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Abstract—Pythagorean Fuzzy Preference Relations (PFPRs)
have been considered in recent literature more powerful and
flexible than the popular intuitionistic fuzzy preference relation in
dealing with the linguistic imprecision for decision makers in the
large scale group decision making. Following on this promising
trend, a novel approach based on the PFPRs is proposed for
decision support. In particular, the proposed work starts with the
acquisition of the optimal comparison matrices, which essentially
record the pairwise comparison of the alternatives from the
positive and negative opinions. The proposed consensus reaching
process is then utilised to guide the decision makers to revise
the provided information in order to reach the overall group
consensus, before the derivation of rankings of the alternatives.
Experimental studies are provided to demonstrate the workings
and effectiveness of the proposed approach in comparison with
two state-of-the-art methods.

Index Terms—Pythagorean fuzzy preference relations, Group
decision making, Consensus reaching process, Consensus mea-
sure.

I. INTRODUCTION

Group Decision Making (GDM) has recently attracted sig-
nificant attention [1] [2] for its widespread involvement in
applications such as political and economic forecasting. There
usually exists a number of decision makers in GDM, easily
resulting in increase diversities among the group, which may in
return be utilised to improve overall accuracy. The use of fuzzy
sets and its extensions, which has been successfully applied
in a number of scenarios under certainty [3] [4], enhances the
tolerance level of representing linguistic imprecision that often
arises from practical decision making. In order to allow for
more expressive capability, methods on the basis of preference
relations with linguistic scale have been developed in recent
literature [5]. For instance, it has been popular to adopt the
Intuitionistic Fuzzy Preference Relation (IFPR) to represent
the decision makers’ inaccurate cognitions in terms of the
positive, negative and hesitant views [6, 7].

Pythagorean Fuzzy Sets (PFS) are an extension of Intu-
itionistic Fuzzy Sets (IFS) [8], which have been considered
in recent literature even more powerful and effective than
IFS describing vagueness and uncertainties in some real-world
scenarios [9]. However, the individual consistency problem is
an important matter for methods based on PFS for GDM.
Although there exists method that is able to automatically
improve the consistency of information provided by decision
maker [10], a number of the approaches in the literature

typically assume decision makers to provide information to
relieve the individual consistency problem by default.

In order to reach the consensus for GDM [1], the consensus
measure and reaching process are indispensable components
to guide decision makers to generate a final collective opinion.
However, biased opinions significantly different from what
the majority of decision makers hold may hinder reaching
the consensus [11]. The approach in the literature to handle
the consensus issue can generally be categorised as follows:
First, the information originally provided by decision makers
is required to revise through combining the member and non-
member degrees of PFPR, which generally involves compli-
cated computation for both the positive and negative opinions
[15]; The second approach, however, revises the information
from the perspective of positive opinion only, which simplifies
the overall computation, but has the risk of ignoring the
negative opinions altogether [16].

Following on the promising trend of Pythagorean Fuzzy Sets
PFS in handling the linguistic vagueness, this paper proposes
the Pythagorean Fuzzy Preference Relation (PFPR) for GDM,
which is further supported by a proposed Consensus Reaching
Process (CRP) to reach the collective consensus. In particular,
the proposed work starts by the acquisition of the optimal
comparison matrices utilising the algorithm in [10], which
essentially record the pairwise comparison of the alternatives
from the positive and negative opinions through the use of
Linguistic Discrete Region (LDR). The proposed CRP is then
utilised to guide the decision makers to revise the provided
information so that the group consensus can be achieved.
Although in the proposed CRP the decision makers only
modify the information from positive view, the negative in-
formation can be derived on the basis of the provided positive
information and persisting uncertainty. Finally, the preferences
of the alternatives for all decision makers are calculated and
aggregated based on the PFS aggregation operators, and the
ranking of the alternatives can then be obtained through the
score of the aggregated PFSs.

