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Abstract— In the plethora of conceptual and algorithmic 

developments supporting system modeling, we encounter growing 
challenges associated with the complexity of systems, diversity of 
available data and a variety of requests imposed on the quality of 
the models. The accuracy of models is important. At the same time, 
the interpretability and explainability of models are equally 
important and of high practical relevance. We advocate that the 
level of abstraction at which models are constructed (and which 
could be flexibly adjusted), is conveniently realized through 
Granular Computing. Granular Computing is concerned with the 
development and processing information granules - formal entities 
that facilitate a way of organizing and representing knowledge 
about the available data and relationships existing there. This 
study identifies the principles of Granular Computing, shows how 
information granules are constructed and subsequently used in the 
realization of models. 

Keywords— Granular Computing, information granules, fuzzy 
sets, design of information granules, clustering, principle of 
justifiable granularity, aggregation 

I. INTRODUCTION 
The apparent reliance on data and experimental evidence in 

system modeling, decision-making, pattern recognition, and 
control engineering, just to enumerate several representative 
spheres of interest, entails the centrality of data and emphasizes 
their paramount role in data science. To capture the essence of 
data, facilitate building their essential descriptors and reveal key 
relationships, as well as having all these faculties realized 
efficiently as well as deliver transparent, comprehensive, and 
user-oriented results, we advocate a genuine need for 
transforming data into information granules. In the realized 
setting, information granules become regarded as conceptually 
sound knowledge tidbits over which various models could be 
developed and utilized. 

A tendency, which is being witnessed more visibly 
nowadays, concerns human centricity. Data science and big data 
revolve around a two-way efficient interaction with users. Users 
interact with data analytics processes meaning that the terms 
such as data quality, actionability, transparency are of relevance 

and are provided in advance. With this regard, information 
granules emerge as a sound conceptual and algorithmic vehicle 
owing to their way of delivering a more general view at data, 
ignoring irrelevant details and supporting a suitable level of 
abstraction aligned with the nature of the problem at hand. 

The study is structured into 7 sections. We start with a brief 
discussion on information granules and a notion of information 
granularity (Section 2). The development of information 
granules is presented in Section 3; here we focus on the role of 
clustering and fuzzy clustering regarded as a conceptual and 
algorithmic prerequisite for the construction of information 
granules. The focus here is on the principle of justifiable 
granularity (Section 3.2). Further extensions of the principle are 
discussed in Section 4. The symbolic view at information 
granules associated with the linguistic summarization are 
covered in Section 5. In the sequel, in Section 6 discussed are 
granular models and the methodologies of their design. 

II. INFORMATION GRANULES AND INFORMATION 
GRANULARITY 

The framework of Granular Computing along with a 
diversity of its formal settings offers a critically needed 
conceptual and algorithmic environment. A suitable perspective 
built with the aid of information granules is advantageous in 
realizing a suitable level of abstraction in system modeling. It 
also becomes instrumental when forming sound and pragmatic 
problem-oriented tradeoffs among precision of results, their 
easiness of interpretation, value, and stability (where all of these 
aspects contribute vividly to the general notion of actionability). 
Information granules are intuitively appealing constructs, which 
play a pivotal role in human cognitive and decision-making 
activities [1-4]. We perceive complex phenomena by organizing 
existing knowledge along with available experimental evidence 
and structuring them in a form of some meaningful, semantically 
sound entities, which are central to all ensuing processes of 
describing the world, reasoning about the environment, and 
support decision-making activities. One can stress the diversity 
of formal frameworks of information granules, one can refer to 
sets, fuzzy sets, rough sets, shadowed sets, probabilistic sets, etc. 
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Information granules naturally emerge when dealing with 
data, including those coming in the form of data streams. The 
ultimate objective is to describe the underlying phenomenon in 
an easily understood way and at a certain level of abstraction. 
This requires that we use a vocabulary of commonly 
encountered terms (concepts) and discover relationships 
between them and reveal possible linkages among the 
underlying concepts. 

