∗(t) such that J(u∗(t)) ≤ ρ∗,
for a prescribed ρ∗ > 0, then the effect of all finite energy
disturbance v̄(t) on the tracking error x(t)− xr(t) is reduced
under a disturbance attenuation level ρ∗ from an energy point
of view.

III. ROBUST STOCHASTIC REFERENCE TRACKING
CONTROL DESIGN FOR SPFS

In this section, the robust stochastic H∞ reference tracking
control design is proposed for SPFS in (3). In general, due
to the complex stochastic process in (3), the analysis of
SPFS is much difficult than the deterministic polynomial fuzzy
system (DPFS). By using polynomial Lyapunov function and
quadratic Lyapunov function, two sufficient conditions are
established for robust stochastic H∞ reference tracking control
design. To lighten the notation, the notation t associated
with the variable is dropped. For example, the notation x is
employed instead of x(t).

To begin with, by letting x̄ = [xTr , e
T ]T , the following

augmented SPFS is proposed:

dx̄ =
r∑
i=1

r∑
i=1

µj(z)µi(z){[Āi(x̄)x̄+ B̄i(x̄)K̄j(x̄)x̄

+ B̄v,i(x̄)v̄]dt+ C̄i(x̄)x̄dw + D̄i(x̄)x̄dn}
(9)

where Āi(x̄) =

[
Ar(xr) 0

Ai(x)−Ar(xr) Ai(x)

]
, B̄v,i(x̄) =[

Br(xr) 0
−Br(xr) Bv,i(x)

]
, C̄i(x̄) =

[
0 0

Ci(x) Ci(x)

]
,

D̄i(x̄) =

[
0 0

Di(x) Di(x)

]
, B̄i(x̄) =

[
0, BTi (x)

]T
,

K̄j(x̄) =
[
Kr
j (x) , Ke

j (x)
]
.

By the augmented SFPS in (9), the robust stochastic H∞
reference tracking control performance in (8) can be rewritten
as:

J∞(u) = sup
v̄∈LFt

2 (R≥0,R2nx )

E{
∫ tf

0
x̄T Q̄x̄+ uTRudt

−V (x̄(0))}
E{
∫ tf

0
v̄T v̄dt}

(10)

where Q̄ = diag{0, Q}.
Before achieving our main result, two useful lemmas are

proposed to help the design of robust H∞ tracking control for
SPFS.

Lemma 1 [20, Lemma 2,]: Let X, Y be two matrices with
appropriate dimension, the following inequality holds:

XTY + Y TX ≤ ρXTX +
1

ρ
Y TY

for any ρ > 0.
Lemma 2 [18, Th. 1.16]: With the twice-differentiable

Lyapunov function V (x̄) satisfied with V (0) = 0, V (·) ≥ 0 for
the augmented SPFS in (9) , the Itô-Lévy formula for dV (x̄)
is given as:

dV (x̄) =
r∑
i=1

r∑
j=1

µj(z)µi(z){[(∂V (x̄)
∂x̄ )T (Āi(x̄)x̄+ B̄i(x̄)

×K̄j(x̄)x̄+ B̄v,i(x̄)v̄) + 1
2 x̄

T C̄Ti (x̄)∂
2V (x̄)
∂x̄2 C̄j(x̄)x̄]dt

+ (∂V (x̄)
∂x̄ )T C̄i(x̄)x̄dw + [V (Υn(x̄) + x̄)− V (x̄)]dn}

(11)

where Υn(x̄) =
r∑

n=1
µn(z)D̄n(x̄)x̄.

Based on the above lemmas, the robust stochastic H∞
reference tracking control design with polynomial Lyapunov
function for SPFS in (3) is given as follows:

Theorem 1: Consider the SPFS in (3) and reference model in
(4). If there exist a positive non-singular symmetric polynomial
matrix P (x̄(t)), ρ > 0 and a set of polynomial controller gains
{K̄j(x̄)}rj=1 satisfy the following HJIs:

E{x̄T [Q̄+ K̄T
j (x̄)RK̄j(x̄) + P (x̄)Āi(x̄) + ĀTi (x̄)P (x̄)