The remainder of this paper is organized as follows: Section
II presents the details of the proposed method. Section III
conducts the experimental study to demonstrate the workings
and effectiveness of the proposed approach in comparison
with relevant approaches. Section IV concludes the paper and
outlines ideas for future work.
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II. THE PROPOSED METHOD

The proposed PFPR-based approach for group decision
making briefly comprise of three steps. First, the pairwise
comparison of the alternatives from the positive and negative
opinions are provided from decision makers in the form of
LDR. The optimal comparison matrices are then generated,
which serve as input to construct the PFPR. Secondly, a
consensus reaching process is then developed to guide the
decision makers to revise the comparison matrix, which only
consists of the membership degrees of the PFPR, but with
the non-membership degrees of the PFPR calculated through
the persisted uncertainty and updated membership degrees
accordingly. Finally, the preferences of the alternatives for all
decision makers are calculated and aggregated based on the
PFS aggregation operators, and the ranking of the alternatives
can then be obtained through the score of the aggregated PFSs.
The details of each step are introduced in the following sub-
sections.

A. Constructing the Pythagorean Fuzzy Preference Relation

Before constructing the PFPR for sub-sequence operations,
the definitions of the PFS and PFPR are given as follows.

Definition 1. [8] A Pythagorean Fuzzy Sets (PFS) P over
a universe of discourse A is defined as

p = {(x,< µp(x), νp(x) > |x ∈ A}

where µp : A→ [0, 1], and νp : A→ [0, 1] verify

µ2
p(x) + ν2

p(x) ≤ 1, ∀x ∈ A (1)

µp(x) and νp(x) are the membership degree and non-
membership degree of x to P accordingly.

For the PFS, πp(x) =
√

1− µ2
p(x)− ν2

p(x) denotes the
hesitancy degree, and it represents the amount of lacking
information in the determination of the membership and
non-membership degrees of x ∈ A. For convenience, <
µp(x), νp(x) > is called a Pythagorean Fuzzy Number (PFN)
denoted as p = (µp, νp).

Definition 2. [9] A Pythagorean Fuzzy Preference Relation
PFPR M on a finite set of alternatives A = {A1, A2, . . . , An}
is characterized by a membership function µM : A × A →
[0, 1] and a non-membership function νM : A × A → [0, 1]
such that

0 ≤ (µ2
M (Ai, Aj) + ν2

M (Ai, Aj)) ≤ 1,∀(Ai, Aj) ∈ A×A

where µM (Ai, Aj) = µij is interpreted as the certainty degree
up to which Ai is preferred to Aj , and νM (Ai, Aj) = νij
is interpreted as the certainty degree up to which Ai is non
preferred to xj . A PFPR can also be represented by a matrix
M = (µij , νij)n×n.

The procedure of constructing PFPR for the decision mak-
ers provided information is detailed as follows.

1) The decision makers denoted as (E = {ek|k ∈
{1, 2, . . . ,m}}) provide their opinions depending on the

pairwise comparisons of the alternatives (Ā = {Ai|i ∈
{1, 2, . . . , n}}) with LDR, represented as Uk = (ūkij)n×n, k ∈
{1, 2, . . . ,m} from positive and Vk = (v̄kij)n×n, k ∈
{1, 2, . . . ,m} from negative. The LDR cab be represented as
follows.

Definition 3. [10] Let S = {sk|k = 0, 1, . . . , g} be a
linguistic term set. The discrete region D = [si, sj ](0 ≤ i <
j ≤ g) represents a finite subset of S. D = {si, si+1, . . . , sj},
where si < si+1 < . . . < sj .

2) The obtained information of the decision makers pre-
sented as Uk and Vk(k ∈ {1, 2, . . . ,m}) is translated into the
set-matrices utilizing the numerical scale model,

ri = (
√
c)∆−1(si)− g

2 (2)

where c = 2, and ∆−1(si) = i(i ∈ {0, 1, . . . , g}). Then,
the iterative searching algorithm is used to search the optimal
matrix with higher consistency index from Uk and Vk, k ∈
{1, 2, . . . ,m}. Let OU

k = (rkij(u))n×n and OV
k = (rkij(v))n×n

denote the obtained optimal matrices from Uk and Vk, k ∈
{1, 2, . . . ,m}.

3) The PFPR for the decision maker provided information is
construct based on the obtained optimal matrix and the concept
of PFS.

