
Reachable set boundedness and fuzzy sliding mode
control of MPPT for nonlinear photovoltaic systems

Zhixiong Zhong1, Member, IEEE, Xingyi Wang1,∗, Rathinasamy Sakthivel2, and Chih-Min Lin3, Fellow, IEEE
Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350121, China.

Department of Applied Mathematics, Bharathiar University, Coimbatore 641046, India.
Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan.

Email: xingyiwang2019@126.com; ∗Corresponding author: Xingyi Wang

Abstract—This paper develops a novel maximum power point
tracking (MPPT) control strategy for nonlinear photovoltaic
(PV) systems. The MPPT control problem of the considered PV
systems is first formulated in the framework of fuzzy descriptor
systems. Then, based on the new formulation, a fuzzy sliding
mode control (FSMC) law is constructed to drive the state
trajectories into a desired sliding surface within the finite-time
T ∗ with T ∗ < T . Moreover, sufficient conditions are derived
to ensure the reachable set boundings of the closed-loop PV
control systems in the finite-time intervals [0, T ∗] and [T ∗, T ].
A simulation example is given to show the effectiveness of the
proposed design method.

Index Terms—Reachable set boundedness, maximum power
point tracking (MPPT), photovoltaic

I. INTRODUCTION

Solar power has experienced rapid growth over the past few
decades. It is predicted that, by 2020, the total capacity of
solar power will reach 980 GW [1]. Solar power is a source of
electricity, and it is either solar thermal systems or PV systems.
The basic device of a solar PV system is the PV cell, and cells
can be integrated into panels or arrays. A solar PV system
directly converts sun light into electricity, and feeds small
loads, such as lighting systems, alarm, monitoring, and DC
motors, or implements more sophisticated applications under
grid-connection configurations [2]. However, compared with
other clean energy systems, the PV systems suffer from low
efficiency, high initial cost. Moreover, their performance is
very sensitive to changes in environment conditions, such as
solar irradiance and working temperature. In this case, it is
very important to maintain the PV operation at its maximum
efficiency under parameter uncertainties and external distur-
bances [3].

For a specific operating condition, PV systems usually have
a unique maximum power point (MPP). It is noted that some
intrinsic characteristics and disturbances on PV systems, such
as aging of the device, irradiance intensity, and temperature
conditions, generally lead to inefficient implementations on
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maximum power point tracking (MPPT) control [4]. Tradi-
tional MPPT control of PV systems aims at locating the
MPP for online operation in the steady state condition, such
as the perturbation and observer-based methods [5], and the
hill climbing method [6]. Unfortunately, the above-mentioned
methods often result in a slower convergence. Recently, dy-
namic MPPT control methods have been proposed to improve
the transient performance, such as cuckoo search control [7],
neural-network-based control [8], and online system identi-
fication [9]. However, those methods generally lack a strict
convergence analysis.

In the last three decades, DC-DC converters have been
widely used in PV systems. The buck, boost and buck-boost
circuits are three basic configurations for DC-DC converters
[10]. The duty ratio determines the switching action via
pulsewidth modulation, which implements control of the DC-
DC converters, and exhibits a nonlinear dynamic behavior.
Moreover, in most cases the approximated linear model based
on a single operating point are subjected to no minimum phase
type for the DC-DC converters. Although the linear controller
is easier to design and implement, it is difficult to ensure
MPPT performance in all the operating conditions. Recently,
it has been shown that nonlinear systems can be described
by several local linear systems blending IF-THEN fuzzy rules
[11]. More recently, T-S fuzzy-model-based approach has been
developed for the MPPT control of PV systems with DC-DC
converters [12].

Sliding mode control (SMC), as an effective robust control
strategy, has been successfully applied to a wide variety of
complex systems [13]. More recently, the SMC has been
developed for MPPT control of PV systems [14]. Neverthe-
less, it is worth noting that, in all aforementioned work on
SMC, the system dynamic behaviors were considered within
a sufficiently long time interval. Most recently, the work of
[15] introduced a novel partitioning strategy to ensure finite-
time boundedness of system states by using SMC. To the
best of the authors’ knowledge, fast convergence and strict
performance analysis on transient dynamics have not been
taken into account for MPPT control of nonlinear PV systems.
This motivates our present research.

