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Abstract—This contribution proposed a novel approach for
an ensemble method to increase classification accuracy and at
the same time minimizing ensemble classifiers by applying the
distributivity law which will aggregate the classifiers accordingly.
Ensemble methods have been introduced as a useful and effective
solution to improve the performance of the classification. Despite
having the ability of producing the highest classification accuracy,
ensemble methods have suffered significantly from their large
volume of base classifiers. Nevertheless, we could overcome this
problem by combining some of the classifiers. We employ here
the classical version of the k Nearest Neighbor classifiers (k-
NN classifiers). Moreover, this method requires the use of some
suitable aggregation operators for which either the distributivity
law or one of its respective inequalities occurs. A good example
of such aggregations were average functions and triangular
norms and conorms. The paper includes primarily the results of
experiments performed on the cyber attacks in network dataset
obtained from the machine learning repository UCI.

Index Terms—Ensemble method; k-NN method; Distributivity
law; Aggregation functions; Accuracy.

I. INTRODUCTION

Machine learning is one of the most promising approaches
to address difficult decision problems. The general idea is very
simple: instead of modeling a solution explicitly, a domain
expert provides example data that demonstrate the desired
behavior on representative problem instances. A suitable ma-
chine learning algorithm is then trained on these examples
to reproduce the expert’s solutions as well as possible and
generalize it to new, unseen data. Ensemble methods or
multiple classifiers are known as learning algorithms that
train a set of classifiers and combine them to achieve the
best prediction accuracy [1]. Previous works have shown that
combining the predictions of a collection of classifiers can be
an effective strategy to improve generalization performance,
such as bagging [2], boosting [3], stacking [4], ensemble
selection [5] and hybrid intelligent system [6]. The most
fundamental concepts of ensemble methods consist of two
main stages which is the production of multiple base classifier
models and their combination via aggregation.

Aggregation functions proved to be an effective tool in
many application areas [7], among which can be distinguished
information retrieval [8]. It simply refers to the calculations
performed on a data set to get a single number that accurately
represents the underlying data. Actually, there are also many
approaches to use domain knowledge and improve the quality

of data mining models (see e.g., [9]-[13]). Thus, the use of
aggregation functions can be treated as a way to use domain
knowledge to improve the quality of classifiers.

Classification and cyber attack detection is a major chal-
lenge for web and network security. The increasing data traffic
in network and web invites multiple cyber attack. The dynamic
nature and large number of attributes of cyber data faced a
problem of cyber attack detection and prevention. Data mining
algorithms that classify the attacks must do it accurately. They
must reduce unclassified attack to improve accuracy.

This study accordingly addresses the issue of aggregating
the k-NN classifiers, through the use of distributivity law
and preserving the relatively high classification accuracy. In
general, the accuracy parameter (ACC) is the ratio of number
of correct predictions to the total number of input samples. It
usually works well if there are comparable number of samples
belonging to each class (balanced decision classes). We will
show that the new method of classification presented in this
paper increases its quality compared to the accuracy obtained
on raw data.

The paper is organized as follows. In Section 2, notions con-
nected with aggregation functions and distributivity between
them are recalled. Section 3 discusses the k Nearest Neighbor
algorithm. In Section 4, details concerning the used Data Set
are presented. Section 5 describes the experimental setting and
results. Finally, Section 6 summarizes this work.

II. DISTRIBUTIVITY LAW OF AGGREGATION FUNCTIONS

Mathematical models based on human thinking, information
processing and decision making require continuous improve-
ment. Among the key issues is to tackle information over-
loading we can distinguish the development of the process
known as data aggregation, which plays an important role in
many areas of human interest. In the most general sense, the
aggregation process is a synthesis of many numerical data to
a single value, in some ways, a representative for all of them.
This type of projection methods of multidimensional space
input data to one dimension is usually carried out by the
so-called aggregation functions (also known as aggregation
operators or aggregation operations). Although the idea of
aggregating information into a representative output is quite
ancient, the mathematical study of aggregation functions has
been formalized quite more recently, and since then have been
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extensively investigated and most of the known results in this
topic have been compiled in several books (see, e.g., [14], [15]
or [16]), that provide details of many aggregation methods.

