
 

 
Abstract— This research produces a mixed Gaussian membership 

function (GMF) fuzzy cerebellar model articulation controller 

(CMAC) for a three-link robot. A mixed GMF is created using the 

current and the previous GMFs on each layer of CMAC to detect 

errors efficiently, so a mixed GMF fuzzy CMAC (MGMFFC) is 

able to train parameters efficiently and constructs the MGMFFC 

structure automatically. A Lyapunov cost function and the 

gradient descent techniques are utilized to get the adaptive with 

guaranteed system’s stable. Simulation studies for a three-link 

robot show that the MGMFFC attains favorable tracking 

performance. 

Index Terms— Gaussian membership function, fuzzy inference 

system, CMAC, three-link robot. 

I. INTRODUCTION 

Nowadays, intelligent controllers have been studied for 

many fields, such as medical diagnosis system, machine 

learning system, noise filtering system and control system, etc. 

[1-4]. The intelligent control structures using fuzzy inference 

systems, various neural networks, traditional or modified 

CMACs have been used for uncertain nonlinear systems for 

improving the learning ability [5-8].  

The control for a practical system is usually affected by 

uncertainty, nonlinearity and computational load problems. 

Therefore, some new techniques have been designed to detect 

error efficiently over the years. Recently, a parameterized type-

2 fuzzy membership function was designed for practical 

applications [9]. Memari et al. proposed an intuitionistic fuzzy 

 
 

technique for choosing the correct sustainable supplier that 

involves many sub-criteria for a manufacturer [10]. A type-2 

wavelet membership function was embedded in a CMAC for 

uncertain nonlinear systems [11]. Mohammadzadeh et al. 

introduced a type-3 fuzzy inference set for modeling the 

uncertain systems [12].  

This research presents a mixed Gaussian membership 

function fuzzy CMAC (MGMFFC) for a three-link robot. The 

proposed controller uses a mixed GMF integrated into a fuzzy 

CMAC to detect the error values efficiently. A Lyapunov 

function and the gradient descent algorithm are employed to 

provide the online learning laws and to prove the system’s 

stability. Simulation results using the proposed MGMFFC for a 

three-link robot will be given to illustrate the effectiveness of 

the proposed control algorithm. 

II. PROBLEM FORMULATION  

An n-th-order MIMO nonlinear system is given as: 
( ) ( ) ( ( )) ( ( )) ( ) ( ( ))

( ) ( )

n

C

out

t t t t t

t t





q = G + H u + l

y = q

          (1)  

where ( ) mt q  is a state vector, 

1 2( ) [ ( ) ( ) ( )]T m

out out out outmt y t y t y t ≜ ⋯y is a vector for the 

system outputs, and 

1 2( ) [ ( ),  ( ),  ,  ( )]T m

C C C Cmt u t u t u t ⋯u  is the vector for 

the control inputs. Define ( ) ( ) ( ) ( )
TT T (n-1)

t t t t 
 

ɺ …= q q q  

n m  as the vector for system states that is measurable. 

( ( )) mt G   and 
1 2( ( )) ( , , , ) m m

mt diag h h h  ⋯H   are 

bounded nonlinear functions, 1( ( ))tH   is invertible and 

( ( )) mt l   is the bounded unknown disturbance. 

The desired trajectory signal 

1 2( ) [ ( )  ( ) ( )]T m

REF REF REF REFmt y t y t y t  ≜ ⋯y . 

The tracking error is then defined as: 

( ) ( ) ( )REF outt t t≜e y y  (2) 

Define the vector of tracking error as: 

( 1)( ) ( ) ( )  ( )
T

T T n T n m

S t t t t    ɺ≜ ⋯e e e e  (3) 

An sliding function is defined as: 

1 2

1
0

( ( ),  ) ( ) ( ) ( )
t

n n

S Lt t t t d     ≜ ⋯s e e e e      (4) 
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where ,  for 1, 2,...,m m

j j L   are the matrices with 

positive constant and 
1 2[ , , ]
T T T T Lm m

L

≜ ⋯             .  