+P (x̄)B̄i(x̄)K̄j(x̄) + K̄T
j (x̄)B̄Ti (x̄)P (x̄) + 1

2 C̄
T
i (x̄)

×∂
2x̄TP (x̄)x̄
∂x̄2 C̄i(x̄) + λ(P (Υn(x̄) + x̄)− P (x̄)

+D̄T
i (x̄)P (Υv(x̄) + x̄) + P (Υs(x̄) + x̄)D̄i(x̄)

+D̄T
i (x̄)P (Υd(x̄) + x̄)D̄i(x̄)) +

2nx∑
l=1

∂P (x̄)
∂x̄l

(Āli(x̄)x̄

+B̄li(x̄)K̄j(x̄)x̄+ 4nx

ρ x̄B̄lv,i(x̄)(B̄lv,i(x̄))T x̄T ∂P (x̄)
∂x̄l

T
)

+ 2
ρP (x̄)B̄v,i(x̄)B̄Tv,i(x̄)P (x̄)]x̄} < 0

for i, j = 1, · · · , r,
(12)

where x̄l denotes the lth component in x̄, Āli(x̄), B̄li(x̄),
B̄lv,i(x̄) are the lth row vector in polynomial matrices Āi(x̄),



B̄i(x̄), B̄v,i(x̄), respectively, then the robust stochastic H∞
reference tracking control performance in (10) can be achieved
with a disturbance attenuation level ρ > 0. Moreover, if
the disturbance v̄ is vanished, the augmented SPFS in (9) is
asymptotically stable in probability.

Proof : Consider the numerator part of robust H∞ tracking
control performance in (10) with polynomial Lyapunov func-
tion V (x̄) = x̄TP (x̄)x̄, then we have

E{
∫ tf

0
x̄T Q̄x̄+ uTRudt− V (x̄(0))}

= E{
∫ tf

0
x̄T Q̄x̄+ uTRudt+ dV (x̄)}

−E{V (x̄(0))} − E{V (x̄(tf ))}+ E{V (x̄(0))}.
(13)

By using the Itô-Lévy formula in (11) with the fact
E{dw} = 0 and E{dn} = λdt, (13) can be written as:

E{
∫ tf

0
x̄T Q̄x̄+ uTRudt− V (x̄(0))}

= E{
∫ tf

0

r∑
i=1

r∑
j=1

µj(z)µi(z){x̄T [Q̄+ K̄T
i (x̄)RK̄j(x̄)

+P (x̄)Āi(x̄) + ĀTi (x̄)P (x̄) + P (x̄)B̄i(x̄)K̄j(x̄)

+K̄T
j (x̄)B̄Ti (x̄)P (x̄) + 1

2 C̄
T
i (x̄)∂

2x̄TP (x̄)x̄
∂x̄2 C̄j(x̄)

+λ(P (Υn(x̄) + x̄)− P (x̄) + D̄T
i (x̄)P (Υv(x̄) + x̄)

+P (Υs(x̄) + x̄)D̄i(x̄) + D̄T
i (x̄)P (Υd(x̄) + x̄)D̄j(x̄))]x̄

+x̄TP (x̄)B̄v,i(x̄)v̄(t) + v̄T (t)B̄Tv,i(x̄)P (x̄)x̄

+x̄T
2nx∑
l=1

∂P (x̄)
∂x̄l

(Āli(x̄)x̄+ B̄li(x̄)K̄j(x̄)x̄+ B̄lv,i(x̄)v̄)x̄}dt}

−E{V (x̄(tf ))}
(14)

where Υn(x̄) =
r∑

n=1
µn(z)D̄n(x̄)x̄. It is worth to point out

that B̄lv,i(x̄)v̄ is a scalar, i.e., B̄lv,i(x̄)v̄ ∈ R1.

By using Lemma 1, the following inequalities are held:

x̄TP (x̄)B̄v,i(x̄)v̄ + v̄T B̄Tv,i(x̄)P (x̄)x̄
≤ 2

ρ x̄
TP (x̄)B̄v,i(x̄)B̄Tv,i(x̄)P (x̄)x̄+ ρ

2 v̄
T v̄

(15)

x̄T ∂P (x̄)
∂x̄l

B̄lv,i(x̄)v̄x̄

= x̄T ∂P (x̄)
∂x̄l

x̄B̄lv,i(x̄)v̄

≤ 4nx

ρ x̄T ∂P (x̄)
∂x̄l

x̄B̄lv,i(x̄)(B̄lv,i(x̄))T x̄T ∂P (x̄)
∂x̄l

T
x̄+ ρ

4nx
v̄T v̄

(16)
for i = 1, · · · , r, l = 1, · · · , 2nx, ρ > 0.