The formal definition of an aggregation function in a binary
case is the following.
Let I = [a, b] be a subinterval (scale) of a extended real line.
It is a matter of rescaling to fix I = [0, 1] as more often
applicable.

Definition 1 (cf. [17]). A binary aggregation function is a
mapping A : [0, 1]2 → [0, 1] such that
A1) A(0, 0) = 0 and A(1, 1) = 1 (boundary conditions);
A2) A is increasing in both variables i.e. A(X,Y ) ≤ A(Z, T )
if (X,Y ) ≤ (Z, T ), X,Y, Z, T ∈ [0, 1].

There are a huge number of aggregation functions which
are grouped into different families such as means, triangular
operations, copulas, Choquet and Sugeno integrals, uninorms,
nullnorms and many others (about 100 families). Below are
examples of families of aggregation functions, which can
easily be applied to the problem of classification.

Definition 2 (cf. [7]). A mean (or averaging function) M is
an idempotent aggregation function, i.e. M(X,X) = X for
all X ∈ [0, 1].

Definition 3 (cf. [18], p. 4,11). A triangular norm T (triangu-
lar conorm S) is a commutative and associative aggregation
function having a neutral element e = 1 (e = 0).

TABLE I
EXAMPLES OF BASIC MEANS, T-NORMS AND T-CONORMS (SEE [19]).

Mean
M∧(X,Y ) = min(X,Y ) M∨(X,Y ) = max(X,Y )

MA(X,Y ) = X+Y
2 MG(X,Y ) =

√
XY

MH(X,Y ) =

{
0, X = Y = 0
2XY
X+Y , elsewhere

MP (X,Y ) =

√
X2+Y 2

2

T-norm T-conorm
TM (X,Y ) = min(X,Y ) SM (X,Y ) = max(X,Y )
TP (X,Y ) = X · Y SP (X,Y ) = X + Y −X · Y
TL(X,Y ) = max(X + Y − 1, 0) SL(X,Y )) = min(X + Y, 1)

Distributivity of multiplication with respect to the addition
occurs naturally in the arithmetic of real numbers, in vector
and matrix calculus. In general, it specifies the relationship
between two binary functions including aggregation functions.

Definition 4 (cf. [20], p. 318). Let F and G be some binary
functions in the non-empty set U , where F is symmetric. We
say that F is distributive over G if for all X,Y, Z ∈ U the
following equality is fulfilled

F (X,G(Y, Z)) = G(F (X,Y ), F (X,Z)). (1)

If in Definition 4 an equality is replaced by inequalities
” ≤ ” or ” ≥ ”, respectively, then we say that
F is subdistributive with respect to G if

F (X,G(Y, Z)) ≤ G(F (X,Y ), F (X,Z)), (2)

F is superdistributive with respect to G if

F (X,G(Y,Z)) ≥ G(F (X,Y ), F (X,Z)). (3)

At present, many studies are dealing with the distributivity
law for different operators defined on the unit interval that are
essential in decision making and utility theories [21], [22],
fuzzy logic theory or in image processing [23], [24].

Due to the demand for these practical applications, dis-
cussion on the distributivity law between various functions,
including aggregation functions, have revived (see e.g., [25],
[26], [27],[19], [28]). [29] characterized, among others, solu-
tions of the distributivity equation for averaging and quasilin-
ear functions.

The lack of distributivity is a big problem in any algebraic
transformations, and therefore also in computer modeling (see
e.g., [30]). In general, aggregations are not distributive from
each other, and still less mutually distributive. In our opinion
the best is to illustrate this problem on the example of means
and triangular norms and conorms (Table I). As a result,
between the right and the left side of the distributivity law
(DL) there may occur four different relations L ≤ P , L ≥ P ,
L = P and L ‖ P (both sides of (1) are incomparable), as
was summarized in Table II.