One can ascertain that (a) information granules are the key 
components of knowledge representation and processing, (b) the 
level of granularity of information granules (their size, to be 
more descriptive) becomes crucial to the problem description 
and an overall strategy of problem-solving, (c) hierarchy of 
information granules supports an important aspect of perception 
of phenomena and deliver a tangible way of dealing with 
complexity by focusing on the most essential facets of the 
problem, (d) there is no universal level of granularity of 
information; commonly the size of granules is problem-oriented 
and user-dependent. 

 

 
Fig. 1. Relationships among modeling environments and information 
granules: emphasized is the way of moving from experimental data to 
their representatives, information granules and linguistic summaries 

 

In system modeling and models, information granules play 
at least two fundamental roles: (a) as building blocks using 
which a variety of models is built. The concept of granular 
models deals with models that establish mappings among 
information granules and realize tasks of prediction, 
classification and associations realized at a suitable level of 
abstraction implied by information granules. Granular models 
are constructed more efficiently than their numeric counterparts 
(the number of information granules is far smaller than the 
masses of numeric data), become more transparent and 
interpretable, (b) as a means to express the quality of the numeric 
models. In this case, granular models incorporate the 
mechanisms of granular processing and the parameters of the 
model are made granular following the optimal allocation of 
information granularity. With this regard, it is instructive to link 
the developments of information granules with how they support 
ways of system modeling as illustrated in Figure 1. Numeric data 
and numeric prototypes associate with numeric models. 
Granular prototypes give rise to granular models. The symbolic 
manifestation of information granules entails symbolic 
(qualitative) models; the symbols used there are well-grounded 

in virtue of the construction scheme supporting the buildup of 
information granules. 

There are two clearly visible layers of processing. The one is 
concerned with the abstraction of available data: we proceed 
with numeric data (commonly acquired experimentally as a 
manifestation of the system under study), determine their 
numeric representatives (prototypes) and build information 
granules. In parallel, these activities give rise to particular 
processing realized in system modeling as portrayed at the upper 
portion of the figure. 

III. INFORMATION GRANULES AND THEIR TWO-PHASE 
DEVELOPMENT PROCESS 

Building information granules constitutes a central item on 
the agenda of Granular Computing with far-reaching 
implications on its applications.  We present a way of moving 
from data to numeric representatives, information granules and 
then their linguistic summarization. The organization of the 
overall scheme and relationships among the resulting constructs 
are displayed in Figure 2. 

 

 
Fig. 2. From data to information granules and linguistic summarization 

 

A. Clustering as a prerequisite of information granules: 
Along with a truly remarkable diversity of detailed 

algorithms and optimization mechanisms of clustering, the 
paradigm itself delivers a viable prerequisite to the formation of 
information granules (associated with the ideas and terminology 
of fuzzy clustering, rough clustering, and others) and applies 
both to numeric data and information granules. Information 
granules built through clustering are predominantly data-driven, 
viz. clusters (either in the form of fuzzy sets, sets, or rough sets) 
are a manifestation of a structure encountered (discovered) in the 
data.  Here we rely on a spectrum of objective function-based 
clustering, say K-Means or Fuzzy C-Means. 

Numeric prototypes are formed through invoking clustering 
algorithms, which yield a partition matrix and a collection of the 
prototypes. Clustering realizes a certain process of abstraction 
producing a small number of the prototypes based on a large 
number of numeric data. Interestingly, clustering can be also 
completed in the feature space. In this situation, the algorithm 
returns a small collection of abstracted features (groups of 
features) that might be referred to as meta-features. 

Two ways of generalization of numeric prototypes treated as 
key descriptors of data and manageable chunks of knowledge 
are considered: (i) symbolic and (ii) granular.  In the symbolic 
generalization, one moves away from the numeric values of the 
prototypes and regards them as sequences of integer indexes 
(labels). Along this line, developed are concepts of (symbolic) 
stability and (symbolic) resemblance of data structures. The 
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second generalization motivates the construction of information 
granules (granular prototypes), which arise as a direct quest for 
delivering a more comprehensive representation of the data than 
the one delivered through numeric entities. This entails that 
information granules (including their associated level of 
abstraction), have to be prudently formed to achieve the required 
quality of the granular model. 