By substituting (15)–(16) into (14), we immediately have

E{
∫ tf

0
x̄T Q̄x̄+ uTRudt− V (x̄(0))}

≤ E{
∫ tf

0

r∑
i=1

r∑
j=1

µj(z)µi(z)[x̄
T [Q̄+ K̄T

j (x̄)RK̄j(x̄)

+P (x̄)Āi(x̄) + ĀTi (x̄)P (x̄) + P (x̄)B̄i(x̄)K̄j(x̄)

+K̄T
j (x̄)B̄Ti (x̄)P (x̄) + 1

2 C̄
T
i (x̄)∂

2x̄TP (x̄)x̄
∂x̄2 C̄i(x̄)

+λ(P (Υn(x̄) + x̄)− P (x̄) + D̄T
i (x̄)P (Υv(x̄) + x̄)

+P (Υs(x̄) + x̄)D̄i(x̄) + D̄T
i (x̄)P (Υd(x̄) + x̄)D̄i(x̄))

+
2nx∑
l=1

∂P (x̄)
∂x̄l

(Āli(x̄)x̄+ B̄li(x̄)K̄j(x̄)x̄+ 4nx

ρ x̄B̄lv,i(x̄)

×(B̄lv,i(x̄))T x̄T ∂P (x̄)
∂x̄l

T
) + 2

ρP (x̄)B̄v,i(x̄)

×B̄Tv,i(x̄)P (x̄)]x̄+ ρv̄T v̄dt}
(17)

If the HJIs in (12) hold, then we have following inequality:

E{
∫ tf

0
x̄T Q̄x̄+ uTRudt− V (x̄(0))} ≤ ρE{

∫ tf
0
v̄T v̄dt}

∀ v̄ ∈ LFt
2 (R≥0,R2nx)

(18)
which implies the robust H∞ tracking control performance in
(10) is achieved with a disturbance attenuation level ρ > 0,
i.e., J∞(u(t)) ≤ ρ.

On the other hand, if the disturbance v̄ is vanished in SPFS
of (9), (18) implies the following fact:

E{
∫ tf

0
x̄T Q̄x̄+ uTRudt} ≤ E{V (x̄(0))}

∀ tf ∈ [0,∞)
(19)

. By letting tf → ∞ in (19), (19) reveals the total energy
of x̄ is bounded above by E{V (x̄(0))} and it reveals x̄ is
asymptotically stable in probability, i.e., E{x̄} → 0, as tf →
∞. �

In Theorem 1, the robust stochastic H∞ reference tracking
control design for SPFS with polynomial Lyapunov function
is investigated. Due to the differential compensation terms
of Wiener process and Poisson counting process in Itô-Lévy
formula, the terms ∂2x̄TP (x̄)x̄

∂x̄2 and P (Υd(x̄) + x̄(t)) of design
variable P (x̄) are embedded in (12). Thus, for the suffi-
cient conditions in (12), the design problem is transformed
to an equivalent HJIs-constrained problem. Although several
decoupling methods have been widely investigated in the
conventional control design of DPFS, there does not have
any decoupling method to relax the terms of ∂2x̄TP (x̄)x̄

∂x̄2 and
P (Υd(x̄) + x̄) for the control design of SPFS. To tackle with
this problem, by using the quadratic Lyapunov function as
V (x̄) = x̄TPx̄ with matrix P > 0, the following theorem is
proposed to transform the robust H∞ tracking control design
into solvable SOS-constrained problem:

Theorem 2: Consider the SPFS in (3) and reference model
in (4). If there exist a matrix W > 0, ρ > 0 and a set of
polynomial matrices {Mj(x̄)}rj=1 satisfied with the following
SOS conditions:

−vT1 (

{[
Π1
ij(x̄) Π2

ij(x̄)
∗ Π3

ij(x̄)

