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Abstract—In this study, we discuss the problem of inter-
pretability of scale versus polarity in multicriteria decision-
making problem. Decision making requires aggregation of
premises of different characters and types. The influence of
premises on a decision to be made may have a different charac-
teristics as well. Some premises may have a positive character,
i.e. they vote/agitate towards making a decision, others may fight
against a decision. On the other hand, premises can be tempered
by priorities, which may affect their character. Therefore, there
is a need to discuss different configurations of premises and
their priorities. This is the first aspect of our discussion on
multicriteria decision making. The second one under discussion is
the interpretability of all aspects mentioned so far. In this case,
we discuss the representation problems of both premises and
priorities. They are usually exhibited as numbers taken from
some scale as, for instance, the unipolar unit interval [0, 1] or
the bipolar unit interval [−1, 1]. On the other hand, there is
a question raised about a character of premises/priorities, that
is, whether they vote pro or contra a decision to be taken and
what relations between scales and polarities are.

Index Terms—muticriteria decision making, scale, polarity,
interpretability

I. INTRODUCTION

In this study, we discuss the problem of interpretability in
the context of multicriteria decision making with data exhib-
ited in different scales and polarities. Multicriteria decision
making requires aggregation of data of different properties
and types. The influence of data on a decision to be made
may have a different impact as well. Some data may have
a positive character, i.e. they vote towards making a decision,
others may act against a decision. On the other hand, data

affecting a decision may be tempered by factors, which may
alter their character.

We focus attention on a specific aspect of scale, polarity, and
interpretability related to human cognitive processes. However,
mechanisms discussed here could be easily adapted to other
domains and be generalized in an abstract way. It is worth to
underline that this study has a practical background. Readers
interested in much more general and theoretical views on
undertaken ideas are referred to [7].

From now on we refer to ideas exhibited in [13] and also
adapt the terminology employed there. Specifically, we use
terms premises and priorities for data affecting a decision and
for factors tempering data:

• premises describe attitudes toward certain features or
possibilities associated with the object of the decision.
From our perspective, premises are motivational stimuli
that elicit, control, and sustain certain behaviors. They
are general factors relevant to the current motivational
state. Premises can be somehow called initial or a priori
motivation,

• priorities is the second term used in the discussed
framework. This term is applied in the context of the
second set of motivational stimuli evaluations. Priorities
concern qualitatively the same arguments, but evaluated
later, in the context of one particular decision. Priorities
allow us to take into account reassessed attitudes toward
a particular decision. Priorities provide a perspective of
how one particular choice satisfies the stated conditions.
In this context, they may be perceived as a posteriori
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Fig. 1. Step-by-step illustration of the decision-making model.

motivation, arising when the decision maker reasons
about a particular item. Of course, a set of priorities
evaluations might be different than the premises.

Priorities moderate premises. We can capture causality
because the decision takes into account not only final attitudes
towards one particular decision (priorities), but also general
attitudes (gathered in the premises vector). Processing with
chosen aggregators is performed on such input data.

A concept of criteria representation based on a twofold
evaluation (as in our premises/priorities approach) is present
in the literature. Researchers from the field of social and
managerial sciences introduced and applied such an approach
in the form of the Kepner-Tregoe method, cf. [15], [18].

Figure 1 illustrates step-by-step a decision-making process
based on premises and priorities. To sum up, the proposed
approach is based on a two-step method of criteria evaluation.
First, the basic criteria named premises and priorities are
combined. Then, evaluated pairs of premises and priorities are
aggregated to produce decision support.

Let us consider vectors of premises p = [p1, p2, . . . , pc]
T

and priorities r = [r1, r2, . . . , rc]
T , where pi ∈ I and ri ∈ J .

We can depict the process of decision support production with
the following general formula:

d = p ? r (1)

where ? denotes an abstract aggregating operation performed
on premises and priorities like, for instance, squashed scalar
product.