TABLE II
DISTRIBUTIVITY OF T-NORMS, T-CONORMS AND MEANS (SEE [19]).

F \G SL SP SM MP MA MG MH TM TP TL

SL ≤ ‖ = ≥ ≥ ‖ ‖ = ‖ ‖
SP ≤ ≤ = ≥ = ≤ ≤ = ≥ ≥
SM ≤ ≤ = ≤ ≤ ≤ ≤ = ≥ ≥
MP ≤ ≤ = = ≤ ≤ ≤ = ≥ ≥
MA ≤ ≤ = ≥ = ≤ ≤ = ≥ ≥
MG ≤ ≤ = ≥ ≥ = ≤ = ≥ ‖
MH ≤ ≤ = ≥ ≥ ≥ = = ‖ ‖
TM ≤ ≤ = ≥ ≥ ≥ ≥ = ≥ ≥
TP ≤ ≤ = = = = = = ≥ ≥
TL ‖ ‖ = ≤ ≤ ≥ ≥ = ‖ ≥

III. K-NN ALGORITHM

Classification is a technique of data mining that is concerned
about developing models that accurately predicts the classes
of data object. After this is done, the developed model is then
used to predict the class of objects whose class is not known.
Data mining offers various techniques for classification such
as k-NN, decision tree, SVM and rule based classification.

The k Nearest Neighbor (k-NN) classifier is one of the
most widely used supervised classification methods [7]. In
supervised learning problems, objects from a training set are
preclassified into several categories or classes. To deal with
such type of data we use the decision tables of the form
T = (U,A, dec) in Pawlak’s sense [31], where A is a set
of attributes or conditions (columns) in the data table, U is
a set of objects (rows) in the data table and dec /∈ A is a
distinguished attribute called decision attribute. In practice,
the decision tables contain a description of a finite sample
U1 of objects from larger (even maybe infinite) universe U .
Conditions are such attributes that their values are known



for all objects from U , but decision is a function defined
on the objects from the sample U1 only. To construct the
k-NN classifier the distance measure and the best number
k of nearest neighbors must be chosen. As a distance the
Euclidean or the ”city” measure can be used. To select the best
k it is necessary to calculate a probability of misclassification
for k = 1, 2, ..., n, where n is a number of of objects in
the training set, called also a learning or a reference set.
The k which offers the minimum misclassification probability
estimated from the learning set should be taken as optimal
one.

In this technique when a new unclassified item x must be
classified, the classifier searches the available training data and
retrieves the k nearest data items (neighbors) to x according
to a distance metric. Then, x is classified to the most common
class indicated via a majority vote of the nearest neighbors.
If more than one classes are most common (ties in voting),
the major class is determined either randomly or by choosing
the class of the nearest neighbor. The k-NN classifier is
effective, easy to implement and has many applications. The
classification cost depends on the size of the training set. In
originally defined version of k-NN for each incoming new
item x, the classifier has to compute distances between x and
all training items. Unfortunately, cost of such algorithm may
be very high and prohibitive for large data sets. However,
nowadays more efficient versions of k-NN are known and
used. For example, two of them, namely KDTree and BallTree,
are implemented in Python programming language library
scikit learn. See also [32] or references in that paper.

In order to test the performance of a classification model,
its classification accuracy (ACC) is assessed, i.e.
Accuracy = Number of correct predictions

Total number of predictions made .

