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Abstract—In this paper, the problem of measuring the degree
of inclusion and similarity measure for interval-valued fuzzy sets
is considered. We recall inclusion and similarity measures with
uncertainty by using the partial or linear order on interval-
valued fuzzy sets. Moreover, we discuss an influence of inclusion
and similarity measures with uncertainty to decision-making
algorithm that uses those new measures.

I. INTRODUCTION

Many new approaches and theories for investigating and
modeling imprecision and uncertainty have been proposed
since fuzzy sets were introduced by Zadeh [1]. Interval-valued
fuzzy sets (Zadeh, Sambuc 1975) like intuitionistic fuzzy sets
(Atanassov 1986) appeared very useful because of their flexi-
bility (for more details see [2]). Moreover, various applications
of interval-valued fuzzy sets for solving real-life problems
involving pattern recognition, medical diagnosis and decision-
making or image thresholding were successfully proposed.
The above mentioned results have been enabled due to the
substantial progress in the theory of interval-valued fuzzy sets.
For example, many researchers proposed various distances,
measures of inclusion, measures of equivalence or similarity
measures for interval-valued fuzzy sets and examined different
types of relations between them ([3]-[9]).

The main motivation of the present paper is to use the degree
of inclusion and similarity between interval-valued fuzzy sets
to classification problem, especially to the k-nearest neighbors
(k-NN) algorithm. A fundamental novelty of the suggested
approach is to make use of the ordering between intervals and
the width of those intervals representing both uncertainty of
information and imprecision of the membership functions. In
addition, the use of different types of aggregation functions
was also helpful here.

The paper is organized as follows. In Section 2 basic infor-
mation on interval-valued fuzzy sets are recalled. Inclusion and
similarity degree measures for interval-valued fuzzy sets are
presented in Section 3. Finally, the algorithm of application
new similarity measures in k-NN classifiers is considered
(Section 4).

II. INTERVAL-VALUED FUZZY SETTING

Let LI = {[a, a] : a, a ∈ [0, 1], a 6 a} denote a family of
all compact subintervals of the unit interval. Let X 6= ∅ denote
a universe of discourse. According to the following papers by

Zadeh [10], Sambuc [11], Turksen [12] and Gorzalczany [13]
we define an interval-valued fuzzy set A in X as a mapping
A : X → LI such that for each x ∈ X

A(x) = [A(x), A(x)]

attributes the degree of membership of an element x into A.
Furthermore, the family of all interval-valued fuzzy sets in
X will be denoted by IVFS(X). We will assume hereinafter
that the considered universe of discourse is finite, i.e. X =
{x1, . . . , xn}. Indeed, for fuzzy set the membership of each
element x is always a precisely given real number. On the
other hand, in the case of the interval-valued fuzzy set the
membership of an element x is not precisely done. Here we
can only indicate an upper and lower bound of its possible
membership. And this is why the interval-valued fuzzy sets
appear so useful for approximate reasoning. Obviously, each
fuzzy set A could be treated as the interval-valued fuzzy set
such that A(x) = A(x) ∀x ∈ X . Thus, PX ⊂ FS(X) ⊂
IVFS(X), where FS(X) stands for a family of all fuzzy sets
in X while PX is the class of all crisp subsets of X .

We define basic operations (intersection, union and comple-
ment) as follows for x ∈ X:

A ∩B =
{
〈x,

[
min{A(x), B(x)},min{A(x), B(x)}

]
〉
}
, (1)

A ∪B =
{
〈x,

[
max{A(x), B(x)},max{A(x), B(x)}

]
〉
}
, (2)

Ac =
{
〈x,

[
1−A(x), 1−A(x)

]
〉
}
. (3)

Obviously, instead of min, max and the standard negation
one may use any t-norm, s-conorm and other fuzzy negation in
(1)–(3). One can prove that (IVFS(X),∩,∪) is a distributive
lattice which satisfies the Morgan’s laws.

Before introducing inclusion and similarity indicators we
have to consider orderings and aggregation operators in LI .

A. Orders in the interval setting

Consider two interval-valued fuzzy sets A and B in the
same universe of discourse X . Since in this section we restrict
our attention to possible relations between A(x) and B(x) for
any fixed x ∈ X let us adopt the following simplified notation
A(x) = [A(x), A(x)] = [a, a] and B(x) = [B(x), B(x)] =
[b, b].

The best known partial order in LI is defined as follows

[a, a] 62 [b, b]⇔ a 6 b and a 6 b, (4)
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where [a, a] <2 [b, b] if and only if [a, a] 62 [b, b] and (a < b
or a < b).

The operations joint and meet are defined in LI as follows

[a, a] ∨ [b, b] = [max(a, b),max(a, b)],

[a, a] ∧ [b, b] = [min(a, b),min(a, b)].

The structure (LI ,∨,∧) is a complete lattice, with the partial
order 62. Obviously, 1LI = [1, 1] and 0LI = [0, 0] are the
greatest and the smallest element of (LI ,62), respectively.