In this paper, a novel MPPT method is developed for nonlin-
ear PV systems via the descriptor system approach. First, the
MPPT control problem of PV systems is reformulated into the
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framework of descriptor systems, and the nonlinear dynamics
of PV systems are represented by T-S fuzzy model. Based on
the new model, a fuzzy sliding mode control (FSMC) law is
constructed to drive the state trajectories into the specified slid-
ing surface within the finite-time T ∗ with T ∗ < T . Moreover,
sufficient conditions are derived to ensure the reachable set
boundings of the closed-loop PV control systems in the finite-
time intervals [0, T ∗] and [T ∗, T ]. A simulation example is
given to show the effectiveness of the proposed design method.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a solar PV power system using a DC/DC boost
converter as shown in Fig.1, which consists of a solar PV array,
an inductor L, a capacitor C0, and a load. Its dynamic model
can be represented by the following differential equations [16],{

ϕ̇pv = − 1
L (1− u) vdc +

1
Lvpv,

v̇dc =
1
C0

(1− u)ϕpv − 1
C0
ϕ0,

(1)

where u ∈ [0, 1] represents the duty ratio; ϕpv and vdc stand
for the inductor current and the capacitor voltage, respectively;
ϕ0 and v0 denote the load current and the load voltage,
respectively. It should be noted that the duty ratio u carries
out the switching action by using PWM.

u

PV Array

φdc

vpv

D

Vdc C0 Load

DC/DC Boost Converter

φ0
φpv L

v0

Fig. 1. A solar PV power with DC/DC boost converter.

In order to maximize the efficiency of PV power-generation
systems, we will propose an MPPT technique based on the
descriptor system approach. First, the electric characteristic of
PV arrays is considered as follows [12]:{

ϕpv = npIph − npIrs (e
γvpv − 1) ,

Ppv = ϕpvvpv,
(2)

where np and ns are the number of the parallel and series cells,
respectively; γ = q/(nsϕKT ) with the electronic charge q =
1.6×10−19 C, Boltzmann’s constant K = 1.3805×10−23J/◦K,
cell temperature T ; Iph and Irs are the light-generated current
and the reverse saturation current, respectively. Here, series
resistances and their intrinsic shunt are neglected.

According to the representation of array power in (2) and
by taking the partial derivative of Ppv with respect to the PV
voltage vpv , one gets [12]

dPpv

dvpv
= ϕpv − npγIrsvpve

γvpv . (3)

In order to obtain the MPPT performance, we let dPpv

dvpv
= 0.

The proposed descriptor system approach is shown in Fig. 2.
First, we measure the PV array current ϕpv , and solve the

PV Array
DC/DC

φpv

φpv = npγIrsv
∗

pve
γv∗

pv

Descriptor System

MPPT

Fuzzy Controller

Converter

Load

vpv vdc

φ0

Fig. 2. MPPT fuzzy control for PV system.

equation ϕpv − npγIrsv
∗
pve

γv∗
pv = 0 to obtain the reference

PV array voltage v∗pv. When the condition vpv → v∗pv holds,
the closed-loop PV power control system achieves the MPPT
performance. Now, by introducing the virtual state variable
εpv = vpv−v∗pv, and it follows from (1)-(3) that the considered
PV system with the MPPT control problem is reformulated
into the following descriptor system:

ϕ̇pv = − 1
L (1− u) vdc +

1
Lvpv,

v̇dc =
1
C0

(1− u)ϕpv − 1
C0
ϕ0,

0 · ε̇pv = ϕpv − npγIrse
γv∗

pvεpv − npγIrsvpve
γv∗

pv .

(4)

Define x (t) =
[
ϕpv vdc εpv

]T
, z1 =

vpv
ϕpv

, z2 =
ϕ0

vdc
, z3 = eγv

∗
pv , z4 =

vpv
ϕpv

eγv
∗
pv , z5 = vdc, and z6 = ϕpv . The

nonlinear PV system in (4) is represented by the following
descriptor T-S model [17]:

Plant Rule Rl: IF z1 is F l
1, and z2 is F l

2, and, · · · , and z6
is F l

6, THEN

Eẋ(t) = Alx (t) +Blu(t), l ∈ L := {1, 2, . . . , r} (5)

where

Al =

 Fl
1

L − 1
L 0

1
C0

−Fl
2

C0
0

1− npγIrsF l
4 0 −npγIrsF l

3

 ,
E =

 1 0 0
0 1 0
0 0 0

 , Bl =

 Fl
5

L

−Fl
6

C0

0

 . (6)

Then, we consider, without loss of generality, only the class
of norm-bounded square integrable disturbance that acts on the
output voltage vdc, which is defined as below:

ωT (t)ω (t) ≤ δ, (7)

where δ is a positive scalar.
By fuzzy blending, the global T-S fuzzy dynamic model is

obtained by

Eẋ(t) = A(µ)x (t) +B(µ)u(t) +Dω(t), (8)

where A(µ) :=
r∑

l=1

µlAl, B(µ) :=
r∑

l=1

µlBl, D =[
0 1 0

]T
.