As a consequence, the performance evaluation embraces the 
following sound alternatives: (i) evaluation of representation 
capabilities of numeric prototypes, (ii) evaluation of 
representation capabilities of granular prototypes, and (iii) 
evaluation of the quality of the granular model. 

1) Evaluation of representation capabilities of numeric 
prototypes: In the first situation, the representation capabilities 
of numeric prototypes are assessed with the aid of a so-called 
granulation-degranulation scheme yielding a certain 
reconstruction error. The essence of the scheme can be 
schematically portrayed as follows:  

x à internal representation à reconstruction 

The formation of the internal representation is referred to as 
granulation (encoding) whereas the process of degranulation 
(decoding) can be sought as an inverse mechanism to the 
encoding scheme. In terms of detailed formulas, one encounters 
the following flow of computing: 

a) encoding leading to the degrees of activation of 
information granules by input x, say A1(x), A2(x),.., Ac(x) with  

 

in case the prototypes are developed with the use of the Fuzzy 
C-Means (FCM) clustering algorithm, the parameter m (>1) 
stands for the fuzzification coefficient and ||.|| denotes the 
Euclidean distance. 

b) degranulation (decoding) producing a reconstruction 
of x via the following expression 

 

It is worth stressing that the above-stated formulas are a 
consequence of the underlying optimization problems. For any 
collection of numeric data, the reconstruction error is a sum of 
squared errors (distances) of the original data and their 
reconstructed versions. 

B. The principle of justifiable granularity 
The principle of justifiable granularity [5-7] guides a 

construction of an information granule based on available 
experimental evidence.  In a nutshell, a resulting information 
granule becomes a summarization of data (viz. the available 
experimental evidence). The underlying rationale behind the 
principle is to deliver a concise and abstract characterization of 
the data such that (i) the produced granule is justified in light of 

the available experimental data, and (ii) the granule comes with 
a well-defined semantics meaning that it can be easily 
interpreted and becomes distinguishable from the others. 

Formally speaking, these two intuitively appealing criteria 
are expressed by the criterion of coverage and the criterion of 
specificity. Coverage states how much data are positioned 
behind the constructed information granule. Put it differently – 
coverage quantifies an extent to which information granule is 
supported by available experimental evidence. Specificity, on 
the other hand, is concerned with the semantics of information 
granule stressing the meaning of the granule. 

1) One-dimensional case: The definition of coverage and 
specificity requires formalization and this depends upon the 
formal nature of information granule to be formed. As an 
illustration, consider an interval form of information granule A. 
In case of intervals built on a basis of one-dimensional numeric 
data (evidence) x1, x2, …, xN, the coverage measure is associated 
with a count of the number of data embraced by A, namely 

 

card (.) denotes the cardinality of A, viz. the number (count) of 
elements xk belonging to A. In essence, coverage has a visible 
probabilistic flavor. The specificity of A, sp(A) is regarded as a 
decreasing function g of the size (length) of information granule. 
If the granule is composed of a single element, sp(A) attains the 
highest value and returns 1. If A is included in some other 
information granule B, then sp(A) >  sp(B). In a limit case if A is 
an entire space sp(A) returns zero. For an interval-valued 
information granule  A =[a, b], a simple implementation of 
specificity with g being a linearly decreasing function comes as 

 

where range stands for an entire space over which intervals are 
defined. 

If we consider a fuzzy set as a formal setting for information 
granules, the definitions of coverage and specificity are 
reformulated to take into account the nature of membership 
functions admitting a notion of partial membership Here we 
invoke the fundamental representation theorem stating that any 
fuzzy set can be represented as a family of its a-cuts, namely 

 

where 

 

The supremum (sup) operation is taken over all values of a. 
In virtue of the theorem, we have any fuzzy set represented as a 
collection of sets. Having this in mind and considering (3) as a 
point of departure for constructs of sets (intervals), we have the 
following relationships 

a) coverage  
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where X is a space over which A is defined; moreover, one 
assumes that A can be integrated. The discrete version of the 
coverage expression comes in the form of the sum of 
membership degrees. If each data point is associated with some 
weight, the calculations of the coverage involve these values 

cov(A)= ∫ w(x)A(x)dxX /∫ w(x)dxX  

b) specificity  

 

The criteria of coverage and specificity are in an obvious 
relationship, Figure 3. We are interested in forecasting 
temperature: the more specific the statement about the 
prediction is, the lower the likelihood of its satisfaction. To 
produce a meaningful prediction, a sound tradeoff between 
specificity and likelihood (coverage) needs to be established. 