There is a need to discuss different configurations of
premises and their priorities. This is the first aspect of our
discussion on multicriteria decision making. The second facet
under discussion is the interpretability of all aspects mentioned
so far. In this case, we would like to discuss the representation
problems of both premises and priorities. They are usually
exhibited as numbers taken from some scales as, for instance,
the unipolar unit interval [0, 1] or the bipolar one [−1, 1]. On
the other hand, there is a question raised about a character
of premises/priorities, that is, whether they vote pro or contra
a decision to be taken. The third and the most important aspect
of multicriteria decision making is in aggregation properties
of premises and priorities. Properties of aggregation overhead
types of scales and polarities. This means that in our opinion
types of them firmly depend on the character and properties of

aggregation mechanisms. In other words, polarities of scales
cannot be uncovered unless operations employed to process
data are not established.

Preliminary notes on scales and polarities are outlined
in Section II. Sections III and IV are devoted to detailed
discussion on unipolarity and bipolarity, respectively, and to
related aspects of scaling and symmetry. An experiment on
real world data is exhibited in Section V. The experiment can
be repeated simply based on concepts introduced in previous
Sections applied to referred data. Finally, comclusions are
outlined in the last Section.

II. SCALES AND POLARITIES

A. Scales

Scales can be exhibited quantitatively as the real line or its
fragments - intervals. Intervals are the conceptually simplest
manifestation of a wide spectrum of different (algebraic)
structures, like for instance an ordered set (L,<). In this study,
we limit the meaning of scales only to intervals of the real
line. From the simplest perspective, i.e. without considering
other aspects of scaling, we can distinguish a few types of
such scales: open, closed and half-open intervals which can be
finite or infinite ones. Any two intervals of the same type are
qualitatively indistinguishable in the sense that there is a re-
scaling of one of them into another. A difference between them
is just quantitative: different values of scales express the same
measure of a phenomenon occurrence. Let us briefly comment
on this observation.

Any two finite intervals of the same type, i.e. both open,
both closed, both left-open or both right-open, are qualitatively
indistinguishable in the sense that we have a bijection between
them. For instance, we may take the simplest bijection: a linear
mapping, b : [a, b]→ [c, d], b(x) = c+(x−a)/(b−a)∗(d−c),
where −∞ < a < b < +∞, −∞ < c < d < +∞. In this
sense, the unit intervals [0, 1] and [−1, 1] are (paradoxically)
qualitatively indistinguishable, which contradicts our intuition.
Later on, we will put more light on this aspect.

For the real line (−∞,+∞) and any finite open interval
(a, b) we can find a bijection between them, though not linear,
which also makes them quantitatively indistinguishable. As
an example of a bijection between (−∞,+∞) and (−1, 1)
we may take tanh : (−∞,+∞) → (−1, 1). Any finite open
interval (a, b) can be mapped to the real line (−∞,+∞) by
the composition of tanh ◦b, where b is the linear bijection
from (a, b) to (−1, 1).

Alike, a bijection between the closed real line [−∞,+∞]
and a finite interval [a, b] can be easily set up. Pairs of other
types of intervals are related likewise. Details of correspon-
dence between closed and open intervals can be restricted to
intervals without endpoints and then extended to endpoints.

As an example of qualitatively indistinguishable scales, we
can consider Kelwin [0,+∞), Celsius [−273.15,+∞) and
Fahrenheit [−459.67,+∞) temperature scales. The beginning
of scales and another reference point allow to raise linear
mappings between these scales, for instance, 273.15◦K, 0◦C
and 32◦F may be used as a second reference point.



B. Polarities

As mentioned before, we will consider two types of polarity:
unipolarity and bipolarity. Intuitively polarities are interrelated
with positive and negative aspects of information. At first
glance, we may distinguish two types of scales associated with
two types of polarity. Polarities can be exhibited in simple
quantitative ways related to the real line and its fragments:
the whole real line (−∞,+∞) corresponds to a bipolar scale
while the nonnegative semi-line [0,+∞) - to a unipolar scale.
Defining closed counterparts [−∞,+∞] and [0,+∞] is direct
and seems to not need extra comments. Seemingly, these
scales are rarely employed than most popular unit intervals:
the bipolar unit intervals, closed or open, [−1, 1] or (−1, 1),
and the unipolar unit intervals (0, 1) or [0, 1]. In light of II-A
other open and closed intervals are qualitatively equivalent to
mentioned here.

However, the interrelation of isolated scales and polarities
is supported by intuition only, which may not be correct. For
instance, Celsius and Fahrenheit scales mentioned above look
like bipolar ones, though this statement is arguable. So then
let us look at the polarity of scales in a wider context, in
the context of operations performed on scales. Let us also
consider more convincing examples of scales and polarities.
For the sake of simplicity, the discussion will be limited to
fuzzy sets, though some generalization seems to be direct.