Since in many real-life problems we need a linear order
to be able to compare any two intervals, we are interested in
extending the partial order 62 to a linear one. The concept of,
so called, admissible order would be of useful there.

Definition 1 ([14], Def. 3.1). An order ≤Adm in LI is called
admissible if ≤Adm is linear in LI and for all a, b ∈ LI

a ≤Adm b whenever a 62 b.

Admissible orders were further studied, e.g. in [15] or
[16]. A construction of admissible linear orders based on
aggregation functions was given in [14].

Proposition 1 ([14], Prop. 3.2). Let Ψ,Υ : [0, 1]2 → [0, 1]
be two continuous aggregation functions, such that, for all
a = [a, a], b = [b, b] ∈ LI , the equalities Ψ(a, a) = Ψ(b, b)
and Υ(a, a) = Υ(b, b) hold if and only if a = b. If the order
6Ψ,Υ on LI is defined by

a 6Ψ,Υ b⇔ Ψ(a, a) < Ψ(b, b)

or (Ψ(a, a) = Ψ(b, b) and Υ(a, a) 6 Υ(b, b)), (5)

then 6Ψ,Υ is an admissible order in LI .

Further on the notation <Ψ,Υ would indicate that in the
strict inequality holds in (5).

Here are some natural examples of admissible orders in LI

(see, e.g., [14]):
• the Xu-Yager order [17]

[a, a] 6XY [b, b]⇔ a+ a < b+ b

or (a+ a = b+ b and a− a 6 b− b)

• lexicographical orders

[a, a] 6Lex1 [b, b]⇔ a < b or (a = b and a 6 b) (6)

[a, a] 6Lex2 [b, b]⇔ a < b or (a = b and a 6 b) (7)

• the αβ order

a 6αβ b⇔Kα(a, a) < Kα(b, b) (8)

or (Kα(a, a) = Kα(b, b) and Kβ(a, a) 6 Kβ(b, b)),

where Kα : [0, 1]2 → [0, 1] is defined as Kα(x, y) =
αx+(1−α)y for some α, β ∈ [0, 1], α 6= β and x,∈ LI .

It is worth noting that the orders 6XY , 6Lex1 and 6Lex2

are special cases of 6αβ with 60.5β (for β > 0.5), 61,0, 60,1,
respectively.

Moreover, 6XY , 6Lex1, 6Lex2 and 6αβ are 6Ψ,Υ orders
defined by pairs of weighted means (cf. Proposition 1). In the

case of 6Lex1 and 6Lex2 these means are reduced to the pairs
of projections: P1, P2 and P2, P1, respectively.

Remark 1. Moreover, the notation <Adm will denote that in
(5) the strict inequality holds.

B. Interval-valued aggregation functions

Now we recall the concept of an aggregation function on
LI which is an important notion in many applications. We
consider aggregation functions both with respect to 62 and
6Adm.

Remark 2. In the later part of the paper we will use the
notation ≤ both for the partial or admissible linear order,
with 0LI and 1LI as minimal and maximal element of LI ,
respectively. Regarding the results for the partial order, the
previously introduced notation ≤2 will be used while the
results for the admissible linear orders will be used with the
notation ≤Adm (sometimes with the appropriate example of
such admissible linear order).

Definition 2 ([16], [18], [19]). Let n ∈ N, n > 2. An
operation A : (LI)n → LI is called an interval-valued
aggregation function if it is increasing with respect to the order
≤ (partial or linear (see Remark 2)), i.e.

∀xi, yi ∈ LI xi ≤ yi ⇒ A(x1, ..., xn) ≤ A(y1, ..., yn) (9)

and A(0LI , ..., 0LI︸ ︷︷ ︸
n×

) = 0LI , A(1LI , ..., 1LI︸ ︷︷ ︸
n×

) = 1LI .

The special case of interval-valued aggregation operation
is a representable interval-valued aggregation function with
respect to ≤2.

Definition 3 ([20], [21]). An interval-valued aggregation
function A : (LI)n → LI is called representable if there exist
aggregation functions A1, A2 : [0, 1]n → [0, 1] such that

A(x1, ..., xn) = [A1(x1, ...xn), A2(x1, ...xn)]

for all x1, ..., xn ∈ LI .

The next result shows the characterization of representable
aggregation functions on LI .