If ( ( ))tG  , ( ( ))tH  and ( ( ))tl   are known exactly, then 

an ideal controller can be given as: 
* 1 ( )

ID( ) ( ( )) [ ( ) ( ( )) ( ( )) ( )]n T

ref St t t t t t   u H y G l e          . (5) 

Substituting (5) into (1), gives: 
( )( ( ),  ) ( ) ( ) 0n T

S St t t t  ɺs e e e . (6) 

However, *

ID ( )tu  in (5) is unattainable due to ( ( ))tl   is 

always unknown in practical applications. Therefore, a 

MGMFFC is proposed to imitate the ideal controller. The 

proposed MGMFFC is shown in Fig. 1, which consists of a 

MGMFFC, 
MGMFFCu , and a robust controller, 

RBu , as follows: 

( ) ( ) ( )MGMFF BCC Rt t t u u u  (7) 

where ( )MGMFFC tu  is the main controller and the robust 

controller, ( )RB tu , compensates the approximation error for 

*

ID ( )tu  and ( )MGMFFC tu  to give robust control performance. 

 

 
Fig. 1. Block diagram for the MGMFFC 

III. DESIGN OF MGMFFC 

A. Mixed Gaussian Membership Function Fuzzy CMAC 

 
Fig. 2. A mixed Gaussian membership function 

 

This research uses a mixed GMF as shown in Fig. 3 [13]. 

There are two GMFs on a layer (i.e. previous and current 

GMFs), and they are activated simultaneously. It implies that 

the GMF of the previous state will remain active while the next 

state is activated. 

 
Fig. 3. Architecture of the proposed MGMFFC 

 

This MGMFFC contains five structures: 
 

1) Input: 
1 2[ ]T

nI I II ⋯ .  

 

2) Association memory: Two GMFs, 
current

ik  and 
previous

ik , 

are handled as a mixed GMF. The value of  
previous

ik  and 

current

ik are defined as: 
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where 
previous

ikm and 
current

ikm  are the previous and current 

means and 
previous

ikv  and 
current

ikv  are the previous and current 

variances for k th layer and i th input. 1,2, ,i n …  and 

1, 2, ,
k

k n … . 

The previous GMF, 
previous

ik ,  is saved in memory to 

forecast the subsequent state. 

 

3) Receptive-field: A 2D example for calculating the synthesis 

hypercubes is presented in Fig. 4. The synthesis hypercube is the 

sum of two values of the current state (6, 5) and the previous 

state (4, 7). The synthesis hypercube is 
synthesis

kb , which is 

defined as: 

1

n
synthesis previous current

k k k k ik

i

b b  


  ≜  (10) 

where  and k k   are  respectively adaptive gains and 
previous

kb

is the previous hypercube value. 



 

 
Fig. 4. A 2D example for calculating the synthesis hypercubes 

 

4) Weight memory: The weight is define as: 

1    
k

T

j j kj n jw w w   ⋯ ⋯w  (11) 

where 
kjw  is the output weight. 

1    j mw w w   ⋯ ⋯W  (12) 

 

5) Output: The j-th output of MGMFFC is calculated as 

1 1 1

,
k kn n n

synthesis previous current

j kj k kj k k k ik

k k i

u w b w b  
  

 
    

 
    (13) 

The MGMFFC output is rewritten via a vector form: 

11 12 1 1

21 22 2 2

1 2

k

k

kk

synthesis
n

synthesis
n
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nm m mn

w w w b

w w w b

bw w w

   
   
        
   
     

⋯

⋯

⋮⋮ ⋮ ⋱ ⋮

⋯

u Wb
 (14) 

B. Adaptive Learning Laws for MGMFFC 

Taking the derivative of ( ( ),  )S t ts e  and using (1), yields 

( )( ( ),  ) ( ) ( )n T

S St t t t ɺs e e e  

( )( ( )) ( ( )) ( ) ( ) ( ( )) ( )n T

ref S
t t t t t t     G H u y l e           (15) 

Insert (7) into (15) and multiply both sides by ( ( ),  )T

S t ts e , 

gives: 
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T

S RBMGMFFC

t t t t t t t
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( )( ( ), ) ( ) ( ( )) ( )T n T

S ref St t t t t   s e y l e  (16) 

where 
1 ( )( ) ( ( )) [ ( ) ( ( )) ( ( )) ( )]n T

reMGMFF fC S
t t t t t t   u H y G l e           (17) 

Define a Lyapunov cost function as: 

      1
( ), ( ), ( ),

2

T

S S SV t t t t t ts e s e s e  (18) 

      ( ), ( ), ( ),T

S S S
V t t t t t t ɺ ɺs e s e s e . The aim is to 

minimize ( ( ),  ) ( ( ),  )T

S St t t tɺs e s e  for reaching fast convergence 

of s . The gradient descent technique is then used so the 

parameters are updated through the online adaptive laws as 

follows: 
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where 
ju  is the jth element of ,u  and m ,  , w ,   and 

   are respectively learning rates for means, variances, 

weights, and adaptive gains for the current and previous states.  