The aim is to design an FSMC law such that the state
trajectories of fuzzy PV system can be driven into the sliding
surface in the finite-time T ∗ with T ∗ ≤ T , and system states
are bounded respectively in the time intervals [0, T ∗] and
[T ∗, T ] by the following reachable set:

S, {x (t) ∈ ℜnx |x (t) and ω (t) satisfy
(5) and (7), respectively, t ≥ 0} . (9)

III. DESIGN OF FSMC BASED ON REACHABLE SET
BOUNDING

This section first designs an FSMC law such that the state
trajectories can be driven into the sliding surface in the finite-
time T ∗ with T ∗ ≤ T . And then, the reachable set boundings
of MPPT error are given in the time intervals [0, T ∗] and
[T ∗, T ], respectively.

A. Design of FSMC law

Firstly, based on the fuzzy descriptor system (8), we con-
struct the integral-type sliding surface function as below [19]:

s(t) = GEx(t)−
∫ t

0

G [A(µ) +B(µ)K(µ)]x(s)ds, (10)

where the matrix G is choosen such that GBl is a positive
definite matrix.

In the following, based on the sliding surface function
(10), we will design an FSMC law u(t), which can drive the
trajectories of the fuzzy system (8) into the specified sliding
surface s(t) = 0 in the finite time T ∗.

Theorem 3.1. Consider the fuzzy descriptor system (8)
representing the nonlinear PV system with MPPT control
problem. The reachability of the specified sliding surface (10)
in the finite time T ∗ can be ensured by the following FSMC
law:

u(t) = ub(t) + uc(t), (11)

with

ub(t) =
r∑

l=1

µlKlx(t),

uc(t) = −
r∑

l=1

µl [GBl]
−1
ρ (t) sgn (s(t)) , (12)

where Kl denotes fuzzy controller gain, ρ(t) =
ϱ+∥GD∥∥ω(t)∥

λmin(GBl[GBp]
−1)

, ϱ ≥ 1
T ∥GEx(0)∥ , (l, p) ∈ L, and

sgn(⋆) is a switching sign function defined as

sgn (s(t)) =

 −1, for s(t) < 0,
0, for s(t) = 0,
1, for s(t) > 0.

(13)

Proof. It follows from (10)-(12) that

sT (t)ṡ(t)

= −sT (t)GB(µ)
r∑

l=1

µl [GBl]
−1
ρ (t) sgn (s(t))

+ sT (t)GDω(t)

≤ −
r∑

l=1

r∑
p=1

µlµpλmin

(
GBl [GBp]

−1
)
ρ(t) ∥s(t)∥

+ ∥GD∥ ∥ω(t)∥ ∥s(t)∥
= −ϱ ∥s(t)∥ . (14)

In addition, let us define

V1 (t) =
1

2
sT (t)s(t). (15)

We have

V̇1 (t) ≤ −ϱ ∥s(t)∥
= −

√
2ϱ

√
V1 (t). (16)

Based on [20], it yields

T ∗ ≤
√
2

ϱ

√
V1 (0). (17)

Besides, it follows from (15) that

V1 (0) =
1

2
∥s(0)∥2 . (18)

Substituting (18) into (17), one gets

T ∗ ≤ 1

ϱ
∥GEx(0)∥ . (19)

It follows from ϱ̄ ≥ 1
T

∥∥ḠĒx̄(0)∥∥ in (14) that T ∗ ≤ T ,
which implies that, the FSMC law (11) can drive the system
trajectories of the fuzzy descriptor model (8) into the sliding
surface function s(t) = 0 within the finite time T ∗ ≤ T , thus
completing this proof.

Remark 3.1. It is noted that the proposed switching sign
function sgn(⋆) is discontinuous. The characteristic exhibits a
high frequency oscillation, which is undesirable in practical
applications. In order to eliminate chattering phenomenons,
an alternative approach is to employ the following switching
function [21]:

sgn (s(t)) =


−1, for s(t) < −ρ,
1
ρs, for |s(t)| ≤ ρ,

1, for s(t) > ρ.

It is easy to see that the proposed switching sign function
becomes continuous and its value converges to the interval
[−ρ, ρ] instead of zero. In this case, chattering conditions are
eliminated.