Theorem 1 ([22]). An operation A : (LI)
n → LI is a

representable interval-valued aggregation function with re-
spect to ≤2 if and only if there exist aggregation functions
A1, A2 : [0, 1]n → [0, 1] such that for all x1, ..., xn ∈ LI and
A1 6 A2

A(x1, ..., xn) = [A1(x1, ...xn), A2(x1, ...xn)]. (10)

Example 1. Lattice operations ∧ and ∨ on LI are repre-
sentable aggregation functions on LI with A1 = A2 = min
in the first case and A1 = A2 = max in the second one. It
holds true with respect to the order ≤2, but not ≤Lex1, ≤Lex2

or ≤XY . Moreover, many other examples of representable
aggregation functions with respect to ≤2 may be considered,
such as:



• the representable arithmetic mean
Amean([x, x], [y, y]) = [

x+y

2 , x+y
2 ],

• the representable geometric mean
Agmean([x, x], [y, y]) = [

√
xy,
√
xy],

• the representable mean-power mean

Ameanpow([x, x], [y, y]) = [
x+y

2 ,
√

x2+y2

2 ],
• the representable product
Aprod([x, x], [y, y]) = [xy, xy],

• the representable prod-mean
Aprodmean([x, x], [y, y]) = [xy, x+y

2 ],
• the representable mean-max
Ameanmax([x, x], [y, y]) = [

x+y

2 ,maxx, y]

for [x, x], [y, y] ∈ LI .

Representability is not the only possible way to build
interval-valued aggregation functions with respect to ≤2 or
≤Adm. Note that Amean is the aggregation with respect to
6Lex1, 6Lex2 and 6XY , not only to 62 . Moreover,

Example 2. Let A : [0, 1]2 → [0, 1] be an aggregation
function.
• The function A2 : (LI)2 → LI ([23]), where

A2(x, y) =

{
[1, 1], if (x, y) = ([1, 1], [1, 1])
[0, A(x, y)], otherwise

is the interval-valued aggregation function (non-representable)
with respect to ≤Lex1.
• The function A3 : (LI)2 → LI ([23]), where

A3(x, y) =

{
[0, 0], if (x, y) = ([0, 0], [0, 0])
[A(x, y), 1], otherwise

is the interval-valued aggregation function (non-representable)
with respect to ≤Lex2.

III. INCLUSION AND SIMILARITY DEGREE MEASURES FOR
INTERVAL-VALUED FUZZY SETS

The inclusion measures, also known as subsethood mea-
sures, have been studied mainly by constructive approaches
and axiomatic approaches. The inclusion measure has also
been introduced successfully into fuzzy sets theory and their
extensions. For fuzzy sets A and B a measure of fuzzy set
inclusion of A in B is defined as a subset of A in B. Many
researchers tried to relax the rigidity of Zadeh definition of
inclusion to get a soft approach which is more compatible with
the spirit of fuzzy logic. Zhang and Leung (1996) thought that
quantitative methods were the main approaches in uncertainty
inference which is a key problem for artificial intelligence.
Thus, they presented a generalized definition for the inclusion
measure, called including degree, to represent and measure
the uncertainty information. Instead of binary discrimination,
being or not being a subset [16], [24], [25], [26], several
indicators giving the degree to which an interval-valued fuzzy
set is a subset of another interval-valued fuzzy set were
proposed. For each A,B ∈ IV FS(X), we will represent the
inclusion grade indicator of set A in set B by the measure of
inclusion between their elements, i.e. intervals. This fact has

led us to establish the next considerations of inclusion measure
in interval setting.

A. Precedence indicator

Before giving a new perspective on measuring inclusion
or similarity in the interval-valued fuzzy set environment, we
have to introduce another tool useful for handling of intervals.
We propose the following notion of an inclusion measure
using linear or partial order and uncertainty measure/width
of intervals, i.e. w(a) = a− a denote the width of a ∈ LI .

We consider the notion of a precedence indicator where
strong inequality between inputs results in the same values of
the inclusion measure for these inputs.

Moreover, we recall that < and ≤ satisfy Remark 1 and 2.

Definition 4 ([27]). A function Prec : (LI)2 → LI is said
to be a precedence indicator if it satisfies the following
conditions for any a, b, c ∈ LI :

P1 if a = 1LI and b = 0LI then Prec(a, b) = 0LI ;
P2 if a < b, then Prec(a, b) = 1LI for any a, b ∈ LI ;
P3 Prec(a, a) = [1− w(a), 1] for any a ∈ LI ;
P4 if a ≤ b ≤ c and w(a) = w(b) = w(c), then

Prec(c, a) ≤ Prec(b, a) and Prec(c, a) ≤ Prec(c, b),
for any a, b, c ∈ LI .

Remark 3. If a = b and w(a) = 0, then Prec(a, b) = 1LI .

Here are examples of the constructions of precedence indi-
cator fulfilling Definition 4.

Proposition 2 ([27]). For a, b ∈ LI the operation PrecA :
(LI)2 → LI is the precedence indicator

PrecA(a, b) =

 [1− w(a), 1], a = b,
1LI , a < b,
A(NIV (a), b), otherwise

for a, b ∈ LI and interval-valued fuzzy negation NIV
(antitonic operation that satisfies NIV (0LI ) = 1LI and
NIV (1LI ) = 0LI , cf. [28], [29]), such that
NIV (a) = [n(a), n(a)] ≤ [1 − a, 1 − a], where n is a fuzzy
negation and A is a representable interval-valued aggregation
such that A ≤ ∨.