C. Robust controller design 

This study uses a sgn(.)  function robust compensation 

controller to cover the approximation error: 

 1 ˆ  ( ( )) sgn( ( ),  )RB St t t u H s e  (24) 

The error bound is updated online by: 

ˆ  ɺ s  (25) 

where   are positive learning rates. 

 

Proof: 

Define a Lyapunov function as 
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ɶ
ɶ

s s
s e , (26) 

Differentiating (26) with respect to time then using (15) and 

(24), gives: 
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 ˆ sgn( )T







  

ɺɶ ɶ
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 ˆT







  

ɺɶ ɶ
s ε s . (27) 



 

The approximation error ε  is the minimum reconstructed error 

between *

ID ( )tu  and ( )MGMFFC tu , and it is assumed to be 

bounded by 0  ε . 

If the adaptive law of the error bound is selected as 

ˆ      ɺɺɶ s , (28) 

then (27) becomes: 

   ˆ ˆ( ( ),  , ) T

SV t t       ɺ ɶs e s ε s s  

   T     s ε s ε s s  

  0   ε s . (29) 

Since  ( ( ),  , )SV t t ɺ ɶs e  is negative semi-definite that is 

 ( ( ),  , )SV t t ɺ ɶs e  ( (0), (0))V  ɺ ɶs , it implies that s and 

ɶ  are bounded. Let function     ε s

   ( ( ),  , )SV t t     ɺ ɶε s s e , and integrate   with 

respect to time, yields 

 
0

( ) ( (0), (0)) ( , )
t

d V V      s sɺ ɺɶ ɶ . (30) 

Because ( (0), (0))V sɺ ɶ  is bounded, and ( , )V sɺ ɶ  is non-

increasing and bounded, the following result is obtained: 

 
0

lim ( )
t

t
d  


  . (31) 

ɺ  is bounded, so lim ( ) 0t t  . Then, 0s  when 

t  . Finally, the MGMFFC is asymptotically stable. 

Therefore, the proof is complete. 

 

IV. SIMULATION RESULTS 

 
Fig. 5. A three-link robot 

 

The dynamic equation is taken in [14] as: 

( ) ( , ) ( )
d
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where 
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TABLE 1 

THE PARAMETERS OF THREE-LINK ROBOT 

id  2

1 1 2 3 1 10.5[(0.25 ) ]d m m m a i   

4 2 3 1 2[0.5 ]d m m a a   

2

2 2 3 2 20.5[(0.25 ) ]d m m a i  

5 3 1 30.5d m a a  

2

3 3 3 30.5[(0.25 ) ]d m a i 

6 3 2 30.5d m a a  

ia   
1 0.5 a m  

2 0.4 a m  3 0.3 a m  

im   
1 1.2 m kg  

2 1.5 m kg  
3 3.0 m kg  

ii   3 2

1 43.33 10  i kgm   
3 2

2 25.08 10  i kgm   3 2

3 32.67 10  i kgm   

 

All system parameters for the three-link robot are listed in Table 

1. 

 

 

Definitions of variables in (32) are described in Table 2 as 



 

follows: 
 

TABLE 2 

DEFINITIONS OF VARIABLES FOR THREE-LINK ROBOT 
3

1 2 3
[ ( ), ( ), ( )]Tq t q t q t q  The vector of angular positions 

3,  ɺ ɺɺq q  
The vector of joint velocities and 

accelerations 
3 3( ) q  The inertia matrix 

3 τ  The input torques 

3
 d τ  The external disturbances 

3 3( , ) ɺq q  The Coriolis/Centripetal matrix 

3 ( )g q  
The vector of gravity, in which 

29.8 /g m s  

im  The ith link mass 

 ia  The ith link length 

( )ij i j
c cos q q   and 

( )ij i j
s sin q q   

The short hand notations, in which 

ii  is the moment of inertia ( 2 kg m ) 

and 
id  is defined in the first row of 

Table 1 

 

Equation (32) is rewritten as: 

 

( ) ( ( )) ( ( )) ( ) ( ( ))t t t t t  ɺɺ G H u D             , (33) 

where 
1 2 3 1 2 3( ) Δ  [ ( ),  ( ),  ( )] [ ( ),   ( ),   ( )]T Tt q t q t q t x t x t x t ,  

 1( ( )) ( ) ( , ) ( ) ,t   ɺ ɺG q q q q g q      1( ( )) ( )t H q  , 

1
( ( )) ( ) dt

 D q τ   and 3

1 2 3( )Δ[ ( ), ( ), ( )]Tt t t t    u . 