III. UNIPOLARITY

Fuzzy set theory is often used to partition a universe into two
subsets if partition criteria are not crisp. This statement directly
corresponds to decision-making process: a space of premises
and priorities should be split into two partitions corresponding
to positive and negative decisions.

Polarity is a feature of operations performed on a scale
rather than the scale itself. The prominent example, as assumed
above, is the fuzzy set theory. Fuzzy sets defined in a universe
X are represented by membership functions. A fuzzy set F
is expressed as the membership function µF : X → [0, 1],
where the unipolar unit interval is a scale of possible values.
What is important is that both the scale and the operations
performed are considered together. The operations correspond
to membership functions max, min and 1− what formally
defines a system F = ([0, 1]X ,max,min, 1−), where [0, 1]
is the scale, max, min and 1− are mappings with the scale
is the co-domain. It is worth drawing attention that the
character of both union and intersection is independent on
values of arguments, i.e. max/min always take the value of the
greater/smaller argument respectively. Likewise, 1− always
completes to one.

A. Interpretation

Partitioning the universe into two complementary sets sug-
gests a comparable significance of both sets unless additional
principle is given. In such partitioning elements of the universe
can be classified as true and false, like and dislike, good and
bad, etc. without any emotional evaluation of these terms. We
will simply talk about positive and negative information, again

- without emotional evaluation of both terms. Using classical
aggregators we can choose between all good criteria or one
good criterion. The first one, where the elements classified as
good one must have all criteria good, is implemented by con-
junction. The second one, where the element classified as good
can have only one good criterion, is implemented by disjunc-
tion. Aggregation connectives, conjunction, and disjunction,
raise clear asymmetry under complement. If elements of one
set are classified as having all criteria good, elements of the
complementary set must have at least one criterion bad instead
of expected the same condition of all criteria bad. Keeping the
same condition (either all criteria or at least one criterion) in
the definition of both sets raises troubles concerning the law
of excluded middle. Following this way of thinking we need
other connectives that will balance aggregation of decisions
based on a singular criterion. The above discussion leads to
the conclusion that classical fuzzy set theory is asymmetrical
concerning processing opposite values of given attributes.

B. Triangular Norms

1) t-norms and t-conorms: Triangular norms were intro-
duced in [20] and then studied in [16], [22]. Triangular norms:
t-norm t and t-conorm s, are mappings t : [0, 1]×[0, 1]→ [0, 1]
and s : [0, 1]× [0, 1]→ [0, 1] satisfying the following axioms:

1. t(a, t(b, c)) = t(t(a, b), c)
s(a, s(b, c)) = s(s(a, b), c) associativity

2. t(a, b) = t(b, a)
s(a, b) = s(b, a) commutativity

3. t(a, b) ≤ t(c, d) if a ≤ c & b ≤ d
s(a, b) ≤ s(c, d) if a ≤ c & b ≤ d monotonicity

4. t(1, a) = a for a ∈ [0, 1] boundary
s(0, a) = a for a ∈ [0, 1] conditions

min and max mappings are special examples t-norm and
t-conorm respectively. Therefore, t-norms and t-conorms can
be seen as generalization of operations on fuzzy sets.

t-norms and t-conorms are dual operations in the sense
that any given dual t-norm t and t-conorm s satisfy the
De Morgan’s laws:

s(a, b) = 1−t(1−a, 1−b) and t(a, b) = 1−s(1−a, 1−b) (2)

In this study, the following well-known pairs of dual t-norms
and t-conorms are used:

• min/max, min(x, y)/max(x, y),
• product/probabilistic sum, xy/x+ y − xy.
2) Additive Generators: t-norms can be generated by addi-

tive or multiplicative generators, cf. [16], [22]. In this study,
additive generators are used to define t-norms and t-conorms.
Let f : [0, 1] → [0, d] be a non-decreasing mapping with
[0, d] being a closed subinterval of the extended real semiline
[0,+∞]. Then the pseudo-inverse of the mapping f is defined
by the formula f−1 : [0,+∞] → [0, 1] such that f−1(y) =
sup{x ∈ [0, 1] : f(x) < y}. Likewise, if the mapping f is non-
increasing, then the pseudo-inverse is defined by the formula
f−1 : [0,+∞] → [0, 1] such that f−1(y) = sup{x ∈ [0, 1] :
f(x) > y}. We restrict our discussion to strictly monotonic



and continuous bijections with f(0) = 0 for an increasing
mapping and f(1) = 0 for a decreasing mapping f . Therefore
we get (f−1)−1 = f in the interval [0, 1] and f−1(y) = 1 for
y > d for an increasing mapping f and f−1(y) = 0 for y > d
for a decreasing mapping f . A mapping q : [0, 1]2 → [0, 1]
such that q(x, y) = f−1(f(x) + f(y)) is a t-norm for the
decreasing f and t-conorm for the increasing f . Moreover,
norms that are monotonic and continuous are called strict
norms assuming strict monotonicity. A detailed discussion
on additive generators of triangular norms and conorms is
presented in [16].

The following mappings are employed to illustrate additive
generation of t-norms and t-conorms: (i) arctanh and its inverse
and (ii) arcsin and its pseudoinverse:
(i) f : [0, 1] → [0,+∞], f−1 : [0,+∞] → [0, 1] such that

f(x) = arctanh(x), f−1(x) = tanh(x)
(ii) f : [0, 1] → [0,+∞], f−1 : [0,+∞] → [0, 1] such that

f(x) = arcsin(x), f−1(x) = sin(min(x, π/2)).
3) Limits for t-norms and t-conorms: It is worth to under-

line that t-norms and t-conorms are bounded by t-norm min
and t-conorm max, i.e. for any t-norm t, any t-conorm s and
any x, y ∈ [0, 1] the following inequalities hold:

t(x, y) ≤ min(x, y) ≤ max(x, y) ≤ s(x, y) (3)

IV. BIPOLARITY

A. Symmetrization of the scale

A classical fuzzy set A in the universe X can be defined
in terms of its membership function µ : X → [0, 1], where
the value 0 means the exclusion of the element from the set
while values greater than 0 express the grade of inclusion
of the element into the set. However, membership function
does not define a grade of exclusion, the grade of negative
information. Therefore, the fuzzy sets theory distinguishes
grades of inclusion and reserves only one value - 0 - for
exclusion what raises the asymmetry of this interpretation.

We can split values of a given criterion in the spirit of
good and bad allocating the values of the interval [0, 0.5) as
pieces of negative information relevant to bad values and the
values of the interval (0.5.1] as pieces of positive information
relevant to good values. The value 0.5, the center of the unit
interval [0, 1], is a numerical representation of the state of
no negative/positive information. Being compatible with the
common meaning of membership function lets assume that
the greater the value of positive information, the stronger the
good value of the criterion. By symmetry, the smaller the
value of negative information, the stronger the bad value of the
criterion, cf. Figure 2. An extension of this discussion leads
to necessity/possibility measures, cf. for instance [6].

This interpretation is well-matched with the common sense
of the ordering of the negative/positive values. The ordering
could be seen as monotonicity of negative/positive information
mapping: it starts from the left end of the unit interval
representing strong negative information then goes toward
the middle of the unit interval diminishing the strength of
negative information, then crosses the middle point of the unit

Fig. 2. Symmetry expectation in a process of information aggregation

Fig. 3. Asymmetry of classical triangular norms

interval and then goes towards the right end of the unit interval
increasing strength of positive information.

This interpretation is also well-matched with the common
sense of symmetry of the negative/positive values with the
symmetry center at the value 0.5. The linear transformation
b(x) = 2x− 1 of the unit interval [0, 1] into the symmetrical
interval [−1, 1] points out the symmetry. In this transforma-
tion negative information is mapped to the interval [−1, 0),
positive information - to the interval (0, 1] and the state of no
information - to the value 0.