]
+ εij((x̄))I

}
)v1 is SOS

, ∀i, j = 1, · · · r.
(20)

where v1 ∈ R10nx+nu is the vector that indepen-
dent of x̄, {εij((x̄))}ri,j=1 are non-negative polynomi-
als for all x̄, Π1

ij(x̄) = Āi(x̄)W + WĀTi (x̄) +
B̄i(x̄(t))Mj(x̄) + MT

j (x̄)B̄Ti (x̄) + λ[WD̄T
i (x̄) + D̄i(x̄)W ],

Π2
ij(x̄) = [WQ̄

1
2 , MT

j (x̄), WC̄Ti (x̄), WD̄T
i (x̄), B̄v,i(x̄)],

Π3
ij(x̄) = diag{−I,−R−1,−W,−λ−1W,−ρI}, then the

polynomial controller gains can be constructed as K̄j(x̄(t)) =
Mj(x̄)W−1, ∀i = 1, · · · , r, and the robust stochastic H∞
reference tracking control performance can be achieved with
a disturbance attenuation level ρ > 0. Moreover, if the
disturbance v̄ is vanished, the augmented SPFS in (9) is
asymptotically stable in probability.



Proof: Define the Lyapunov function as V (x̄) = x̄TPx̄ with
matrix P > 0, (14) can be written as:

E{
∫ tf

0
x̄T Q̄x̄+ uTRudt− V (x̄(0))}

≤ E{
∫ tf

0

r∑
i=1

r∑
j=1

µj(z)µi(z)[x̄
T [Q̄+ K̄T

i (x̄)RK̄j(x̄)

+PĀi(x̄) + ĀTi (x̄)P + PB̄i(x̄)K̄j(x̄) + K̄T
j (x̄)B̄Ti (x̄)P

+C̄Tj (x̄)PC̄i(x̄) + λ(D̄T
i (x̄)PD̄j(x̄) + D̄T

i (x̄)P
+PD̄i(x̄)]x̄+ x̄TPB̄v,i(x̄)v̄ + v̄T B̄Tv,i(x̄)Px̄dt}

(21)
By using Lemma 1, we have the following inequalities:

x̄TPB̄v,i(x̄)v̄ + v̄T B̄Tv,i(x̄)Px̄
≤ 1

ρ x̄
TPB̄v,i(x̄)B̄Tv,i(x̄)Px̄+ ρv̄T (t)v̄(t)

, for i = 1, · · · , r, ρ > 0

(22)

By utilizing (22), we have

E{
∫ tf

0
x̄T Q̄x̄+ uTRudt− V (x̄(0))}

≤ E{
∫ tf

0

r∑
i=1

r∑
j=1

µj(z)µi(z)[x̄
T [Q̄+ K̄T

j (x̄)RK̄j(x̄)

+PĀi(x̄) + ĀTi (x̄)P + PB̄i(x̄)K̄j(x̄)
+K̄T

j (x̄)B̄Ti (x̄)P + C̄Ti (x̄)PC̄i(x̄)
+λ(D̄T

i (x̄)P + PD̄i(x̄) + D̄T
i (x̄)PD̄i(x̄))

+ 1
ρPB̄v,i(x̄)B̄Tv,i(x̄)P ]x̄+ ρv̄T v̄dt}

(23)
Obviously, if the following polynomial constraints are sat-

isfied:

E{Q̄+ K̄T
j (x̄)RK̄j(x̄) + PĀi(x̄)

+ĀTi (x̄)P + PB̄i(x̄)K̄j(x̄) + K̄T
j (x̄)B̄Ti (x̄)P

+C̄Ti (x̄)PC̄i(x̄) + λ(D̄T
i (x̄)P + PD̄i(x̄)

+D̄T
i (x̄)PD̄i(x̄)) + 1

ρPB̄v,i(x̄)B̄Tv,i(x̄)P} < 0

for i, j = 1, · · · , r,

(24)

then

E{
∫ tf

0
x̄T (t)Q̄x̄(t) + uT (t)Ru(t)dt− V (x̄(0))}

≤ E{
∫ tf

0
ρv̄T (t)v̄(t)dt},∀ v̄(t) ∈ LFt

2 (R≥0,R2nx)
(25)