 
Fig. 3. Relationships between abstraction (coverage) and specificity of 
information granules of temperature 

Let us introduce the following product of the criteria 

V = cov(A)sp(A) 

It is apparent that the coverage and specificity are in conflict; the 
increase in coverage associates with the drop in the specificity. 
Thus the desired solution is the one where the value of V attains 
its maximum. 

The design of information granule is accomplished by 
maximizing the above product of coverage and specificity. 
Formally speaking consider that an information granule is 
described by a vector of parameters p, V(p). The principle of 
justifiable granularity gives to an information granule that 
maximizes V, popt = arg pV(p). 

To maximize the index V through adjusting the parameters 
of the information granule, two different strategies are 
encountered: 

(i) a two-phase development is considered. First, a 
numeric representative (mean, median, mode, etc.) is 
determined. It can be regarded as an initial representation of the 
data. Next, the parameters of the information granule are 
optimized by maximizing V. For instance, in case of an interval, 
one has two bounds (a and b) to be determined. These two 
parameters are determined separately, viz. the a and b are formed 
by maximizing V(a) and V(b). The data used in the 
maximization of V(b) involves the data larger than the numeric 
representative. Likewise, V(a) is optimized on the basis of the 
data lower than this representative. 

(ii) a single -phase procedure. Here all parameters of 
information granule are determined at the same time. 

2) Multi-dimensional case: The results of clustering 
coming in the form of numeric prototypes v1, v2, …, vc can be 
further augmented by forming information granules giving rise 
to so-called granular prototypes. This can be regarded as a 
result of immediate usage of the principle of justifiable 
granularity and its algorithmic underpinning as elaborated 
earlier. Around the numeric prototype vi, one spans an 
information granule Vi, Vi=(vi, ri) whose optimal size is 
obtained as the result of the maximization of the well-known 
criterion 

 

where 

 

assuming that we are concerned with normalized data. In the 
case of the FCM method, the data come with their membership 
grades (entries of the partition matrix). The coverage criterion is 
modified to reflect this. Let us introduce the following notation 

Wi= { xk |  ||xk-vi|| ≤ri} 

Then the coverage is expressed in the form: 

cov(Vi) = !
N
∑ uxk∈Ωi ik

 
which is a well-known s-count used in fuzzy sets with uik being 
a membership value. 

3) Representation aspects of granular prototypes: It is 
worth noting that having a collection of granular prototypes, 
one can conveniently assess their abilities to represent the 
original data (experimental evidence). The reconstruction 
problem, as outlined before for numeric data, can be formulated 
as follows: given xk, complete its granulation and de-
granulation using the granular prototypes Vi, i=1, 2,.., c. The 
detailed computing generalizes the reconstruction process 
completed for the numeric prototypes and for given x yields a 
granular result   where 

                 

The quality of reconstruction uses the coverage criterion 
formed with the aid of the Boolean predicate: 

 

It is worth noting that in addition to the global measure of 
the quality of granular prototypes, one can associate with them 
their individual quality (taken as a product of the coverage and 
specificity computed in the formation of the corresponding 
information granule). 

The principle of justifiable granularity highlights an 
important facet of elevation of the type of information 
granularity: the result of capturing a number of pieces of 
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numeric experimental evidence comes as a single abstract entity 
- information granule. As various numeric data can be thought 
as information granule of type-0, the result becomes a single 
information granule of type-1. This is a general phenomenon of 
elevation of the type of information granularity. For instance, 
type-2 fuzzy sets [8] are constructs that result through the 
representation of a family of type-1 fuzzy sets. The increased 
level of abstraction is a direct consequence of the diversity 
present in the originally available granules. This elevation effect 
is of a general nature and can be emphasized by stating that when 
dealing with experimental evidence composed of information 
granules of type-n, the result becomes a single information 
granule of type (n+1).  