B. Asymmetry of connectives

The fuzzy connectives min and max stay asymmetrical even
if adapted to the symmetrical bipolar scale of the interval
[−1, 1], cf. II-A. They get their values from the maximal
argument (maximum) and the minimal argument (minimum).
Fuzzy connectives min and max were generalized to triangular
norms: maximum is an example of t-conorms, the minimum is
an example of t-norm, cf. [22]. Strong t-norms and t-conorms,
the special cases of triangular norms, have an interesting
property: if both arguments are greater than 0 and smaller than
1, the result of strong t-conorm exceeds the greater argument
while the result of strong t-norm is less than smaller argument,
cf. [16]. This property might be interpreted as asymmetry:
union tends to positive information while intersection tends
to negative information despite the values of their arguments.
In other words, symmetrical interpretation of the unipolar
scale makes that strong t-norm increases the certainty of
negative information and decreases the certainty of positive
information. And vice versa, strong t-conorm decreases the
certainty of negative information and increases the certainty
of positive information. This observation emphasizes again the
asymmetry of fuzzy connectives, cf. Figure 3.

The problem of asymmetry of fuzzy connectives was dis-
cussed in number of papers, e.g. [5], [11], [12], [23], [25], [29].
In these papers, discussion on the asymmetry of fuzzy sets and
uncertain information processing was undertaken for different
reasons, though common conclusions led to the importance of
the symmetry problem in fuzziness and uncertainty.

C. Negativeness versus Symmetry of Scale and Connectives

The mapping of negative and positive information in the
scale of unit interval [0, 1] as well as in the symmetrical



interval [−1, 1] bring incompatibility with connectives, so the
question is raised if negative information can be considered
as a subject of uncertainty. The question seems justified since
negative information is hardly interpretable in classical set
theory and classical fuzzy sets theory. However, negative
information plays an important role in different fields. From
psychological studies, it is known that human beings convey
symmetry in their behavior, cf. [17]. One can be faced with
positive (gain, satisfaction, etc.) or negative (loss, dissatisfac-
tion, etc.) quantities, but also with a kind of disinterest (does
not matter, not interested in, etc.). For instance, one either
likes to listen to the music while reading an interesting novel
or does not like to listen to the music then or even music is
only a background not affecting him at all. These quantities
could be interpreted in the context of positive/negative/neutral
information. On the other hand, in economics a psychology-
related attempt to decision making process with uncertain
premises overheads traditional models of customer behavior.
The pseudocertainty effect is a concept from prospect theory.
It refers to people’s tendency to make risk-averse choices if
the expected outcome is positive, but risk-seeking choices to
avoid negative outcomes. Their choices can be affected by
simply re-framing the descriptions of the outcomes without
changing the actual utility, cf. [14]. Aggregation of positive
and negative premises leads to the implementation of a crisp
decision. Modeling of such an attempt requires the processing
of positive/neutral/negative information.

An interesting contribution to positive/negative information
maintenance could be found in the theory of intuitionistic
fuzzy sets [1] and the very similar theory of vague sets [8].
Another approach to positive/negative information is discussed
in twofold fuzzy sets, cf. [6]. In these theories, uncertain infor-
mation is represented as a pair of positive/negative components
numerically described by membership values from the unit
interval [0, 1]. Both components are tied with a degree of
indeterminacy which stays that the sum of membership values
of both components cannot exceed the value 1. However, no
tool to combine both components is provided in these theories.
Since information aggregation leading to non-ambiguous result
is a clue issue in decision-making process, these theories must
be supported by information aggregators in such a process.

The very early medical expert system MYCIN, cf. [2],
combine positive and negative information by somewhat ad
hoc invented aggregation operator. It was shown that the
MYCIN aggregation operator is a particular case in a formal
study on the aggregation of truth and falsity values, cf. [4] for
further discussion on the aggregation of positive and negative
information.

Having many premises, usually uncertain ones, we need to
produce unique, non-ambiguous information that yields the
decision. Therefore aggregation of information is crucial in
decision-making process. The topic of information aggregating
has been studied in number of papers, cf. interesting consid-
erations in e.g. [3], [19], [24], [26], [29].

Fig. 4. Extension of crisp sets to fuzzy sets

D. Symmetrizing fuzziness

Fuzzy connectives stay asymmetrical with a symmetrized
scale. The incompatibility of symmetrical interpretation of the
scale and asymmetrical behavior of fuzzy connectives suggests
incorrectness of scale symmetrization. This discussion leads to
the hypothesis that Zadeh’s extension of crisp sets to fuzzy
sets, cf. [28], relied on dispersion of positive information
of the crisp point {1} into the interval (0, 1]. However,
negative information of the point {0} was still bunched in
this point, cf. Figure 4. This hypothesis can be supported by
ideas of balanced triangular norms, cf. [10], and uninorms
and nullnorms, cf. [16], [27]. These ideas raise qualitatively
different approaches to the extension of fuzzy connectives.