Similarly to the method of constructing the precedence
indicator presented in [30] we get

Proposition 3. The operation

Precw(a, b) =

{
1LI , a < b,
[1−max(w(a), r(a, b)), 1− r(a, b)], else

is the precedence indicator with respect to ≤, where r(a, b) =
max{|a− b|, |a− b|} for a, b ∈ LI .

B. Similarity measure

In this part we study a class of similarity measures between
interval-valued fuzzy sets. The inspiration of this approach is
firstly the fact that we develop all the notions with respect
to total orders of intervals, and secondly, that we take into
account the width of the intervals in such a way that the



uncertainty of the output is strongly related to the uncertainty
of the input. To construct the new interval-valued similarity,
interval-valued aggregation functions and interval-valued in-
clusion measure which take into account the width of the
intervals are needed.

Let X 6= ∅ and card(X) = n. For A,B ∈ IV FS(X) and
card(X) = n, n ∈ N we will use the following notion of
partial order

A � B ⇔ ai ≤ bi
for i = 1, ..., n, where ≤ is the same kind of orders (partial
or linear, see Remark 1 and 2) for each i and ai = A(xi),
bi = B(xi). Let us note that if for i = 1, ..., n we consider
the same linear order ai ≤ bi, then the order A � B between
interval-valued fuzzy sets A,B is the partial one but it need
not be the linear one.
We consider the following notion of strict order between
interval-valued fuzzy sets A ≺ B ⇔ ai < bi for i = 1, ..., n
and we denote: w(A) = (w(a1), ..., w(an)).

Definition 5 ([31]). Let A1 : [0, 1]n → [0, 1] be an aggregation
function. Then operation S : IV FS(X)× IV FS(X)→ LI ,
which satisfies the following items:
(SIMV1) S(A,B) = S(B,A) for A,B ∈ IV FS(X);
(SIMV2) S(A,A) = [1−A1(wA(x1), ..., wA(xn)), 1];
(SIMV3) S(A,B) = 0LI , if {A(xi), B(xi)} = {0LI , 1LI};
(SIMV4) if A � B � C and wA(xi) = wB(xi) = wC(xi),
then S(A,C) ≤ S(A,B) and S(A,C) ≤ S(B,C)
is called a similarity measure for i = 1, ..., n..

Proposition 4. Let Prec be an inclusion measure. If A =
[A1, A2], B = [B1, B2] are representable interval-valued
aggregation functions for which A1 is as in Definition 5 and
self-dual, B is symmetric with the neutral element 1LI and
B1 is idempotent aggregation function, then the operation
S : IV FS(X)× IV FS(X)→ LI :

S(A,B) = An
i=1(B(Prec(A(xi), B(xi)),Prec(B(xi), A(xi))))

is a similarity measure, where wA(xi) = wB(xi).

Proof. Let A,B,C ∈ IV FS(X). Symmetry of S holds by
symmetry of B, so (SIMV1) of Definition 5 is fulfilled. For
A = B and by self duality of A1 and idempotency of B1, we
have
S(A,A) =Ani=1(B(Prec(A(xi), A(xi)),Prec(A(xi), A(xi))))
= Ani=1(B([1− wA(xi), 1], [1− wA(xi), 1]))
= Ani=1([B1(1− wA(xi), 1− wA(xi)), B2(1, 1)])
= Ani=1([1− wA(xi), 1]) = [1−A1(wA(x1), ..., wA(xn)), 1],
which proves (SIMV2) of Definition 5.
If (A = 1LI and B = 0LI ) or (A = 0LI and B = 1LI ), then
by Definition 4 we have
Prec(A(xi), B(xi)) = 0LI or Prec(B(xi), A(xi)) = 0LI .
Thus

Ani=1(B(Prec(A(xi), B(xi)),Prec(B(xi), A(xi)))) = 0LI ,

because B has the neutral element 1LI , so as consequence
the zero element 0LI .
In the proof of (SIMV4) from Definition 5 we consider the
following cases by properties of Inc:

4.1. If A ≺ B ≺ C, then
S(A,C) =Ani=1(B(Prec(A(xi), C(xi)),Prec(C(xi), A(xi))))
=Ani=1(B(1LI ,Prec(C(xi), A(xi))))
= Ani=1(B(Prec(A(xi), B(xi)),Prec(C(xi), A(xi))))
≤ Ani=1(B(Prec(A(xi), B(xi)),Prec(B(xi), A(xi))))
= S(A,B) and S(A,C) = S(C,A) =
= Ani=1(B(Prec(C(xi), A(xi)),Prec(A(xi), C(xi))))
= Ani=1(B(Prec(C(xi), A(xi)), 1LI ))
= Ani=1(B(Prec(C(xi), A(xi)),Prec(B(xi), C(xi))))
≤ Ani=1(B(Prec(C(xi), B(xi)),Prec(B(xi), C(xi))))
= S(B,C);
4.2. If A = B ≺ C, then due to the existence of the neutral
element 1LI for B and self-duality of A1 we have
S(A,C) =Ani=1(B(Prec(A(xi), C(xi)),Prec(C(xi), A(xi))))
= Ani=1(B(1LI ,Prec(C(xi), A(xi))))
≤ Ani=1(B(1LI ,Prec(A(xi), A(xi))))
= Ani=1(Prec(A(xi), A(xi))) =
[1−A1(wA(x1), ..., wA(xn)), 1]= S(A,B) and
S(B,C) = S(A,C);
Similarly we may prove the case, where A ≺ B = C and for
A = B = C condition (SIMV4) of Definition 5 is obvious,
which ends the proof.