, i.e., J∞(u(t)) ≤ ρ.
Moreover, by pre-multiplying and post-multiplying the ma-

trix W = P−1 to the constraints in (24), we have

E{WQ̄W +WK̄T
j (x̄)RK̄j(x̄)W + Āi(x̄)W

+WĀTi (x̄) + B̄i(x̄)K̄j(x̄)W +WK̄T
j (x̄)B̄Ti (x̄)

+WC̄Ti (x̄)W−1C̄i(x̄)W + λ[WD̄T
i (x̄)

+D̄i(x̄)W +WD̄T
i (x̄)W−1D̄i(x̄)W ]

+ 1
ρ B̄v,i(x̄)B̄Tv,i(x̄)} < 0

for i, j = 1, · · · , r,

(26)

By letting Mj(x̄) = K̄j(x̄)W and applying Schur comple-
ment to (26), (26) can be rewritten as:[

Π1
ij(x̄) Π2

ij(x̄)
∗ Π3

ij(x̄)

]
≤ 0

, ∀i, j = 1, · · · , r.
(27)

. Hence, the constraints in (27) hold if the SOS constraints
in (20) are satisfied. Besides, from the result in (25), the
asymptotic stability of augmented SPFS in (9) can be proven
by similar derivation in Theorem 1. �

In Theorem 2, the robust H∞ tracking control design for
SPFS is transformed to equivalent SOS-constrained problem.
With the help of third-party MATLAB SOSTOOLS toolbox
and semi-definite program (SDP) solver, the feasibility of
SOS constraints can be easily examined and the polynomial
controller can be implemented. Even the constant matrix
variable W is utilized for the fuzzy polynomial controller
design in Theorem 2, (20) can be regarded as an extension
of conventional stochastic T-S fuzzy tracking control design.
In fact, if the polynomial matrices of SPFS in (3) are reduced
to constant matrices, then the SOS constraints in (20) can be
reduced to conventional LMIs constraints.

IV. SIMULATION EXAMPLE

In this section, an investment tracking strategy design for
financial system is provided as design example. Moreover,
to describe the effect of environmental noise and intrinsic
fluctuation, the financial system in [20] is modified as:

dx1 = (x3 + (x2 − a)x1 + u1 + v1)dt
+ 0.01x1dw − 0.5x1dn

dx2 = (1− bx2 + x2
1 + u2 + v2)dt+ 0.01x2dw − 0.5x2dn

dx3 = (−x1 − cx3 + u3 + v3)dt+ 0.01x3dw − 0.5x3dn
(28)

where x1 represent the interest rate, x2 is the investment
demand, x3 denotes the price index. The parameters a = 1.5,
b = 1 and c = 0.2 are the saving amount, per-investment
cost and elasticity coefficient of demands, respectively. u =
[u1, u2, u3]T and v = [v1, v2, v3]T are the investment strategy
and external disturbance, respectively. Since the financial
system suffers from the unpredictable events such as wars and
government policies in the real world, these effects should be
considered as external disturbance and intrinsic fluctuations on
the investment tracking strategy design. w is the 1-D standard
Wiener process and n is the Poisson counting process with
jump intensity λ = 0.2. Then, in (28), the terms 0.01xidw
and −0.5xidn are used to mimic the internal continuous and
discontinuous random fluctuations on state xi, for i = 1, 2, 3.

To construct the SPFS of financial system in (28), the
operation domain of x2 is defined as [0.5, 5] and the func-
tion f(x2) = (1 − bx2)/x2 ∈ [fmin, fmax] = [−0.8, 1].
Then, the financial system in (28) can be represented
as the following SPFS with two IF-THEN rules: A1 = x2 − a 0 1

x1 fmax 0
−1 0 −c

 , A2 =

 x2 − a 0 1
x1 fmin 0
−1 0 −c

 ,
B1 = Bv,1 = B2 = Bv,2 = diag(1, 1, 1), C1(x) =
C2(x) = diag{0.01, 0.01, 0.01}, D1(x) = D2(x) =
diag{−0.5,−0.5,−0.5} with the grade membership func-
tions µ1(x2) = (f(x2) − fmin)/(fmax − fmin), µ2(x2) =
1− µ1(x2).