B. Reachable set bounding of MPPT error within [0, T ∗]

During the reaching phase in [0, T ∗], the motion of system
states is outside of the sliding surface (10), i.e., s(t) ̸= 0.
By substituting the FSMC law (11) into (8), we obtain the
resulting closed-loop control system as below:

Eẋ(t) =

r∑
l=1

r∑
p=1

µlµpĀlp +Dω(t)

+
r∑

l=1

r∑
p=1

µlµpBl [GBp]
−1
ρ (t) sgn (s(t)) , (20)

where Ālp = Al +BlKp.
Define ρ̄(t) = ρ (t)sgn(s(t)), ϱ̄ = ϱ

λmin(GBl[GBp]
−1)

, and

ε = ∥GD∥
λmin(GBl[GBp]

−1)
. It follows from s(t) ̸= 0 that

ρ̄2(t) = ρ2 (t)

= [ϱ̄+ ε ∥ω(t)∥]2

= ϱ̄2 + 2ϱ̄ε ∥ω(t)∥+ ε2 ∥ω(t)∥2

≤
(
1 + ε2

)
ϱ̄2 +

(
1 + ε2

)
∥ω(t)∥2

≤
(
1 + ε2

)
ϱ̄2 +

(
1 + ε2

)
δ

= ρ̃. (21)

In the following theorem, we derive a sufficient condition
for the reachable set bounding of closed-loop control system
(20) in the time interval [0, T ∗].

Theorem 3.2. Consider the FSMC law (11), the reachable
set of the resulting closed-loop PV control system in (20) is
bounded for time interval [0, T ∗], if there exist matrices X =[
X1 0
X2 X3

]
, 0 < XT

1 = X1 ∈ ℜn2×n2 , X2 ∈ ℜn1×n2

and X3 that is a scalar, and the control gain K̄l, and positive
scalars {δ, ρ̃, φ̄, η}, such that the following conditions hold:

Φ̄ll < 0, 1 ≤ l ≤ r (22)
Φ̄lp + Φ̄pl < 0, 1 ≤ l < p ≤ r (23)

where

Φ̄lp =

 Φ̄lp(1) D Bl [GBp]
−1

⋆ −η
δ I 0

⋆ ⋆ −η
ρ̃ I

 ,
Φ̄lp(1) = Sym

{
XTAT

l + K̄T
p B

T
l

}
+ ηXTET . (24)

Furthermore, the smallest possible bounding is given as below:

Minimize φ̄, subject to
[
φ̄I X1

⋆ X̄1

]
> 0, (22) and (23),

where φ̄ = φ−1, X̄1 = X1

e−ηT∗xT
1,2(0)P1x1,2(0)+2(1−e−ηT∗)

, and
the fuzzy controller gain is calculated as below:

Kp = K̄pX
−1. (25)

Proof. Consider the following Lyapunov functional

V2 (t) = xT (t)ETPx(t), ∀t ∈ [0, T ∗] . (26)

It is easy to see from Theorem 3.2 that ETP = PTE ≥ 0.

Along the trajectory of system (20), one gets

V̇2 (t) = 2 [Eẋ(t)]
T
Px(t)

= 2

[
r∑

l=1

r∑
p=1

µlµpĀlpx(t)

]T

Px(t)

+ 2

[
r∑

l=1

r∑
p=1

µlµpBl [GBp]
−1
ρ (t) sgn (s(t))

]T

Px(t)

+ 2 [Dω(t)]
T
Px(t). (27)

An auxiliary function is introduced as below:

J (t) = V̇2 (t) + ηV2 (t)−
η

δ
ω2(t)− η

ρ̃
ρ̄2(t), (28)

where η is a positive scalar.
It follows from (27) and (28) that

J (t) = 2

[
r∑

l=1

r∑
p=1

µlµpĀlpx(t)

]T

Px(t)

+ 2

[
r∑

l=1

r∑
p=1

µlµpBl [GBp]
−1
ρ̄(t)

]T

Px(t)

+ 2 [Dω(t)]
T
Px(t)

+ ηxT (t)ETPx(t)− η

δ
ω2(t)− η

ρ̃
ρ̄2(t)

=

r∑
l=1

r∑
p=1

µlµpχ
T (t) Φlpχ (t) , (29)

where χ (t) =
[
xT (t) ωT (t) ρ̄T (t)