When 11.2t   seconds, the reference commands are given as: 

1 2 3( ) ( ) ( )  ,di di di ix t x t x t        ɺɺ ɺ in which 1,  2 and 3i  , 

1 2 321.13,  111.63,  111.63       . The initial conditions 

are 
3 2 1 (0) 0.2, (0) 0.1, (0) 0.3,x x x   3 2 1 (0) 0,  (0) 0, (0) 0,x x x  ɺ ɺ ɺ

3 2 1 (0) 0, (0) 0, (0) 0,  d d dx x x   3 2 1
(0) 0, (0) 0,  (0) 0.

d d d
x x x  ɺ ɺ ɺ

When 11.2t   seconds, the sinusoid function commands are 

activated as: 
1 ( ) 0.6sin(2.2 ),dx t t  

2 ( ) 0.2sin(2.2t),dx t 

3 ( ) 0.4sin(2.2t)dx t  . The sliding function is 

( )  ( ) 5.1 ( )t t t s e eɺ . The input ranges are normalized within 

{[ 1.8, 1.8] [ 1.8, 1.8][ 1.8, 1.8]}.    The initial means of GMFs 

for the previous state and the current state set as

[ 2.1, 1.6, 0.9, 0.5, 0.3, 0.3, 0.5, 0.9, 1.6, 2.1]     , the initial 

variances are 1.1ikv  , for  1, 2, , 10k  ⋯  and 1, 2 and 3i  . 

The learning rates for MGMFFC are 1, 1,I P  

0.05,w m      0.01,
eI m D            0.1, 

0.1,
eD  1,  and 0.1    . The initial value of 

0 0and        are set randomly between -1 and 1. In order to show 

the effectiveness of the MGMFFC, the TFLFCM (TOPSIS 

Function-link CMAC) [15] is also used for the three-link robot 

to compare their performance. The angular trajectories and the 

joint velocities are respectively plotted in Figs. 6 and 8 (a)-(c). 

Enlarge of angular trajectories and joint velocities are shown in 

Figs. 7 (a)-(c) and Figs. 9 (a)-(c), respectively. The control 

efforts and their enlargements are displayed in Figs. 10 and 11 

(a)-(c). The tracking errors and the enlargement are plotted in 

Figs. 12 and 13 (a)-(c). Finally, two adaptive gains and    of 

the MGMFFC are displayed in Fig. 14. The simulation results 

indicate that the proposed MGMFFC achieves excellent control 

performance under external disturbance. The tracking errors for 

three links converge quickly to zero (see Figs. 12 and 13 (a)-

(c)). The tracking angular positions of three links follow the 

reference angular positions well (see Figs. 6 and 7 (a)-(c)). The 

response of the proposed MGMFFC is fast (see Fig. 10 and 11 

(a)-(c)). The proposed MGMFFC achieves a favorable tracking 

response when two adaptive prediction gains and    are 

adjusted online as shown in Fig. 14. The total RMSE (root mean 

square error) for the TFLFCM and the proposed MGMFFC are 

measured in Table 3. In summary, Table 3 and the simulation 

results confirm that the proposed MGMFFC achieves better 

tracking performance with quicker convergence and smaller 

tracking error than for TFLFCM. 

 
Fig. 6. The angular trajectories for the three-link robot 

 

 

Fig. 7. Enlarge of angular trajectories for the three-link robot 

 

 
Fig. 8. The joint velocities for the three-link robot 

 



 

 

Fig. 9. Enlarge of joint velocities for the three-link robot 

 
Fig. 10. The control efforts for the three-link robot 

 

 
Fig. 11. Enlarge of control efforts for the three-link robot 

 

 

Fig. 12. The tracking errors for the three-link robot 

 

 
Fig. 13. Enlarge of tracking errors for the three-link robot 

 
Fig. 14. Two adaptive gains and    of the MGMFFC 

 

TABLE 3 
TOTAL RMSE FOR THREE-LINK ROBOT 

 RMSE1 RMSE2 RMSE3 

TFLFCM 0.11 0.06 0.04 

MGMFFC 0.09 0.04 0.01 

V. CONCLUSION 

This research shows a mixed Gaussian membership 

function-based fuzzy CMAC for a three-link robot. The 

proposed MGMFFC is the main controller and its robust ability 

for handling system uncertainty has been demonstrated. A 

sgn(.)  robust compensation controller is also applied to cover 

approximation errors. The online learning laws for all system 

parameters are derived from the gradient descent algorithm. 

Future studied can apply the proposed method for a practical 

model. 
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