Directly from the above proposition we obtain

Corollary 1. Let Prec be an inclusion measure. If A =
[A1, A2],B = [B1, B2] are representable interval-valued ag-
gregation functions and A1

d is used in Definition 5 (SIMV2)
and B is symmetric with the neutral element 1LI and B1
is idempotent aggregation function, then the operation S :
IV FS(X)× IV FS(X)→ LI :

S(A,B) = An
i=1(B(Prec(A(xi), B(xi)),Prec(B(xi), A(xi))))

is a similarity measure, where wA(xi) = wB(xi).

Corollary 2. Let Prec be an inclusion measure. If A is
symmetric representable interval-valued aggregation function
with neutral element 1LI and A1 is self-dual and idempotent,
then the operation S : IV FS(X)× IV FS(X)→ LI :

S(A,B) = An
i=1(A(Prec(A(xi), B(xi)),Prec(B(xi), A(xi))))

is a similarity measure.

Example 3. The operation S : IV FS(X)×IV FS(X)→ LI :

S(A,B) = An
i=1(Precw(A(xi), B(xi) ∧ Precw(B(xi), A(xi))))

is a similarity measure, where
A ∈ {Amean,Ameanpow,Ameanmax}.

IV. APPLICATION IN K-NN CLASSIFIERS

The classification problem consists in determining the class
(category) to which a new, previously unknown object should
be assigned. The classifier is constructed using a training set
containing data about objects for which their belonging to
the class is known. These objects are described using various
attributes. To assess the effectiveness of a classifier, it is
used test set containing instances not known when it was
created. Various classification methods have been used, among
others in such important areas as image processing or medical
diagnosis. The classification problem becomes significantly



more complicated if we allow incomplete or uncertainty in the
data. Here we consider uncertainty in epistemic sense, i.e. data
are represents by interval values. In such conditions, the design
of an effective classifier using classic methods can be very
difficult or even impossible. Among the most commonly used
techniques for classification can be distinguished k-Nearest
Neighbors classifier (k-NN) [32]. It is one of the most popular
non-parametric supervised learning methods being also one of
the top ten algorithms in Data Mining [33] as an integral part
of many applications of Machine Learning in various domains
[34]. In this strategy, the object subjected to the classification
process belongs to the class to which most of its k nearest
neighbors belong. The nearest neighbors of the classified ob-
ject should be understood as the objects from the reference set
that are the most similar to it in terms of the adopted similarity
measure. This principle can be formulated briefly: ”you are
just like your surroundings.” Classification takes place directly,
based on the vote of the object classes most similar to the clas-
sified object. This procedure guarantees that all dimensions of
the data space in which the similarity is calculated are of equal
importance. In this paper we present the novel concept of an
interval-valued fuzzy classifier for supporting decision-making
processes based on imprecise (uncertain) data. The main goal
was to develop a comprehensive and effective approach that
enables the modeling and processing of input data, and then
the presentation of results, to be done in a way that preserves
the valuable information concerning the amount of uncertainty
at each stage of the process. In contrast to the fuzzy k-NN
(see e.g. [35]), the proposed here concept of classification is
based on the new definition of a similarity measure, related to
the width of the intervals. Moreover, one of the classification
problems concerns the ranking of intervals that is not usually
clearly defined. We solved this problem. In turn, the problem
of choosing the value of the parameter k is analogous to that in
the case of the classical method of the k-nearest neighbors. We
aggregate individual classes among k most similar neighbors
and then select the class for the test object. Class selection
is done by selecting the largest interval for each class by use
the new method. The feature that distinguishes the proposed
classification method is complete support for data uncertainty,
i.e. we create intervals by use the ignorance functions. The use
of the new similarity measure in this classification method has
eliminated the problem of epistemic uncertainty, both in the
learning set and during the classification. In addition, the result
of the obtained interval classifier is both an indication of the
class to which the new uncertain object should be assigned
and a interval-valued fuzzy set describing its belonging to
all known classes. It is worth emphasizing, therefore, that
our approach is innovative which we proposed compared to
methods based on a distance measure or a similarity measure
without the generalized reflexivity condition (see e.g. [36],
[37]).

A. Proposed method

The diagram IV-kNN shows the main steps of the proposed
classification method.