As a way of constructing information granules, the principle 
of justifiable granularity exhibits a significant level of generality 
in two essential ways. First, given the underlying requirements 
of coverage and specificity, different formalisms of information 
granules can be engaged. Second, experimental evidence could 
be expressed as information granules articulated in different 
formalisms and on this basis, certain information granule is 
being formed 

It is worth stressing that there is a striking difference between 
clustering and the principle of justifiable granularity. First, 
clustering leads to the formation of at least two information 
granules (clusters) whereas the principle of justifiable 
granularity produces a single information granule.  Second, 
when positioning clustering and the principle vis-à-vis each 
other, the principle of justifiable granularity can be sought as a 
follow-up step facilitating an augmentation of the numeric 
representative of the cluster (such as e.g., a prototype) and 
yielding granular prototypes where the facet of information 
granularity is retained. 

IV. AUGMENTATION OF THE DESIGN PROCESS OF INFORMATION 
GRANULES 

So far, the principle of justifiable granularity presented is 
concerned with a generic scenario meaning that experimental 
evidence gives rise to a single information granule. Several 
conceptual augmentations are considered where several sources 
of auxiliary information are supplied: 

A. Involvement of auxiliary variable 
Typically, these could be some dependent variable one 

encounters in regression and classification problems. An 
information granule is built on a basis of experimental evidence 
gathered for some input variable and now the associated 
dependent variable is engaged. In the formulation of the 
principle of justifiable granularity, this additional information 
impacts a way in which the coverage is determined. In more 
detail, we discount the coverage; in its calculations, one has to 
take into account the nature of experimental evidence assessed 
on a basis of some external source of knowledge. In regression 
problems (continuous output/dependent variable), in the 
calculations of specificity, we consider the variability of the 
dependent variable y falling within the realm of A. More 
precisely, the value of coverage is discounted by taking this 
variability into consideration. In more detail, the modified value 
of coverage is expressed as 

 

where s is a standard deviation of the output values associated 
with the inputs being involved in the calculations of the original 
coverage cov(A). b is a certain calibration factor controlling an 
impact of the variability encountered in the output space. 
Obviously, the discount effect is noticeable, cov’(A)<cov(A). 

In case of a classification problem in which p classes are 
involved, say w = {w1 w2…, wp}, the coverage is again modified 
(discounted) by the diversity of the data embraced by the 
information granule where this diversity is quantified in the form 
of the entropy function h(w) 

 

This expression penalizes the diversity of the data 
contributing to the information granule and not being 
homogeneous in terms of class membership. The higher the 
entropy, the lower the coverage cov’(A) reflecting the 
accumulated diversity of the data falling within the umbrella of 
A.  If all data for which A has been formed belong to the same 
class, the entropy returns zero and the coverage is not reduced, 
cov’(A) = cov(A). 

B. Adversarial information granules 
In untargeted adversarial attacks [9,10], one considers x’ 

such that it is close to the data coming from the training data {x1, 
x2, …, xN} and producing significantly different results than 
those reported for the neighboring data. The nature of the 
adversarial data x’ can be quantified and generalized to the idea 
of the granular adversarial data. In light of the essence of the 
adversarial property, we determine x’ such that it is close to xk 
and f(x’) is different from f(xk) where f(.) is a certain classifier 
or a model realizing this mapping f. x’ is sought as an adversarial 
example. 

The granular adversarial data centered around x’ and 
denoted by A(x’; r) whose size r is the one which maximize the 
following ratio 

𝑉(𝜌) = 	
∑ |𝑓(x#) − 𝑓(𝒙$)|xk:|%xk-x'%|≤nρ2

∑ ||𝒙# − 𝒙$||xk:|%xk-x'%|≤nρ2
 

viz. 
rmax =  arg Maxr V(r) 

where ||.|| is a certain distance function, say the Euclidean one. 