]T
, and

Φlp =

 Φlp(1) PTD PTBl [GBp]
−1

⋆ −η
δ I 0

⋆ ⋆ −η
ρ̃ I

 ,
Φlp(1) = Sym

{
AT

l P +KT
p B

T
l P

}
+ ηETP. (30)

To cast the inequality
r∑

l=1

r∑
p=1

µlµpΦlp < 0 into LMIs, we

have

P−1 = X

=

[
X1 0
X2 X3

]
, (31)

where 0 < X1 = XT
1 ∈ ℜn2×n2 , X2 ∈ ℜn1×n2 , X3 is a

scalar.
Now, define Γ =diag{X, I, I}, and use a congruent trans-

formation to
r∑

l=1

r∑
p=1

µlµpΦlp < 0 by Γ. After extracting the

fuzzy premise variables, the inequalities in (22) and (23) can
be directly obtained.

Because of (22) and (23) that J (t) < 0, which implies that

V̇2 (t) + ηV2 (t) <
η

δ
ω2(t) +

η

ρ̃
ρ̄2(t). (32)



Multiplying both sides of (32) by eηt and integrating the
resulting inequality from 0 to T ∗. It is easy to see that

eηT
∗
V2 (T

∗) < V2 (0) +
η

ρ̃

∫ T∗

0

eηsρ̄2(s)ds

+
η

δ

∫ T∗

0

eηsω2(s)ds

≤ xT (0)ETPx(0) + 2
(
eηT

∗
− 1

)
, (33)

which implies that

V2 (T
∗) < e−ηT∗

xT (0)ETPx(0) + 2
(
1− e−ηT∗

)
. (34)

Further, we specify the matrix P as below:

P =

[
P1 0
P2 P3

]
, (35)

where 0 < PT
1 = P1 ∈ ℜn2×n2 , P2 ∈ ℜn1×n2 and P3 is a

scalar, and it is easy to see that ETP = PTE ≥ 0.
Now, we partition x(t) as

x(t) =

[
x1,2(t)
x3(t)

]
, x1,2(t) =

[
x1(t)
x2(t)

]
. (36)

It follows from (34)-(36) that

xT1,2(t)P1x1,2(t) < e−ηT∗
xT1,2(0)P1x1,2(0)

+ 2
(
1− e−ηT∗

)
, t ∈ [0, T ∗] . (37)

Here, the aim is to design the FSMC controller in the
form of (11) such that the smallest bound for the reachable
set in (9) can be obtained. To do so, a simple optimization
algorithm is pointed out in [23], i.e. maximize φ subject to φI
< P1

e−ηT∗xT
1,2(0)P1x1,2(0)+2(1−e−ηT∗)

. By using Schur comple-

ment, and use a congruent transformation by Γ =diag{I, X1},
one can easily solve the optimization problem as shown in
Theorem 3.2. This completes the proof.

Recalling the fast dynamic subsystem in (5) as below:
r∑

l=1

µl

(
1− npγIrsF l

4

)
ϕpv −

r∑
l=1

µlnpγIrsF l
3εpv = 0. (38)

It is easy to see from (4) and Theorem 3.2 that x1(t) <
√
φ̄,

and we can calculate the tracking error of maximum power
point εpv as below:

εpv <

∣∣∣∣∣∣∣∣
r∑

l=1

µl

(
1− npγIrsF l

4

)
r∑

l=1

µlnpγIrsF l
3

∣∣∣∣∣∣∣∣
√
φ̄. (39)

C. Reachable set bounding of MPPT error within [T ∗, T ]

During the time interval [T ∗, T ] of the sliding phase, we
will derive a sufficient condition to ensure the reachable set
bounding of the resulting closed-loop FSMC system. When the
system trajectories arrive at the sliding surface, it has ṡ(t) = 0.
Thus, the equivalent controller ueq(t) is obtained as below:

GB(µ)ueq(t) = GB(µ)K(µ)x(t)−GDω(t), (40)

where G is a given matrix so that GB(µ) is nonsingular.
Motivated by [17], [18], by augmenting the the system (8)

and controller (40), it yields

Ē ˙̄x(t) = Ā(µ)x̄ (t) + D̄ω(t), (41)

where

Ē =

 E 0 0
0 0 0
0 0 0

 , x̄ (t) =
 x (t)

x (t)
ueq(t)

 , D̄ =

 D
0

−GD

 ,
Ā(µ) =

 0 A(µ) B(µ)
I −I 0

GB(µ)K(µ) 0 −GB(µ)

 . (42)

In the following, we will derive a sufficient condition to
ensure the reachable set bounding of closed-loop system (41)
in the time interval [T ∗, T ].