E. Balanced symmetrization of the scale

Both balanced t-norms and t-conorms, as well as uninorms
and nullnorms, are created dispersion of information applied
to the point {0}, cf. Figure 5. This operation extends classical
fuzzy sets to balanced fuzzy sets, c.f. [9], [10]. The extension
is being done by dispersion of crisp negative information
bunched in the point {0} into the interval [−1, 0) without
affecting fuzzy sets based on the unit interval (0, 1]. Thus,
classical fuzzy sets will be immersed in a new space of
balanced fuzzy sets. Since both kinds of information - positive
and negative - are assumed to be equally important, it would
be reasonable to expect that such an extension will provide
a kind of symmetry of positive/negative information.

Concluding, the following symmetry principle can be for-
mulated: the extension of fuzzy sets to balanced fuzzy sets
relies on spreading negative information (information about
exclusion) that fits the crisp point {0} of fuzzy set into
the interval [−1, 0). The extension will retain properties of
classical operators for positive information. It will provide
the symmetry of positive/negative information with the center
of symmetry placed in point 0, c.f. Figure 5. It is worth
to underline that this operation is entirely different than the
simple re-scaling of the unit interval [0, 1]. The linear mapping
f(x) = 2x− 1 was replaced by the transformation that is not
a function: it allocates the whole interval [−1, 0) as a “value”
in the point 0. Consequently, point 0 becomes “empty” what
can be seen, intuitively and eventually, as its neutrality, i.e. it
brings no positive or negative information.

F. The symmetry of balanced connectives

Triangular norms referred to in Section III-B generalize
the concept of set operations union and intersection, cf.
also [22]. Triangular norms, t-norms, and t-conorms, together



Fig. 5. Extension of fuzzy sets to balanced fuzzy sets

Fig. 6. Balanced extension of fuzzy operators

with negation, the basic fuzzy connectives are the subject of
the discussion of connectives symmetrization.

The idea of a balanced extension of classical fuzzy connec-
tives must be compatible with the concept of a balanced ex-
tension of the unipolar scale and with the symmetry principle
formulated in Section IV-E. This requirements and symmetry
of the balanced fuzzy scale of the interval [−1, 1] determines
the domain of symmetrized balanced connectives to the square
[−1, 1]× [−1, 1]. Preservation of fuzzy sets properties requires
the protection of properties of classical fuzzy connectives
on the unit square [0, 1] × [0, 1]. Conversely, the expected
symmetry of positive and negative information puts strict
restrictions on the balanced extension of fuzzy connectives on
the square [−1, 0]×[−1, 0]. On the other hand, the same factors
determine the co-domain of symmetrical fuzzy connectives
to the interval [−1, 1]. This idea of the balanced extension
of classical fuzzy connectives is outlined in Figure 6. It is
clear, that balanced connectives on the square [−1, 0]× [−1, 0]
are a simple reflection of respective classical connectives
while balanced t-conorm is not explicitly constrained in the
remaining quarters of the domain. However, monotonicity
forces balanced t-conorms to be equal to 0 in these two
quarters.

This discussion leads to the definition of balanced negation,
balanced t-norms and balanced t-conorms: N : [−1, 1] →
[−1, 1], N(x) = −x , T : [−1, 1] × [−1, 1] → [−1, 1] and
S : [−1, 1]× [−1, 1]→ [−1, 1] assuming that they satisfy the

following axioms in the whole domain [−1, 1]× [−1, 1] unless
defined explicitly:

1., 2., 3.: associativity, commutativity, and monotonicity
4. T (1, a) = a for a ∈ [0, 1] boundary

S(0, a) = a for a ∈ [0, 1] conditions
5. T (x, y) = N(T (N(x), N(y)))

S(x, y) = N(S(N(x), N(y))) symmetry

The direct conclusions are:
(i) balanced t-norm and balanced t-conorm restricted to the

unit square [0, 1]×[0, 1] are equivalent to classical t-norm
and classical t-conorm, respectively,