Having the training data, one can assess the adversarial 
nature of individual datum by picking up x’=xk and determining 
the maximum of V and reporting the associated size (radius) r 
thus producing A(xk; rk). In this way, the data can be ranked with 
respect to their adversarial property by ordering the 
corresponding values of V(rk), and forming the resulting 
sequence starting from the highest value of this index. 

V. SYMBOLIC VIEW AT INFORMATION GRANULES AND THEIR 
SYMBOLIC CHARACTERIZATION AND SUMMARIZATION 

Information granules are described through numeric 
parameters (or eventually granular parameters in case of 
information granules of higher type). There is an alternative 

cov'(A) = cov(A)exp(−βσ y
2 )

cov'(A) = cov(A)(1− h(ω))



view at a collection of information granules where we tend to 
move away from numeric details and instead look at the granules 
as symbols and engage them in further symbolic processing. 
Interestingly, symbolic processing is vividly manifested in 
Artificial Intelligence (AI). Consider that a collection of the 
prototypes has been generated as a result of clustering. The 
prototypes are projected on the individual variables (features) 
and their projections are ordered linearly. At the same time, the 
distinguishability of the prototypes is evaluated: if two projected 
prototypes are close to each other they are deemed 
indistinguishable and collapsed. The merging condition 
involves the distance between the two close prototypes: if  
|vi –vi+1| < range/ce then the prototypes are deemed 
indistinguishable. Here the range is the range of values assumed 
by the prototypes and e is a certain threshold value less than 1. 
Once this phase has been completed, Ais are represented in a 
concise manner as sequences of indexes  Ii =(i1, i2, …,ini).  

Linguistic summarization of numeric prototypes 

Consider the symbolic representation of the prototypes A1, 
A2, …, Ac, namely  i1, i2, …, ic where each ik is a string of integer 
indexes where each index assumes values from 1 to c. The 
linguistic summarization of the prototype (or information 
granule) gives rise to the expressions such as most (attributes of 
the granule are high), at most 50% (attributes are low), etc. 
[11,12]. Generally speaking, the summarization is of the format 

t(attributes of granule is µ) = l 

j=1, 2,.., r. The optimized result of the summarization results 
from the maximization of the following expression 

(i0,j0)= arg maxi,j lij 

VI. GRANULAR MODELS 
So far, the principle of justifiable granularity presented is 

concerned with a generic scenario meaning that experimental 
evidence gives rise to a single information granule. Several 
conceptual augmentations are considered where several sources 
of auxiliary information are supplied: 

A. The concept 
The paradigm shift implied by the engagement of 

information granules becomes manifested in several tangible 
ways including (i) a stronger dependence on data when building 
structure-free, user-oriented, and versatile models spanned over 
selected representatives of experimental data, (ii) emergence of 
models at various varying levels of abstraction (generality) 
being delivered by the specificity/generality of information 
granules, and (iii) building a collection of individual local 
models and supporting their efficient aggregation. 

Here several main conceptually and algorithmically far-
reaching avenues are emphasized. Notably, some of them have 
been studied to some extent in the past and several open up new 
directions worth investigating and pursuing. In what follows, we 
elaborate on them in more detail pointing at the relationships 
among them. 

1) data à numeric models: This is a traditionally explored 
path being present in system modeling for decades. The original 
numeric data are used to build the model. There are several 

models, both linear and nonlinear exploiting various design 
technologies, estimation techniques and learning mechanisms 
associated with evaluation criteria where accuracy and 
interpretability are commonly exploited with the Occam razor 
principle assuming a central role. The precision of the model is 
an advantage however the realization of the model is impacted 
by the dimensionality of the data (making a realization of some 
models not feasible); questions of memorization and a lack of 
generalization abilities are also central to the design practices. 

2) data à numeric prototypes: This path associates with 
the concise representation of data utilizing a small number of 
representatives (prototypes). The tasks falling within this scope 
are preliminary to data analytics problems. Various clustering 
algorithms constitute generic development vehicles using 
which the prototypes are built as a direct product of the 
grouping method. 