Theorem 3.3. Consider the fuzzy PV system in (8) and the
sliding surface function in (10). For the specified time interval
[T ∗, T ], the reachable set of the resulting closed-loop control
system in (41) is bounded, if there exist the matrices 0 < X1 =
XT

1 ∈ ℜn2×n2 , X2 ∈ ℜn1×n2 ,
{
X(21), X(22)

}
∈ ℜn3×n3 ,{

X(23), X(24)

}
∈ ℜn1×n3 , and the scalars

{
X3, X(25)

}
, and

the controller gain K̄l, and the positive scalars
{
δ, ρ̃, ψ̄, η

}
,

such that the following LMIs hold:

Ψ̄ll < 0, 1 ≤ l ≤ r, (43)
Ψ̄lp + Ψ̄pl < 0, 1 ≤ l < p ≤ r (44)

where

Ψ̄lp =

[
Sym

(
Ψ̄lp(1)

)
+ ηĒX̄ D̄

⋆ −η
ρ̃ I

]
,

X̄ =

 X 0 0
X(21) X(22) 0
X(23) X(24) X(25)

 , X =

[
X1 0
X2 X3

]
,

Ψ̄lp(1) =

 Ψ̄lp(11) Ψ̄lp(12) BlX(25)

X −X(21) −X(21) 0
Φlp(31) −GBlX(24) −GBlX(25)

 ,
Ψ̄lp(11) = AlX(21) +BlX(23), Ψ̄lp(12) = AlX(22) +BlX(24),

Ψ̄lp(31) = GBlK̄p −GBlX(23). (45)

Furthermore, the smallest possible bounding is given by the
following algorithm:

Minimize ψ̄, subject to
[
ψ̄I X1

⋆ X̄2

]
> 0, (43) and (44),

where X̄2 = X1

e−ηT xT
1,2(0)P1x1,2(0)+eη(T∗−T )−2e−ηT+1

, ψ̄ = ξ−1,
and the fuzzy controller gain is calculated as below:

Kl = K̄lX
−1. (46)

Proof. Consider the following Lyapunov function

V3 (t) = x̄T (t)ĒT P̄ x̄(t), ∀t ∈ [T ∗, T ] (47)

where ĒT P̄ = P̄T Ē ≥ 0.
Along the trajectory of system (41), we have

V̇3 (t) = 2
[
Ā(µ)x̄ (t) + D̄ω(t)

]T
P̄ x̄(t). (48)



An index function is introduced as follows:

J2 (t) = V̇3 (t) + ηV3 (t)−
η

δ
ωT (t)ω(t), (49)

where η is a positive scalar.
It follows from (47)-(49) that

J2 (t) = 2
[
Ā(µ)x̄ (t) + D̄ω(t)

]T
P̄ x̄(t)

+ ηx̄T (t)ĒT P̄ x̄(t)− η

δ
ωT (t)ω(t)

= χ̄T (t)Ψ(µ)χ̄ (t) , (50)

where χ̄ (t) =
[
x̄T (t) ωT (t)

]T
, and Ψ(µ) =[

Sym
(
ĀT (µ)P̄

)
+ ηĒT P̄ P̄T D̄

⋆ −η
δ I

]
.

It is easy to see that Ψ(µ) < 0, which implies that J2 (t) <
0. Now, by extracting the fuzzy premise variables, it yields

Ψll < 0, 1 ≤ l ≤ r, (51)
Ψlp +Ψpl < 0, 1 ≤ l < p ≤ r (52)

where Ψlp =

[
Sym

(
ĀT

lpP̄
)
+ ηĒT P̄ P̄T D̄

⋆ −η
δ I

]
, Ālp = 0 Al Bl

I −I 0
GBlKp 0 −GBl

 .
To cast the conditions (51) and (52) into LMIs, we define

P̄−1 = X̄, P̄ =

 P 0 0
P(21) P(22) 0
P(23) P(24) P(25)

 ,
X̄ =

 X 0 0
X(21) X(22) 0
X(23) X(24) X(25)

 , (53)

where P =

[
P1 0
P2 P3

]
, X =

[
X1 0
X2 X3

]
, 0 <

P1 = PT
1 ∈ ℜnx×nx , 0 < X1 = XT

1 ∈ ℜnx×nx ,
{P2, P3, X2, X3} ∈ ℜnx×nx ,

{
P(21), P(22), X(21), X(22)

}
∈

ℜnx×nx ,
{
P(23), P(24), P(25), X(23), X(24), X(25)

}
∈ ℜnu×nx .