Instance database /
epistemic uncertainty

fuzzyfication 2-fuzzyfication

Calculation of 
similarities 
using S

Test object 
AOrdered of 

interval-valued 
fuzzy similarities

A selection of 
the most similar 
neighbors 

Aggregation of individual 
classes among k most like 
neighbors

Class selection - selection 
of the largest interval for 
each class

Class or no decisionVIIVI

V IV III

III

Fig. 1. Algorithm IV-kNN

I. The real data are normalized to [0, 1] by classical formula
based on minimal values mi and maximal Mi for i − th
attribute with real value bi

ai =
bi −mi

Mi −mi
.

II. Interval-valued fuzzy set for each instance/object is built
in the following way: for each values of attribute we use for
each fuzzy set, we create its corresponding interval-valued
fuzzy set by using the construction method, which is as
follows: We consider a fuzzy set A ∈ FS(U) and a weak igno-
rance function g (i.e. a continuous function g : [0, 1]→ [0, 1]
such that g(0) = g(1) = 0, g(0.5) = 1 and g(x) = g(1 − x)
for every x ∈ [0, 1]). If for each ui ∈ U we take g(µA(ui)),
δ(ui), γ(ui) ∈ [0, 1], then the set

AIV = {(ui, AIV (ui))|ui ∈ U},

where AIV (ui) = G(µA(ui), g(µA(ui)), δ(ui), γ(ui)) is an
interval-valued fuzzy set on U . Here δ(ui), γ(ui) ∈ [0, 1] and
G(x, y, δ, γ) = [x · (1 − δ · y), x · (1 − δ · y) + γ · y)]. In our
case, the parameters, δ and γ are set to 0.25 as suggested by
the authors (δ(ui) = γ(ui) = 0.25 for all ui ∈ U ).

The following function g(x) = 2 · min(x, 1 − x) for all
x ∈ [0, 1] is a weak ignorance function.

In [38], the following method to build intervals from a
number and the application of the ignorance function to that
number may be found. Given x ∈ [0, 1] and the function g we
have:

[x(1− 0.25g(x)), x(1− 0.25g(x)) + 0.25g(x)] ∈ LI .

Note that the length of the intervals is equal to g(x).

III. In this step of the algorithm we use one of the
similarity measure of Example 3 to measure of similarity
tested object with each the other. The obtained interval values
may have different widths, therefore they take into account
the uncertainty.

IV. We make selection of interval-valued fuzzy similarities
by use one of the order

{62,6XY ,6Lex1,6Lex2} = O.



V. Selection of the most similar neighbors with respect to
given k, k ∈ {1, ..., n}, n ∈ N .

VI. We aggregate values of similarity measure with element
from each class separate. We use aggregation from Example
1 or 2 with respect the same order as in point IV, e.g.
Amean,∨,∧,Aprodmean,Ameanmax.

VII. For the two intervals obtained corresponding to each
class we use the following method leading to the decision,
where for the classes ”0” and ”1” intervals are denoted
respectively k0 and k1, in addition, we may refrain from
making decisions ”No Decision”. The method of searching
for decisions is based on comparing the width of the intervals
(the smaller the width is the better) and the position of
the intervals relative to the value 0.5 (we assume that the
greater value of the ends of the interval than 0.5, respectively,
suggests better decision clarity):
————————————————–
If w(k1) < w(k0) then
If k1 > 0.5 then the class ”1” wins
else If k0 > 0.5 then the class ”0” wins
else If k1 > 0.5 then the class ”1” wins
else If k0 > 0.5 then the class ”0” wins
else ”No Decision”

Otherwise,
If w(k1) > w(k0) then
If k0 > 0.5 then the class ”0” wins
else If k1 > 0.5 then the class ”1” wins
else If k0 > 0.5 then the class ”0” wins
else If k1 > 0.5 then the class ”1” wins
else ”No Decision”

Moreover,
If w(k1) == w(k0) then
If k1 ≤ k0 ≤∈ O
then If k0 > 0.5 then the class ”0” wins
else If k1 > 0.5 then the class ”1” wins
else If k0 > 0.5 then the class ”0” wins
else If k1 > 0.5 then the class ”1” wins
else ”No Decision”
If k0 < k1 ≤∈ O
then If k1 > 0.5 then the class ”1” wins
else If k0 > 0.5 then the class ”0” wins
else If k1 > 0.5 then the class ”1” wins
else If k0 > 0.5 then the class ”0” wins
else ”No Decision”
————————————————–

B. Data set description

The dataset is a wisconsin (diagnostic) breast cancer dataset.
This is one of the popular datasets from UCI Machine Learn-
ing Repository [39]. Data are from November 1995. The
authors are Dr William H. Wolberg, W. Nick Street, Olvi L.
Mangasarian. Data containing information on 569 instances.