IV. DATA SET

In our deliberations we use KDDCup’99 of cyber attack
in military network dataset (DARPA 1998 program) obtained
from UC Irvine (UCI) Machine Learning Respository [33].
A variety of attacks incorporated in the dataset fall into
following four major categories:
• Denial of Service Attacks (DoS): A denial of service attack
is an attack where the attacker constructs some computing
or memory resource fully occupied or unavailable to manage
legitimate requirements, or reject legitimate users right to use
a machine.
• User to Root Attacks (U2R): User to Root exploits are a
category of exploits where the attacker initiate by accessing
a normal user account on the system and take advantage of
some susceptibility to achieve root access to the system.
• Remote to User Attacks (R2L): A Remote to User attack
takes place when an attacker who has the capability to send
packets to a machine over a network but does not have an
account on that machine, makes use of some vulnerability to
achieve local access as a user of that machine.
• Probes: Probing is a category of attacks where an attacker

examines a network to collect information or discover well-
known vulnerabilities. These network investigations are rea-
sonably valuable for an attacker who is staging an attack in
future. An attacker who has a record, of which machines and
services are accessible on a given network, can make use of
this information to look for fragile points.

In KDDCup’99 dataset these four attack classes (DoS, U2R,
R2L, and probing) are divided into 22 more particular attack
classes as shown in Table III. The KDDCup’99 datasets are
divided into two parts: the training dataset and the testing
dataset. The testing dataset contains not only known attacks
from the training data but also unknown attacks. Since 1999,
KDDCup’99 has been the most wildly used data set for the
evaluation of anomaly detection methods. DARPA’98 is about
4 gigabytes of compressed raw (binary) tcp-dump data of 7
weeks of network traffic, which can be processed into about 4
898 431 single connection records. For each connection consist
41 features marked as either normal or an attack, with exactly
one particular attack type. 41 various quantitative (continuous
data type) and qualitative (discrete data type) features were
extracted among the 41 features, 34 features are numeric and
7 features are symbolic - omitted in our experiments.

TABLE III
DIFFERENT TYPES OF ATTACKS IN KDDCUP’99 DATASET.

22 Attack Classes Main Attack Classes Cardinality of Classes
normal − 972 781
smurf DoS 2 807 886
neptune DoS 1 072 017
satan Probing 15 892
ipsweep Probing 12 481
portsweep Probing 10 413
nmap Probing 2 316
back DoS 2 203
warezclient R2L 1 020
teardrop DoS 979
pod DoS 264
guess passwd R2L 53
butter overflow U2R 30
land DoS 21
warezmaster R2L 20
imap R2L 12
rootkit U2R 10
leadmodule U2R 9
ftp write R2L 8
multihop R2L 7
phf R2L 4
perl U2R 3
spy R2L 2

To perform our experiments we sampled data as follows:

• Chose 10 largest classes of attack types, including normal
(no attack) and 9 attacks classes (see Table III).

• Took 181216 records (data sample named E181216):

◦ Took all 45304 objects from smallest decision classes
(satan - 15892, ipsweep - 12481, portsweep - 10413,
nmap -2316, back - 2203, warezclient - 1020,
teardrop - 979);

◦ Chose randomly 45304 objects from remaining
classes (normal, smurf, neptune).



V. AGGREGATE (ENSEMBLE) METHOD FOR K-NN
CLASSIFIERS

As mentioned in the Introduction many researchers have
proposed various ensemble methods as learning algorithms
in data mining to improve the classifiers performance and
accuracy. There is no single ensemble methods that dominate
classification technique. Most of the previous studies focus
on the ensemble construction and ensemble combination in
improving the accuracy and performance of classification.
We add here also our approach to increase classification
accuracy and at the same time minimizing ensemble classifiers
by applying the distributivity law which will aggregate the
classifiers accordingly (see the scheme in Fig. 1).

A. Steps in the proposed classification approach

Let d0 be the decision class ”normal” (no attacks) and
d1, d2, ..., d9 denote 9 types of network attacks, respectively.
Moreover ε ∈ (0, 1) denote the threshold for classifying an
object into one of the di classes. The use of ε parameter
in experiments is described later in this chapter where the
algorithm for the classification of the test object has been
placed.