Let αk
ij = F (rkij(u)) and βk

ij = F (rkij(v)) (i, j ∈
{1, 2, . . . , n}) for OU

k and OV
k , matrix Mk =

(
(µk

ij , ν
k
ij)
)
n×n,

(k ∈ {1, 2, . . . ,m}) denote the constructed PFPR. If 1 −
((αk

ij)
2 + (βk

ij)
2) ≥ 0, (αk

ij , β
k
ij) is an PFS and (µk

ij , ν
k
ij) =

(αk
ij , β

k
ij). Otherwise (αk

ij − δkij , β
k
ij − δkij) is an PFS, and

(µk
ij , ν

k
ij) = (αk

ij − δkij , βk
ij − δkij). Where

F (ri) =
1

2
(1 + logri

g/2)

and
δkij =

1

2

(
αk
ij + βk

ij −
√

2− |αk
ij − βk

ij |
)

B. Consensus Measure and Reaching Process for PFPR

1) Consensus Measure for PFPR: Once the PFPR is ob-
tained through the above procedure, the consensus reaching
process is conducted, which generally consists of two com-
ponents: (i) A consensus measure that calculates the level of
the agreement among decision makers and, (ii) A feedback
recommendation mechanism that aims to improve the agree-
ment level among the decision makers [12]. Various consensus
models have been proposed recently [2, 5, 12–14]. Usually, the
consensus measure for GDM is often calculated by measuring
the difference between individual opinions and group opin-
ions. Let E = {e1, e2, . . . , em} and Ā = {A1, A2, . . . , An}
denote the decision makers and the alternatives, and the
constructed PFPRs for the decision maker be presented as
Mk =

(
(µk

ij , ν
k
ij)
)
n×n (k ∈ {1, 2, . . . ,m}). The Consensus

Level (CL) associated with the decision maker ek is defined
as [5],

CLk = 1−
n∑

i,j=1;i6=j

|µk
ij − µc

ij |
n(n− 1)

(3)



where µc
ij(i, j = 1, 2, . . . , n) is calculated utilizing the

weighted average operator, µc
ij =

n∑
k=1

ωkµ
k
ij , and W =

{w1, w2, . . . , wm} is the weighting vector of the decision
makers E.

Let ε be a parameter to justify whether the consensus
associated with decision maker ek is acceptable or not. If
CLk ≥ ε, the consensus measure of the decision maker
(ek) is accepted, and vice verse. Thus the decision makers
can be partitioned into two exclusive consensus groups, rep-
resented as GA = {ek|CLk ≥ ε, k ∈ {1, 2, . . . ,m}} and
GU = {ek|CLk < ε, k ∈ {1, 2, . . . ,m}}. In particular, Li
C. et al. [12] proposes a consensus measure for all decision
makers as follows:

CL =
|GA|
m

=
|({ek|CLk ≥ ε})|

m
(4)

where |GA| is the number of the decision makers in GA. If
the consensus measure obtained from Eq. (4) is acceptable,
the ranking of the alternatives is computed based on the
weighted arithmetic mean. In the event of the consensus not
being reached, adjustments are made further to improve the
consensus level. Generally speaking, a small number of deci-
sion makers who score very low consensus measures would
be required to adjust their opinions following on the various
consensus rules, before reaching an acceptable consensus
measure among all the decision makers.

2) Consensus Reaching Process for PFPR: In order to
reach the consensus level accepted by all decision makers,
the followings are conducted.

1) Based on the Eq.(3), the consensus measures of the deci-
sion makers are calculated and represented as, {CLk|k ∈
{1, 2, . . . ,m}}. There are the certain consensus measures
which are lower than ε, but others are larger than ε,
where these decision makers’ consensus measures are
unacceptable when ε is set as the threshold. The consen-
sus measure for all decision makers is calculated by Eq.
(4), where the aggregated results are calculated with the
arithmetic mean via the membership degrees of PFPRs.