(ii) balanced t-norm and balanced t-conorm restricted to the
square [−1, 0]× [−1, 0] are isomorphic with the classical
t-conorm and classical t-norm, respectively,

(iii) balanced t-conorm vanishes on the squares [−1, 0]×[0, 1]
and [0, 1]× [−1, 0]

V. PROCESSING REAL-WORLD DATA

As an illustration of the employment of the introduced
unipolar and bipolar models, we follow discussion carried out
in [13]. The experimental evaluation of models under interest
refers to the Analytic Hierarchy Process (AHP) as a tool for
multi-criteria decision-making, cf. [21]. In the framework of
AHP, Saaty evaluated four US cities (Bethesda, Boston, Pitts-
burgh, and Santa Fe) based on five criteria (Culture, Family,
Housing, Job, and Transport) and priorities for these criteria.
The data used for processing with the unipolar model were
taken directly from [21]. The values of priorities and premises
(evaluation of each criterion for each city) are outlined in the
left half of Table I. Those data have positive lineament, which
can be roughly described with the phrase: ”the more intensive
the feature, the more desirable the object”.

However, it is apparent that when a human being evaluates
an object in a natural scenario, he does not restrict himself
to positive features only. She/he considers negative aspects
too. The main drawback of the model introduced in [21] is
that it does not take into account negative features. About
the presented real-life example, we may propose Extreme
weather, Pollution, Noise, Corruption, and Crime as important
negative features that may be considered when we compare
cities. The values of the premises and priorities are outlined
in the right half of Table I. The values of negative features are
cited from [13] since neither [21] discusses them, nor is this
example available elsewhere in the literature. The premises and
priorities for negative features are expressed using negative
values from the [−1, 0] interval. The meaning of a negative
value is understood as follows: the more negative the value
(the closer to -1) the more unwanted this feature is.

In this section, we make use of the data explained above
processed with different instantiations of the formula (1).
We consider three specific models with an operation ? fit
with different triangular norms and balanced triangular norms.
Namely, the pairs of following t-conorms and t-norms and their
balanced counterparts are used: (i) maximum / minimum and
probabilistic sum / product arc, (ii) norms generated with asin



TABLE I
EVALUATION OF CITIES FROM [21] AUGMENTED WITH NEGATIVE FEATURES: PRIORITIES, PREMISES

Priorities: 0.152 0.433 0.072 0.305 0.038 −0.152 −0.433 −0.072 −0.305 −0.038

Premises: Cultur. Family Housing Jobs Transp. Pollut. Crime Ex.Weat. Noise Corrupt.

Bethesda 0.474 0.330 0.459 0.500 0.467 −0.250 −0.125 −0.125 −0.125 −0.125

Boston 1.000 0.155 0.082 1.000 0.295 −0.125 −0.875 −0.750 −0.500 −0.500

Pittsburgh 0.424 1.000 1.000 0.155 1.000 −0.200 −0.875 −1.000 −0.625 −0.750

Santa Fe 1.000 0.089 0.209 0.135 0.115 −0.375 −0.625 −0.675 −0.700 −0.750

and atanh additive generators. Outcomes from these operations
are compared with Saaty’s sum / product employed in [21].

A. Unipolar Models with Positive Information

In this discussion, t-norms and t-conorms exemplify
the formula (1). Namely, having vectors of premises
p = [p1, p2, . . . , pc]

T and priorities r = [r1, r2, . . . , rc]
T ,

i = 1, 2, . . . n and pi, ri ∈ [0, 1], we can compute an outcome
for given t-conorm s and t-norm t:

d = s
(
t(p1, r1), t(p2, r2), . . . , t(rn−1, p−1), t(rn, pn)

)
(4)

where, due to associativity of the t-conorm s:
s
(
x1, x2, ..., xn−1,xn

)
= s

(
x1, s

(
x2, s(..., s(xn−1, xn)...)

))
The outcome of Saaty’s sum/product is computed with the
formula d =

∑n
i=1 pi ·ri. Of course, the Saaty’s outcome falls

into the non negative real semiline, 0 ≤ d, while t-conorm/t-
norm’s result is in the unit interval [0, 1].