• Construct the classifiers as follows:
(1.) The P classifier - used to pre-classify an object as to

whether it belongs to decision class d0 (label 0) or
to some other decision class ¬d0 = {d1, d2, ..., dm}
(label 1);

(2.) Collection of classifiers Ci (i = 1, 2...,m) - used
to distinguish objects with decision value di (la-
bel 1) from objects from other classes ¬di =
{d1, d2, ..., dm}\{di} (label 0) without the class d0;

(3.) Collection of classifiers Pi (i = 1, 2...,m) - used
to distinguish objects with decision value di (label
1) from objects of the class d0 (label 0).

The method used for P,Pi,Ci classifiers construction:
k-NN (IBk) from WEKA API (see [34]) with Euclidean
distance and k =

√
n, where n - number of objects (c.f.

[35]).
• Determine the probability of membership to decision

class with label ”1” (weight for class labeled ”1”) for each
instance. Next construct the weight table of classifiers
P,Ci,Pi for the class labeled ”1” (classifiers as columns,
objects as rows, weights (probabilities) for class ”1” as
values).

• For a given distributivity law (1) specified in Table II
compute the value of its left side L considering the
obtained classifiers X, Y, Z in every possible combination
of their settings i.e.
X = P , Y ∈ C1, ..., C9, Z ∈ P1, ..., P9;

X = P , Y ∈ P1, ..., P9 Z ∈ C1, ..., C9;

X ∈ C1, ..., C9, Y = P , Z ∈ P1, ..., P9;

X ∈ P1, ..., P9, Y = P , Z ∈ C1, ..., C9;

X ∈ C1, ..., C9, Y ∈ P1, ..., P9, Z = P ;

X ∈ P1, ..., P9, Y ∈ C1, ..., C9, Z = P .

In the case of subdistributivity (2) and superdistributivity
(3) calculate their both sides left L and right R.

• Fix the parameter ε ∈ (0, 1).
• Determine the maximum for the previously calculated

values of both left and right sides.
• For each tested object propose decision value as follows:

If the maximum value of the left (right) side (maxaggr)
of distributivity (subdistributivity or superdistributivity)
was obtained for the i-th decision (after aggregating the
weights of the classifiers P,Ci,Pi ) and maxaggr > ε,
then propose the i-th decision value for the given object;
else if maxaggr ≤ ε then propose a neutral decision
(”normal”).

The above proposed algorithm has been optimized to im-
prove the command classification accuracy.

Fig. 1. The scheme of the proposed approach.

B. Experiments
An algorithm was implemented and tested in Java pro-

gramming language (using Weka API library for P,Ci,Pi

classifiers construction cf. [34]).
It uses the distributivity law and its corresponding inequalities
specified in Table II. The examples selected for the analysis
are summarized in the Table IV, where D1-D5 specify the
distributivity law (1) and SubD1-SubD2 and SupD1-SupD2,
respectively subdistributivity and superdistributivity for suit-
able aggregation functions.

For testing quality of classifiers we applied 10-times
train&test technique. Each time data E181216 were divided
into 2 equal subsets for training and testing, respectively. When
splitting data, the proportions of decision classes were main-
tained.



TABLE IV
EXAMPLES OF EXAMINED DISTRIBUTIVITY EQUATION (1) AND

INEQUALITIES (2), (3) INCLUDED IN TABLE II.

(1)

D1 L = TP (P,min(Ci, Pi)) = min(TP (P,Ci), TP (P, Pi)) = R
D2 L = TP (P,MA(Ci, Pi)) = MA(TP (P,Ci), TP (P, Pi)) = R
D3 L = MA(P,MA(Ci, Pi)) = MA(MA(P,Ci),MA(P, Pi)) = R
D4 L = TP (P,MH(Ci, Pi)) = MH(TP (P,Ci), TP (P, Pi)) = R
D5 L = MP (P,MP (Ci, Pi)) = MP (MP (P,Ci),MP (P, Pi)) = R