Each of them is represented by 32 attributes. The first one
is the patient identifier, it does not carry any information so
it does not participate in testing our algorithm. Features are
computed from a digitized image of a fine needle aspirate
(FNA) of a breast mass. They describe characteristics of the
cell nuclei present in the image.
Ten real-valued features are computed for each cell nucleus:

• radius (mean of distances from center to points on the
perimeter)

• texture (standard deviation of gray-scale values)
• perimeter
• area
• smoothness (local variation in radius lengths)
• compactness (perimeter

2

area−1.0 )
• concavity (severity of concave portions of the contour)
• concave points (number of concave portions of the con-

tour)
• symmetry
• fractal dimension (coastline approximation− 1)

Conditional attributes are: mean radius, mean texture, mean
perimeter, mean area, mean smoothness, mean compactness,
mean concavity, mean concave points, mean symmetry, mean
fractal dimension, radius error, texture error, perimeter error,
area error, smoothness error, compactness error, concavity
error, concave points error, symmetry error, fractal dimension
error, worst radius, worst texture, worst perimeter, worst area,
worst smoothness, worst compactness, worst concavity, worst
concave points, worst symmetry, worst fractal dimension.
The decision attribute stores information about the diagnosis:
malignant or benign represented by values of 0 or 1. The
dataset consists of 212 objects with malignant diagnosis and
357 objects with benign diagnosis.

C. Results and discussion

In the first phase of our research we will examine the
complete data, in the next (future paper) with missing in-
formation/values. Therefore at the beginning, the dataset was
fuzzyfied as described in I and II. After that the dataset
was splitted ten times to equal train and test parts. The
implementation of the algorithm was run ten times for the
selected k (we considered k ∈ {1, 3, 5} for better decidability)
and for each combination of orders, precedence indicators
and aggregations. Each time other pair of training and test
data was used. Based on confusion matrix the accuracy,
sensitivity, specificity and precision were computed. At the
end this measures were averaged. It is worth noting that we
do not taking no decision into consideration when computing
classification quality measures (they are not numerous and
have no real influence to overall results). The main results
obtained are listed in the tables below (however we are listing
only results, which are greater than 0.5 on all measures). The
following shortcuts are used in the table description: k means
the number of nearest neighbors, SA means the similarity
built from a given aggregation function A (see Example 4),
O represents the order.



We will focus on presenting the conclusions of the algorithm
analysis in three aspects:

1) modification of the value of k;
2) the selection of aggregation in the construction of the

similarity measure (Step III of IV-kNN algorithm using
Proposition 4 and Example 3);

3) the selection of ordering relations (Step IV and one of
the cases in Step VII of IV-kNN algorithm).

In the Step VI we use the same aggregation function as in Step
III. Moreover, if among the most similar elements there will
be elements from only one class, we compare their aggregate
value in the Step VII with the interval [0, 0].

First, we consider Precw. For k ∈ {1} we can observe
that the choice of 6Lex1 has the best sensitivity and the
aggregation does not affect the results. The choice of 6Lex2

and Ameanpow or Amean gives very good specificity and
precision. For k ∈ {3, 5} we may observe that for 6Lex2 and
Ameanpow or Amean we get the best specificity, precision and
accuracy, while 6Lex2 and Ameanpow or Amean give us the
best sensitivity. For all k the choice of Ameanmax together
with 6Lex2 gives the lowest accuracy (other measures can
also be below the average).
Secondly, we consider PrecA. For all considered k we may
observe that the choice of 6Lex1 together with Ameanmax
gives the best specificity and precision; accuracy is also high.
For k > 1 the order 62 always gives the highest sensitivity,
however the choice of aggregation is an important aspect. It
is worth mentioning here that the aggregation Amean gives
weak results, and therefore it is not included in the following
Tables IV-VI.