B. Unipolar Models with Positive and Negative Information

Processing positive and negative information in the unipolar
model requires assumptions concerning the numerical repre-
sentation of such data. In this study, we employ a standard
assumption: fiercely positive data is represented with values
close to one, while strongly negative data - with values
close to zero. Based on this assumption, data from the right
half of Table I are linearly mapped to the unit interval, cf.
Section II-A. Then, the processing is performed as described
in the previous Section V-A. Of course, the outcome falls
into the unit interval [0, 1] for triangular norms used or can
be (theoretically) any non-negative real number for Saaty’s
sum/product.

C. Positive and Negative Information and Bipolar Model

The bipolar model is alike the unipolar model outlined in
Section V-A. Unlike in the unipolar model, balanced t-conorms
and balanced t-norms are employed in formula (4) in place
of t-conorms and t-norms. Of course, in this case, computed
outcome falls into the bipolar unit interval [−1, 1] instead of
the unipolar one [0, 1]. With regard to Saaty’s computation, the
product of opposite factors is taken as a negative number while
we do not have a case with factors of opposite signs. Anyway,
in a case of factors of opposite signs would be reasonable to
assume that Saaty’s product vanishes.

D. Results

In [21], the final evaluation of each city was aggregated
using the sum of multiplied premises and corresponding
priorities. In this paper, additionally, the data are subjected
to aggregation with triangular norms. Hence, we can compare
the literature-based method with our approach.

Then, the same methods of aggregation were employed to
process positive and negative data with the unipolar model.
In particular, we used the sum of products (following Saaty’s
line of thought) and, in addition, we used the aforementioned
four pairs of dual t-conorms and t-norms.

Finally, to process positive and negative data within the
bipolar model, we applied aggregation methods derived from
those methods that were used in unipolar models, i.e. the sum
of products and balanced extension of the mentioned pairs of
dual triangular norms.

The outcome of the cities evaluation is presented in Fig-
ure 7. We see that, in general, results are qualitatively consis-
tent. Only two estimations differ: positive data in the unipolar
model aggregated with triangular norms generated by the sin
additive generator and in positive and negative data in the
bipolar model aggregated with max/min triangular norms.

Processing original Saaty’s positive data ranks Pittsburgh
as the best city, while Santa Fe is ranked as the worst.
Notice, though, that the differences in evaluations are not big.
The biggest numerical difference is in Bethesda’s evaluation
with sin/arcsin generated triangular norms. Characteristics of
sin/arcsin functions are similar to identity mapping for small
arguments and this causes the t-norm to be strongly decreasing
for such arguments. This makes the final result smaller than
in other cases.

We can draw similar conclusions when positive and negative
data are processed with the unipolar model for the first two
aggregators: the sum of products and max/min triangular
norms. However, the other three triangular norms do not
behave in this way, for them, the evaluation reaches the highest
value for all cities. This is not surprising, because these t-
conorms used as aggregators accumulate positive arguments,
despite their values.

Processing the same positive and negative data as before,
but with the bipolar model, produces interesting results. All
methods evaluate Santa Fe as the worst city. Bethesda is the
leader in Saaty’s sum of products, while Pittsburgh is the
best according to four other evaluation methods. Bethesda
overtakes Boston. Notice that the differences in evaluations



Fig. 7. Cities evaluation in different models.

are more significant than in unipolar models. The substan-
tial numerical difference in max/min evaluation for Boston
results from the insensitivity of these triangular norms, cf.
Section III-B.

VI. CONCLUSIONS

In this paper, we study multi-criteria decision-making mod-
els in the context of different scales and polarities employed in
model construction. The concepts introduced in this study rely
on the two-step procedure of premises and priorities aggre-
gation in different quantitative environments. The discussion
concerns different types of scales used in data processing
and of the polarity of employed operations. These aspects are
reflected in the human intuitive expectation of symmetry and
asymmetry of information processing. We can capture nontriv-
ial aspects of decision-making including imprecise knowledge
and polarities of information. The key concepts introduced in
this study are reflected in human expectation and interpreta-
tion of information processing and decision making. Besides,
we present a discussion of different types of operators that
could be used in decision making. This discussion is oriented
on operators’ suitability to represent human expectation and
interpretation. The developed methodology has been applied
to an experiment on real data.

In future research, one could extend the study by looking
into other imperfect information representation models, espe-
cially including intuitionistic fuzzy sets, interval-based fuzzy
sets and interval based balanced fuzzy sets.
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