Now, define Γ =diag
{
X̄, I

}
, and use a congruent transfor-

mation to (51) and (52) by Γ. The inequalities in (43) and
(44) can be directly obtained.

In addition, J2 (t) < 0 implies that

V̇3 (t) + ηV3 (t) <
η

δ
ωT (t)ω(t). (54)

Pre- and post-multiplying both sides of the inequality (54)
by eηt and integrating the successive inequality from T ∗ to T .
It is easy to see that

V3 (T ) < eη(T
∗−T )V3 (T

∗) + 1− eη(T
∗−T ). (55)

In addition, it can be seen from (47) that

V3 (t) = xT1,2(t)P1x1,2(t), (56)

which implies that

xT1,2(t)P1x1,2(t) < eη(T
∗−T ) (V3 (T

∗)− 1) + 1, t ∈ [T ∗, T ] .
(57)

It follows from (37) that

xT1,2(t)P1x1,2(t) < e−ηTxT1,2(0)P1x1,2(0)

+ eη(T
∗−T ) − 2e−ηT + 1, t ∈ [T ∗, T ] .

(58)

Similar to the work of [23], the smallest bound for the
reachable set in (11) can be obtained by maximizing ξ
subject to ξI < P1

e−ηT xT
1,2(0)P1x1,2(0)+eη(T∗−T )−2e−ηT+1

. By
using Schur complement, and use a congruent transformation
by Γ =diag{I, X1}, one can easily solve the optimization
problem as shown in Theorem 3.3. This completes the proof.

It is easy to see from (4) and Theorem 3.3 that x1(t) <
√
ψ̄,

and recalling the fast dynamic subsystem in (5) as below:

r∑
l=1

µl

(
1− npγIrsF l

4

)
ϕpv −

r∑
l=1

µlnpγIrsF l
3εpv = 0. (59)

We can calculate the tracking error of maximum power point
εpv as below:

εpv <

∣∣∣∣∣∣∣∣
r∑

l=1

µl

(
1− npγIrsF l

4

)
r∑

l=1

µlnpγIrsF l
3

∣∣∣∣∣∣∣∣
√
φ̄. (60)

D. Design of controller gain Kl

In the following, we will design the fuzzy controller gain Kl

in the sliding surface function (13), which guarantees that the
conditions in Theorems 3.2 and 3.3 are feasible synchronously.
The corresponding result can be summarized as follows:

Theorem 3.4. Consider the fuzzy PV system in (8) and the
sliding surface function in (10). For the specified finite time T ,
the resulting FSMC system is bouned, if there exist matrices
0 < X1 = XT

1 ∈ ℜn2×n2 , X2 ∈ ℜn1×n2 ,
{
X(21), X(22)

}
∈

ℜn3×n3 ,
{
X(23), X(24)

}
∈ ℜn1×n3 , the scalars

{
X3, X(25)

}
,

and the control gain K̄l, and the positive scalars {δ, ρ̃, η}, such
that the following LMIs hold:

Φ̄ll < 0, 1 ≤ l ≤ r (61)
Φ̄lp + Φ̄pl < 0, 1 ≤ l < p ≤ r (62)

Ψ̄ll < 0, 1 ≤ l ≤ r, (63)
Ψ̄lp + Ψ̄pl < 0, 1 ≤ l < p ≤ r (64)

where

Φ̄lp =

 Φ̄lp(1) D Bl [GBp]
−1

⋆ −η
δ I 0

⋆ ⋆ −η
ρ̃ I

 ,
Φ̄lp(1) = Sym

{
XTAT

l + K̄T
p B

T
l

}
+ ηXTET . (65)



and

Ψ̄lp =

[
Sym

(
Ψ̄lp(1)

)
+ ηĒX̄ D̄

⋆ −η
δ I

]
,

X̄ =

 X 0 0
X(21) X(22) 0
X(23) X(24) X(25)

 , X =

[
X1 0
X2 X3

]
,

Ψ̄lp(1) =

 Ψ̄lp(11) Ψ̄lp(12) BlX(25)

X −X(21) −X(21) 0
Φlp(31) −GBlX(24) −GBlX(25)

 ,
Ψ̄lp(11) = AlX(21) +BlX(23), Ψ̄lp(12) = AlX(22) +BlX(24),

Ψ̄lp(31) = GBlK̄p −GBlX(23). (66)

Furthermore, the fuzzy controller gain is calculated as below:

Kp = K̄pX
−1. (67)