TABLE I. k=1, Precw

accuracy sensitivity specificity precision SA O

0.941137 0.977688 0.930419 0.960593 Amean 6XY

0.933897 0.964031 0.940072 0.965308 Ameanpow 6Lex2

0.933834 0.964002 0.940072 0.965317 Amean 6Lex2

0.920231 0.977667 0.888832 0.937891 Ameanpow 62

0.916767 0.976582 0.883699 0.935661 Amean 62

0.912794 0.990000 0.852067 0.920605 Ameanpow 6XY

0.902189 0.985022 0.839038 0.913574 Ameanmax 6XY

0.899651 0.992255 0.820990 0.905389 Amean 6Lex1

0.899651 0.992255 0.820990 0.905389 Ameanpow 6Lex1

0.899651 0.992255 0.820990 0.905389 Ameanmax 6Lex1

0.845358 0.968112 0.741071 0.865637 Ameanmax 62

0.761087 0.910109 0.614727 0.802463 Ameanmax 6Lex2

TABLE II. k=3, Precw

accuracy sensitivity specificity precision SA O

0.927188 0.977216 0.903770 0.946142 Amean 6Lex2

0.914093 0.966544 0.895268 0.941158 Ameanpow 6Lex2

0.908623 0.980723 0.859971 0.923881 Amean 6XY

0.884529 0.976170 0.816262 0.901525 Ameanpow 62

0.882382 0.982229 0.800397 0.894695 Ameanmax 6XY

0.877970 0.981130 0.793262 0.891060 Amean 62

0.873287 0.986096 0.773879 0.882572 Ameanmax 6Lex1

0.871720 0.972877 0.794825 0.890454 Ameanmax 62

0.866126 0.988280 0.752465 0.873822 Ameanpow 6XY

0.856706 0.988296 0.731050 0.864038 Ameanpow 6Lex1

0.850010 0.990591 0.711260 0.855724 Amean 6Lex1

0.789597 0.924097 0.672000 0.829244 Ameanmax 6Lex2

TABLE III. k=5, Precw
accuracy sensitivity specificity precision SA O

0.896639 0.972264 0.850171 0.917415 Amean 6Lex2

0.893031 0.965679 0.853832 0.918953 Ameanpow 6Lex2

0.886348 0.981766 0.810557 0.899446 Amean 6XY

0.870436 0.970200 0.794800 0.891004 Ameanmax 6XY

0.858605 0.972225 0.764412 0.876609 Ameanmax 6Lex1

0.856855 0.980619 0.746310 0.869090 Amean 62

0.855151 0.951835 0.789845 0.886559 Ameanmax 62

0.854250 0.968396 0.761289 0.874705 Ameanpow 62

0.833456 0.979589 0.691257 0.845435 Ameanpow 6XY

0.830351 0.988461 0.668195 0.836751 Amean 6Lex1

0.825374 0.978993 0.672034 0.837250 Ameanpow 6Lex1

0.793329 0.896759 0.728625 0.850618 Ameanmax 6Lex2

TABLE IV. k=1, PrecA
accuracy sensitivity specificity precision SA O

0.913600 0.972956 0.883822 0.935322 Ameanpow 62

0.913300 0.959729 0.905535 0.946325 Ameanpow 6Lex1

0.913300 0.959729 0.905535 0.946325 Ameanmax 6Lex1

0.911312 0.962459 0.897076 0.941846 Ameanpow 6XY

0.903654 0.975148 0.858914 0.923156 Ameanpow 6Lex2

0.865831 0.949842 0.818633 0.901164 Ameanmax 62

0.793718 0.919234 0.691226 0.837084 Ameanmax 6XY

0.769863 0.897532 0.661862 0.820662 Ameanmax 6Lex2

TABLE V. k=3, PrecA
accuracy sensitivity specificity precision SA O

0.924491 0.957286 0.931892 0.960729 Ameanmax 6Lex1

0.902183 0.942547 0.912231 0.949249 Ameanpow 62

0.902179 0.952512 0.895032 0.940448 Ameanpow 6Lex2

0.901164 0.938012 0.917968 0.952032 Ameanpow 6XY

0.896202 0.933100 0.916215 0.950736 Ameanpow 6Lex1

0.887169 0.958927 0.851131 0.917875 Ameanmax 62

0.840037 0.927569 0.796373 0.887644 Ameanmax 6XY

0.824183 0.915723 0.777194 0.877020 Ameanmax 6Lex2

TABLE VI. k=5, PrecA
accuracy sensitivity specificity precision SA O

0.902454 0.938902 0.919470 0.952262 Ameanmax 6Lex1

0.879100 0.933710 0.878334 0.930097 Ameanpow 6Lex2

0.869764 0.899224 0.915010 0.948245 Ameanpow 6XY

0.868476 0.941688 0.839992 0.910364 Ameanmax 62

0.866045 0.909146 0.888279 0.934200 Ameanpow 62

0.864823 0.933260 0.845293 0.912846 Ameanmax 6XY

0.857555 0.885251 0.909973 0.944650 Ameanpow 6Lex1

0.841804 0.919378 0.814287 0.896339 Ameanmax 6Lex2

V. CONCLUSIONS

In this paper, we discussed possible axiomatic definitions
of inclusion and similarity measures for interval-valued fuzzy
setting and introduced such concepts with widths of intervals
involved. Some general formula of generating the similarity
between interval-valued fuzzy sets have been proposed. The
relationships between the similarity measures and the inclusion
measures of intervals and aggregation operations have been
investigated. Moreover, we applied the similarity measure in
the decision making algorithm based on the interval-valued k-
NN method, it is a different method than for example in [40],
[41]. In the future,
• we will analyze the impact of using different orders in step
IV and in some cases of step VII;
• we will analyze the impact of using different aggregations
in Step VI and when building a measure of similarity;
• we will examine the effectiveness of our algorithm for data
sets with missing values, which for individual attributes ai will
be supplemented for n objects o, as follows:

[ min
k∈{1,...,n}

aiok , max
k∈{1,...,n}

aiok ];



• we will compare the effectiveness of our algorithm with
other methods (fuzzy kNN, IV-kNN based on the distance and
similarity irrespective of uncertainty);
• we will check whether and to what extent the conclusions
obtained are affected by a small modification of the input
parameters, e.g. the weak ignorance function or its parameters.
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pathologie thyroidienne”, Ph.D. Thesis, Université de Marseille, France
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”Composition of interval-valued fuzzy relations using aggregation func-
tions”, Inf. Sci., 369, pp. 690 - 703, 2016.
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