2) Let η be the threshold to the consensus measure (CL)
for all decision makers, if CL ≥ η, which means the consen-
sus measure for all decision makers is acceptable, thus the
information provided by the decision makers is not required
to modify. Otherwise, the decision makers whose consensus
measures are lower than ε are required to modify the provided
information to improve the consensus measure (CL). First, the
decision maker with highest consensus measure is selected
from the decision makers with unacceptable consensus mea-
sures, denoted as euk0

. Another decision maker with acceptable
consensus measure is searched for and denoted as eaj0 , and euk0

and eaj0 have the smallest distance or the maximized similarity.
According to the membership degrees of PFPR for eaj0 , the
membership degrees for euk0

are modified, which are close to
the ones of eaj0 with higher consensus measure. The consensus
measures for each decision maker and all decision makers
are computed again accordingly, and it can be obtained the

consensus measure of all decision makers can be improved.
3) Repeating the process of the information revision, until

CL ≥ η. The updated membership degrees of PFPRs are
denoted as Mu

l = (µl
ij(u))n×n, where l means the serial

number of the decision maker who has modified the provided
information, thus it can be obtained that

νlij(u) =


√

1− (µl
ij(u))

2 − (πl
ij)

2

(µl
ij)

2
+(νlij)

2 − (µl
ij(u))2 ≥ o√

1− (µl
ij(u))

2
otherwise

(5)

As a result, the update PFPRs for the decision maker can be
calculated as

Mr
k = (µk

ij(r), ν
k
ij(r))n×n

=

{
(µk

ij(u), νkij(u))n×n, k = l
(µk

ij , ν
k
ij)n×n, k 6= l

(6)

C. Ranking of the Alternatives

Finally, the ranking of the alternatives can be obtained by
aggregating the results in the form of PFPRs. In particular,
some basic operators on PFS can be defined as follows.

Definition 4. [9] Let p = (µp, νp) be a PFS. Define the
score function as

S(p) = µ2
p − ν2

p (7)

where S(p) ∈ [−1, 1], and an accuracy function as

H(p) = µ2
p + ν2

p (8)

where H(p) ∈ [0, 1].

With respect to Definition 4, the ranking of PFSs can be
obtained based on the following rules.

Definition 5. [9] Let p1 and p2 be two PFSs, then we have:

1) If S(p1) > S(p2), then p1 is superior to p2, denoted by
p1 � p2.

2) If S(p1) = S(p2), then
(I) If H(p1) = H(p2), then p1 is equivalent to p2,
denoted by p1 = p2;
(II) If H(p1) > H(p2), then p1 is superior to p2, denoted
by p1 > p2.

Second, based on the updated PFPRs of the decision maker
denoted as Mr

k (k = 1, 2, . . . ,m), the preference of the
alternative Ai for the decision maker ek can be calculated
as

p(Ak
i (µ)) =

n∏
j=1

(µk
ij(r))

1
n (9)

and

p(Ak
i (ν)) = 1−

n∏
j=1

(1− νkij(r))
1
n (10)

where, P (Ak
i ) = (p(Ak

i (µ)), p(Ak
i (ν))) (k = 1, 2, . . . ,m, i =

1, 2, . . . , n).



TABLE I
DECISION-MAKING RESULTS WITH RESPECT TO DIFFERENT GDM METHODS

Methods Ranking Values Ranking of Alternatives
A1 A2 A3

Method [15] 0.4221 0.3061 0.2810 A1 � A2 � A3

Method [16] 0.4980 0.2152 0.2869 A1 � A3 � A2

Proposed method 0.1598 -0.0921 -0.2031 A1 � A2 � A3

Definition 6. [9] Let pk = (µk, νk)(k = 1, 2, . . . ,m) be a
set of PFSs and W = (ω1, ω2, . . . , ωm)T be the weight vector

of pi, with
m∑

k=1

ωk = 1, then a Pythagorean fuzzy weighted

averaging (PFWA) operator is a mapping PA: Pm → P , where

PA(p1, p2, . . . , pm) =

(
1−

m∏
k=1

(1− µk)ωk ,

m∏
k=1

(νk)
ωk

)
(11)

The aggregated result of P (Ak
i ) (k = 1, 2, . . . ,m, i =

1, 2, . . . , n) can be calculated via PFWA, and presented as
PA(Ai) = (PA(Ai(µ)), PA(Ai(ν))), where

PA(Ai(µ)) = 1−
m∏

k=1

(1− p(Ak
i (µ)))

ωk

and

PA(Ai(ν)) =

m∏
k=1

p(Ak
i (ν))

ωk

Thus, for i = 1, 2, . . . , n, it can be obtained that

S(Ai) = PA2(Ai(µ))− PA2(Ai(ν))

and
H(Ai) = PA2(Ai(µ)) + PA2(Ai(ν))

The ranking of the alternatives can be obtained based on
S(Ai) and H(Ai).