In this example, the investor aims to regulate the stochastic
financial system into a desired steady state xr = [3.1, 2, 1]T .
Hence, the system matrices and reference input of refer-
ence model in (4) are given as Ar = diag{−1,−1,−1},
Br = diag{1, 1, 1} and r(t) = [3.1, 2, 1]T . The weighting
matrices of robust stochastic H∞ tracking reference tracking



control performance in (8) are given as Q = diag{1, 1, 1}
and R = {0.1, 0.1, 0.1}. The external disturbances v1, v2, v3

are defined as {vi = 0.2 cos t}3i=1 . By applying the Theorem
2, we have disturbance attenuation level ρ = 1 and the fuzzy
controller gains: K̄1(x̄) = [Kr

1(x̄) Ke
1(x̄)], K̄2(x̄) = [Kr

2(x̄)
Ke

2(x̄)] with Kr
11(x̄) = [−1.88x2 − 14.14, 1.17x2 + 37.87,

1.07x2 + 14.26], Ke
11(x̄) = [−1.89x2 − 26.03, −1.06x1,

−0.12x2
1 + 0.05x1 − 0.14x2

2 + 12.85x2 + 6.75], Kr
12(x̄) =

[−0.8x1, 0.2x1 − 1.69, 1.08x1 − 1.07], Ke
12 = [ −1.25x1,

−14.67, 6.98x1 + 8.69], Kr
13(x̄) = [12.94, −1.1x2

2 − 9.69,
−21.2], Ke

13 = [ −1.46, −1.02x1, −2.2x2
1−2.2x2

2 +3.05x2−
2.61], Kr

21(x̄) = [−0.86x2 − 1.66, 1.13x2 + 5.49, 1.25],
Ke

21 = [−2.89x2 − 16.75, −1.05x1, −0.21x2
1 − 0.12x1 −

0.09x2
2 + 10.89x2 + 10.41], Kr

22(x̄) = [−0.82x1, 1.02x1 −
0.19, 1.01x1], Ke

22 = [−2.31x1,−36.08, 6.21x1 − 10.81],
Kr

23(x̄) = [13.24, −1.01x2
2 − 19.12, −35.31], Ke

23 = [ 4.12,
0.62, −2x2

1 − 2.43x2
2 + 1.39x2

2 − 26], and {εij = 10−4}2i,j=1

where Kr
ij(x̄) and Ke

ij(x̄) denotes the jth row in Kr
i (x̄) and

Ke
1(x̄), respectively, for i = 1, 2, j = 1, 2, 3.

By using the robust fuzzy polynomial controller obtained
from Theorem 2, the simulation results are shown in Figs.
1– 2. The initial states of financial system and reference
model are [2 3 1]T and [0 0 0]T , respectively. In Fig. 1, it
can be seen that the financial system can track the corre-
sponding reference state well. Moreover, the effect of intrinsic
fluctuations and external disturbances are effectively reduced
during the reference tracking process. Thus, the proposed
fuzzy polynomial controller can achieve the desired robust
stochastic H∞ reference tracking performance against the
effect of external disturbance and intrinsic fluctuations.

V. CONCLUSION

In this study, the robust stochastic H∞ reference track-
ing control design is proposed for the SPFS. To effectively
attenuate the effect of external disturbance during the ref-
erence tracking process, the designed robust stochastic H∞
reference tracking control strategy aims to attenuate the ef-
fect of all possible external disturbance as well as intrinsic
Wiener process and Possion counting process on the tracking
error to a prescribed level. In the case of polynomial Lya-
punov function, due to the differential compensation terms of
stochastic processes in Itô-Lévy formula, the robust stochastic
H∞ reference tracking control design has to solve a set of
HJIs. Besides, by using the quadratic Lyapunov function,
the robust stochastic H∞ reference tracking control design
can be transformed to a solvable SOS-constrained problem
and it can be solved by third-party MATLAB SOSTOOLS
toolbox. From the simulation results, the proposed robust
stochastic H∞ reference tracking control design can achieve a
great reference tracking performance for the financial market
system with powerful disturbance attenuation capability. In the
future, various control issues and applications on SPFS will
be addressed, e.g., fuzzy polynomial filter design for SPFS.
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Fig. 1. The state trajectory tracking of financial system.
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Fig. 2. The control input (investment strategy) of proposed robust stochastic
H∞ reference tracking polynomial controller.
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