E. Design procedure for MPPT algorithm

The detailed calculating steps of the proposed MPPT algo-
rithm for the nonlinear PV system is summarized as below:

i) Use the descriptor system approach to represent the MPPT
control problem of the PV system, as shown in (4);

ii) Use the T-S fuzzy model method to describe the nonlin-
ear descriptor system as shown in (8);

iii) Choose a suitable matrix G, and solve Theorem 3.4 to
obtain the fuzzy controller gain Kl;

iv) Given the finite time T , and the initial state x(0).
Construct the sliding mode controller as shown in Theorem
3.1;

v) Use Theorems 3.2 and 3.3 to minimize φ̄, and calculate
the bounding for the MPPT error εpv .

IV. SIMULATION STUDY

In order to testify the effectiveness of the proposed MPPT
control method, we consider a solar PV system, and its dynam-
ic model can be described as shown in (1). The parameters are
chosen as below: L = 150µH, C0 = 1000µF, np = 36, γ =
0.03863, Irs = 4A, T = 300K. Now, the proposed MPPT
algorithm can be implemented as below:

i) Use the descriptor system approach to represent the MPPT
control problem of the PV system as shown in (4).

ii) For simplicity, we only choose z1 =
vpv
ϕpv

, z2 = eγv
∗
pv ,

z3 =
vpv
ϕpv

eγv
∗
pv as fuzzy premise variables, and linearize

the above mentioned nonlinear system around the operation
points z1 = (5, 3.25) , z2 = (0.3636, 0.5), and z3 =
(1.5295, 1.5897) . Further assume that ϕ0 = 4A, vdc = 11V,
ϕpv = 2A. Then, the nonlinear descriptor system is represent-
ed by the following T-S fuzzy model:

Eẋ(t) = A(µ)x (t) +Bu(t) +Dω(t),

where the system’s parameters are omitted because of space
limitations.

iii) Choose a suitable matrix G =
[
0.1 −0.1 0

]
, and

solve Theorem 3.4 to obtain the controller gains as below:

K1 =
[
−0.8698 −1.0478 −0.0069

]
,

K2 =
[
−0.6913 −0.8082 −0.0120

]
,

K3 =
[
−0.8779 −1.0490 −0.0082

]
,

K4 =
[
−0.6969 −0.8089 −0.0129

]
,

K5 =
[
−0.9220 −1.0538 −0.0153

]
,

K6 =
[
−0.7318 −0.8157 −0.0187

]
,

K7 =
[
−0.9298 −1.0581 −0.0168

]
,

K8 =
[
−0.7382 −0.8164 −0.0197

]
.

iv) Given the finite time T = 1s, and the initial state x(0) =[
1 −1 1

]T . We construct the sliding mode controller as
follows:

u(t) = ub(t) + uc(t),

with

ub(t) =

r∑
l=1

µlKlx(t), uc(t) = −93.3333ρ (t) sgn (s(t)) ,

where ρ(t) = ϱ+ ∥ω(t)∥ , ϱ ≥ 0.4, ω(t) = 0.5 sin t.
v) Use Theorems 3.2 to minimize φ̄, we can obtain φ̄ =

42.2729. When considering Theorems 3.2, we can also obtain
ψ̄ = 47.0847. Calculate the bounding for the MPPT error
εpv . It yields εpv < 206.3961 in the finite-time interval
[0, T ∗] and εpv < 229.8891 in the finite-time interval [T ∗, T ] ,
respectively.

Note that the open-loop system is unstable. With the above
solution, the responses of the sliding surface function are
shown in Fig.3. It has been shown that the state trajectories
can be driven into the sliding surface in the finite-time T = 1s.
Accordingly, Figs 4 and 5 show that the proposed FSMC can
force the tracking error around the zero.
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Fig. 3. Responses for sliding surface function

V. CONCLUSIONS

This paper proposes a novel MPPT control strategy for
the nonlinear PV systems. The MPPT control problem of
PV systems is reformulated into the framework of fuzzy
descriptor systems. An FSMC law is constructed to drive
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Fig. 4. Responses for ϕpv and εpv
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Fig. 5. Responses for vdc and εpv

the state trajectories onto the specified sliding surface within
the finite-time T ∗ with T ∗ < T . And then, the sufficient
conditions are derived to ensure the reachable set boundings of
the closed-loop PV systems in the finite-time intervals [0, T ∗]
and [T ∗, T ], respectively. Through a numerical simulation, it
has been shown that fast and accurate MPPT performance can
be achieved.
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