III. EXPERIMENTAL STUDY

A. Experimental Setup

In the experiment, a case study is conducted where 12
students are invited to evaluate the performance of a cell
phone from the perspective of {After Sale Service, Brand,
Price}. Each index is regarded as an alternative, denoted as
Ai(i ∈ {1, 2, . . . , 3}), and the invited 12 students are the
decision makers and presented as E = {e1, e2, . . . , e12}. The
used linguistic term set is S = { s0 = extremely impossible,
s1 = less impossible, s2 = slight impossible, s3 = equally
possible, s4 = possible, s5 = high possible, s6 = extremely
possible }. In order to identify ranking of the factors that affect
the performance of the cell phone, the proposed approach
is then applied to the evaluations made from the group of
students with the final result further compared with two recent
alternative approaches.

B. Case Study on Cell Phone Evaluation

Following the procedures as proposed in Section II, the
PFPR is constructed first. Through the pair-wise comparison
of the alternatives via LDR in terms of the positive and
negative views, the following matrices with LDR are con-
structed based on the information provided by each decision
maker, where LDRs denote the uncertainties over the pairwise
comparisons of the alternatives:

U1 =

 [s3] [s1, s2] [s1]
[s4, s5] [s3] [s1, s2]
[s5] [s4, s5] [s3]


and

V1 =

 [s3] [s3] [s4, s5]
[s3] [s3] [s3]
[s1, s2] [s3] [s3]


Utilizing the numerical model (

√
c)∆−1(sk)−3 (where c = 2)

[10], the matrix U1 with LDR is then translated into the set-
matrix MU

s , 1 : [1.000] 2 : [0.500, 0.707] 1 : 0.500
2 : [1.414, 2.000] 1 : [1.000] 2 : [0.500, 0.707]
1 : 2.000 2 : [1.414, 2.000] 1 : [1.000]


The optimal matrix with higher consistency index can then

be searched from the set-matrix MU
s , following on the iterative

algorithm [10], resulting in the following matrix,

A∗U =

 1.000 0.707 0.500
1.414 1.000 0.707
2.00 1.414 1.000


Similarly, the optimal matrix A∗V can be obtained according

to V1 as follows:

A∗V =

 1.000 1.000 1.414
1.000 1.000 1.000
0.707 1.000 1.000


The PFPR denoted as M1 can be constructed by combining

the matrices A∗U and A∗V via the concept of PFS.

 (0.5000, 0.5000) (0.3423, 0.5000) (0.1845, 0.6577)
(0.6577, 0.5000) (0.5000, 0.5000) (0.3423, 0.5000)
(0.8155, 0.3423) (0.6577, 0.5000) (0.5000, 0.5000)


Once PFPR is constructed, the consensus measures for every

decision maker are calculated via the membership degrees of



the PFPR, where the aggregated results are calculated with
the arithmetic mean, resulting in the consensus measures
for the decision makers as, {0.7240,0.9168,0.7064,0.8028,
0.8554,0.7678,0.7503,0.7590,0.7678,0.8554,0.7240,0.8028}.
It can be observed that, among the 12 decision makers,
the consensus measures for e1, e3, e11 are lower than 0.75,
whereas those from the rest of decision makers are all
larger than 0.75. That is to say, if the threshold to accept
the consensus measure is set at the level of 0.75, the
final consensus measure for all the decision makers is
CL = 9

12 = 0.75.
If, however, the threshold is set as 0.8, the consensus

measure for all the decision makers is unacceptable and the
information provided by the decision makers with lower con-
sensus measures requires to be modified. Among all decision
makers with unacceptable consensus measures, the decision
maker e1 has the highest consensus measure with its associated
decision information translated into the following matrix,