3) data à numeric prototypesà symbolic prototypes: This 
alternative branches off to symbolic prototypes where on 
purpose we ignore the numeric details of the prototypes with 
intent to deliver a qualitative view at the information granules. 
Along this line, concepts such as symbolic (qualitative, i.e. not 
quantitaive) stability and qualitative resemblance of structure in 
data are established. 

4) data à numeric prototypesà granular prototypes: This 
path augments the previous one by bringing the next phase in 
which the numeric prototypes are enriched by their granular 
counterparts. The granular prototypes are built in such a way so 
that they deliver a comprehensive description of the data. The 
principle of justifiable granularity helps quantify the quality of 
the granules as well as deliver a global view at the granular 
characterization of the data. 

5) data à numeric prototypesà symbolic prototypes 
àqualitative modeling: The alternative envisioned here builds 
upon the one where symbolic prototypes are formed and 
subsequently used in the formation of qualitative models, viz. 
the models capturing qualitative dependencies among input and 
output variables. This coincides with the well-known subarea 
of AI known as qualitative modeling, see [13] with many 
applications [14-16]. 

6) data à numeric prototypesà granular prototypes 
àgranular models: This path constitutes a direct extension of 
the previous one when granular prototypes are sought as a 
collection of high-level abstract data based on which a model is 
being constructed. In virtue of the granular data, we refer to 
such models as granular models. 

B. Construction of granular models 
There are two fundamental ways of constructing granular 

models: 

1) stepwise development. One starts with a numeric model 
developed with the use of the existing methodology and 
algorithms and then elevate the numeric parameters of the 
models to their granular counterparts following the way 
outlined above. This design process dwells upon the existing 
models and in this way, one takes full advantage of the existing 



modeling practices. By the same token, one can envision that 
the granular model delivers a substantial augmentation of the 
existing models. In this sense, we can talk about granular neural 
networks, granular fuzzy rule-based models. In essence, the 
design is concerned with the transformation a

&
→  A =G(a) 

applied to the individual parameters where G is a certain 
formalism of information granulation. It is worth noticing that 
in the overall process, there are two performance indexes 
optimized: in the numeric model one usually considers the root 
mean squared error (RMSE) while in the granular augmentation 
of the model one invokes another performance index that takes 
into consideration the product of the coverage and specificity. 

2) a single step design. One proceeds with the development 
of the granular model from scratch by designing granular 
parameters of the model. This process uses only a single 
performance index that is of interest to evaluate the quality of 
the granular result. Proceeding with the first design process 
presented above, the example presented in Figure 4 stresses a 
way in which granular models are formed. 

The way of transforming (elevating) a numeric entity a to an 
information granule A is expressed formally as follows A = 
G(a). Here G stands for a formal setting of information granules. 
(say, intervals, fuzzy sets, etc.) and e denotes a level of 
information granularity.  

One can envision two among a number of ways of elevating 
a certain numeric parameter a into its granular counterpart.  

 
Fig. 4. From numeric to granular models by the development of 
granular parameters 

One starts with a numeric (type-0) model M(x; a) developed 
on a basis of input-output data D = (xk, targetk). Then one 
elevates it to type-1 by optimizing a level of information 
granularity allocated to the numeric parameters a thus making 
them granular. 

The way of transforming (elevating) a numeric entity a to an 
information granule A is expressed formally as follows A = 
G(a). Here G stands for a formal setting of information granules. 
(say, intervals, fuzzy sets, etc.) and e denotes a level of 
information granularity. One can envision two among a number 
of ways of elevating a certain numeric parameter a into its 
granular counterpart. If A is an interval, its bounds are 
determined as 

A = [min(a(1-e), a(1+e)), max ((a(1-e), a(1+e))],  e ∈[0,1] 

Another option comes in the form 

A = [min(a/(1+e), a(1+e)), max(a/(1+e), a(1+e))], e ≥ 0 

If A is realized as a fuzzy set, one can regard the bounds of 
its support determined in the ways outlined above. Obviously, 
the higher the value of e, the broader the result and higher 
likelihood of satisfying the coverage requirement. Higher values 
of e yield lower specificity of the results. Following the principle 
of justifiable granularity, we maximize the product of coverage 
and specificity by choosing a value of e. 

 
Fig. 5. Characteristics of granular models presented in the coverage-
specificity coordinates 

The performance of the granular model can be studied by 
analyzing the values of coverage and specificity for various 
values of the level of information granularity e. Some plots of 
such relationships are presented in Figure 5. In general, as noted 
earlier, increasing the values of e will result in higher coverage 
and lower values of specificity. An important is a quantification 
of the changes encountered here. By analyzing the pace of 
changes of the coverage versus the changes in the specificity, 
one can select a preferred value of e as such beyond which the 
coverage does nor increase in a substantial way yet the 
specificity deteriorates significantly. One can refer to Figure 5 
where both the curves (a) and (b) help identify the suitable 
values of e. One can develop a global descriptor of the quality 
of the granular model by computing the area under the curve; 
the larger the area is, the better the overall quality of the model 
(quantified over all levels of information granularity) is. For 
instance, in Figure 5, the granular model (a) exhibits better 
performance than (b). 

The level of information granularity allocated to all 
parameters of the model is the same. Different levels of 
information granularity can be assigned to individual 
parameters; an allocation of these levels could be optimized in 
such a way that the values of the performance index V becomes 
maximized whereas a balance of information granularity is 
retained. Formally, we consider the following optimization task 

Mine V        subject to constraints        ∑ εiP
i=1 =Pe   ei ∈[0,1] 

where the vector of levels of information granularity is 
expressed as  e = [e1 e2. … eP] and P stands for the number of 
parameters of the model. In virtue of the nature of this 
optimization problem, the use of evolutionary methods could be 
a viable option. 

Granular models of higher type 

The design of granular models of higher type is associated 
by admitting the results that are information granules of a higher 
type. For instance, in case of granular models of type-2, we 
envision the elevation of the type of information granularity 
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a
&
→ A  (type-1) and  A

'
→  A~(type-2)       ∑ εiP

i=1 =Pe   ei ≥0 

In the design process, as before one starts with the 
development of the numeric model. The granular model of type-
1 is obtained by optimizing the granular results with the use of 
the principle of justifiable granularity. The type-1 granular 
model cover some data D; denote by D’ the data not covered by 
this granular model. Using D’, we construct a granular model of 
type-2 again with the use of the principle of justifiable 
granularity, Fig. 5. 

 
Fig. 5. Nesting granular models of higher type; from numeric to type-2 
granular model 

The formation of granular models of a higher type is 
inherently associated with the parameters of the model which 
are also information granules of higher type, refer to Fig. 6; the 
types of granular parameters correspond with the types of the 
granular models. 

 
Fig. 6. From numeric to type-2 parameters of the models; shown are 
interval information granules and fuzzy sets 

VII. GRANULAR MODELS 
The study has offered a focused overview of the 

fundamentals of Granular Computing positioned in the context 
of advanced system modeling. We identified a multifaceted role 
of information granules as meaningful conceptual entities being 
formed at the required level of abstraction. It has been 
emphasized that information granules are not only reflective of 
the nature of the data (the principle of justifiable granularity 
highlights the reliance of granules on available experimental 
evidence) but can efficiently capture some auxiliary domain 
knowledge conveyed by the user and in this way reflect the  
human-centricity aspects of the investigations and enhances the 
actionability aspects of the results. The interpretation of 
information granules at the qualitative (linguistic) level and their 
emerging characteristics such as e.g., stability enhancement of 
the interpretability capabilities of the framework of processing 
information granules is another important aspect of data 
analytics that directly aligns with the requirements expressed by 

the user. Several key avenues of system modeling based on the 
principles of Granular Computing were highlighted; while some 
of them were subject of intensive studies, some other require 
further investigations. 

By no means, the study is complete; instead, it can be 
regarded as a solid departure point identifying main directions 
of further far-reaching human-centric data analysis 
investigations. Several promising avenues are open that are well 
aligned with the current challenges of data analytics including 
the reconciliation of results realized in the presence of various 
sources of knowledge (models, results of analysis), hierarchies 
of findings, quantification of tradeoffs between accuracy and 
interpretability (transparency). 
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