M1(µ) =

 0.5000 0.3423 0.1845
0.6577 0.5000 0.3423
0.8155 0.6577 0.5000


According to the proposed method, the matrix

M9(µ) =

 0.5000 0.6577 0.1845
0.3423 0.5000 0.3423
0.8155 0.6577 0.5000


is selected as the mediator to guide e1 to adjust the matrix
M1 in order to improve its consensus measure. Based on the
consensus reaching process in proposed method, the modified
matrix of membership degrees of PFPR for e1 is,

Mm
1 (µ) =

 0.5000 0.5000 0.1845
0.5000 0.5000 0.3423
0.8155 0.6577 0.5000


Once the matrix M1 is refreshed, the consensus measures

for the opinions of the decision makers updated as follows,
{0.7722, 0.9124, 0.7021, 0.8072, 0.8598, 0.7722, 0.7546,
0.7546, 0.7722, 0.8598, 0.7196, 0.8072}. It can be observed
that the consensus measure of the modified information for
e1 has now been improved to 0.7722, leading to the overall
consensus measure for all the decision makers being 0.83,
which is now acceptable. The matrix of hesitancy degrees of
PFPR for e1 is denoted as

H1 =

 0.5000 0.6329 0.5333
0.3174 0.5000 0.6329
0.2179 0.3174 0.5000


As a result, the updated matrix of non-membership degrees

of PFPR for e1 is calculated as

Mm
1 (ν) =

 0.5000 0.3423 0.6577
0.6577 0.5000 0.5000
0.3423 0.5000 0.5000


Based on the updated PFPRs of the decision makers,

the preferences of the alternative Ai for the decision mak-

ers can be calculated and aggregated as, PA(A1(µ)) =
0.5570, PA(A2(µ)) = 0.4644, PA(A3(µ)) = 0.4421, and
PA(A1(ν)) = 0.3879, PA(A2(ν)) = 0.5548, PA(A3(ν)) =
0.6313. As a result, we can obtain that
S(A1) = 0.1598, S(A2) = −0.0921, S(A3) = −0.2031.

The ranking of the alternatives is A1 � A2 � A3.

C. Comparative Analysis
In order to demonstrate the effectiveness of the proposed

method, a comparative analysis is carried out in comparison
with two state-of-the-art GDM methods [15] [16]. The final
rankings returned by different methods are summarised in
Table I.

It is worth noting that how to revise the information pro-
vided by the decision makers with the unacceptable consensus
measure is not advised in [15]. Thus the adaption of CRP in
[15] is consistent with the proposed method in the experiment.
It can be observed that the ranking of the alternatives based
on [15] is the same as the proposed method from the Table
I. However, the method presented in [15] is based on the
Intuitionistic Fuzzy Preference Relations (IFPR), which has
considered with less flexibility for decision makers to express
the information than PFPR.

If [16] is used instead, the final result for the ranking of
the alternatives is different from the proposed method, with
the membership degrees of the Intuitionistic Multiplicative
Preference Relations (IMPR) revised via the optimal model to
improve the consensus measure of all decision makers, but the
non-membership degrees of IMPR being completely ignored
in this method. In addition, the method [16] is also based
on the Intuitionistic Fuzzy Set (IFS), with less flexibility in
expressing the information for the decision makers compared
to the use of PFS. In a nutshell, the proposed method is able to
deliver ranking results in consistent with the one [15] recently
proposed in the literature, but has the advantage of providing
better flexibility for decision makers to express their opinions.

IV. CONCLUSION

Inspired by the potentials of pythagorean fuzzy preference
relation (PFPR) that enables for decision makers to simul-
taneously provide both the positive and negative evaluation,
which has been considered more flexible than the popular Intu-
itionistic Fuzzy Preference Relations (IFPR) and Intuitionistic
Multiplicative Preference Relations (IMPR), this paper has
proposed a three-step novel group decision making method
based on PFPR. A case study is conducted to demonstrate
the working and effectiveness of the proposed approach, with
the final results achieved in consistent with the one [15]
recently proposed in the literature, but has the advantage of
providing better flexibility for decision makers to expression
their opinions.

This promising research also opens up an avenue for sig-
nificant further investigation. In addition to developing further
extensions for group decision making involving various con-
sensus reaching processes, future work will apply the proposed
method to real-world problems involving uncertainties [17]
[18] for decision support.
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