(2)
SubD1L = max(P,MA(Ci, Pi)) ≤MA(max(P,Ci),max(P, Pi)) = R
SubD2L = SP (P,MH(Ci, Pi)) ≤MH(SP (P,Ci), SP (P, Pi)) = R

(3)
SupD1L = min(P,MA(Ci, Pi)) ≥MA(min(P,Ci),min(P, Pi)) = R
SupD2L = MA(P, TP (Ci, Pi)) ≥ TP (MA(P,Ci),MA(P, Pi)) = R

To asses the quality of the proposed method the accuracy
(ACC) was used. The results of ACC measurements on the
original raw data and newly created data with the fixed
ε ∈ (0, 1) are presented in the tables located in the Appendix
Section at the end of this contribution.

Due to the large size of result tables and limited space of
this paper, for SubD1, SubD2, SupD1 and SupD2 results for
ε ∈ (0, 0.4] are presented (see Appendix). For larger ε values
and these aggregations, the following dependencies can be
observed:
• if ε increases, the overall result gradually decreases;
• for classes smurf and neptune, the results are the same

regardless of the ε value;
• for other types of attacks, the value of ACC decreases if

ε increases;
• in the case of the normal class, the increase of ε param-

eter value improves the results, and the best results are
obtained for ε = 0.9 (for SubD1 L = R = 0.997, for
SubD2 L = R = 0.991, for SupD1 L = R = 0.998 and
for SupD2 L = R = 0.999).

C. Discussion of the results

In general, we can observe that the obtained results justify
our approach of using the idea of distributivity of aggregation
functions in classification method. For each of the tested
distributivity equation D1-D5, the new classification method
gives better ACC (overall) results:
• for D1 we have the best result with ε = 0.1
• for D2 the best result is obtained at ε = 0.2 or ε = 0.3
• for D3 the best result is obtained at ε = 0.5
• for D4 the best result is obtained at ε = 0.2
• for D5 we have the best result with ε = 0.6

In the case of subdistributivity (SubD1-SubD2), unfortunately,
our method gives worse results compared to the k-NN classi-
fier calculated on raw data.
In the case of the tested superdistributivity (SupD1-SupD2):
• for SupD1 we get the best total score when ε = 0.3 (the

left side L is equal and the right side R is better than
ACC on the raw data) or ε = 0.4 (both left L and right
R are better than ACC on the raw data)

• for SupD2 the best result is obtained when ε = 0.2 (the
right side R of (3) gives better ACC than raw data) or
ε = 0.3 (both left L and right R side gives the best results)
or ε = 0.4 (the left side L is the best).

In addition, for all tested distributivity D1-D5 all of the attacks
are very vell recognized, though mostly for ε = 0.1 and
ε = 0.2. In the case of superdistributivity (SupD1-SupD2)
respective attacks are also better recognized when ε = 0.1,
except that:
• for SupD1, some attacks are better recognized using the

left side L (e.g., warezclient, teardrop), some attacks by
the right side R (satan, nmap), and some by both sides
L and R (neptune, ipsweep, portsweep),

• for SupD2, the best recognition of attacks is when using
the left side L of (3), but sometimes right side R gives
the same results.

Moreover, the potential power of the distributive law (1) is that
its right side needs to perform three operations, whereas the
left side needs only two. Thus, the distributive law gives us a
”fast algorithm” for computing and it can be vastly generalized
(see [36]).

The donator of data set KDDCup’99, i.e. Lincoln Labs said
that ”they set up an environment to simulate a typical U.S.
Air Force LAN”. They operated the LAN as if it were a true
Air Force environment, but peppered it with multiple attacks.
If so, the data may be treated as a sample of a population of
all attacks on U.S. Air Force LAN. That’s why we decided
to discover statistically significant corollaries concerning the
outputs of experiments (i.e. corollaries about all records of
KDDCup’99 data set with chosen 10 kinds of cyber-attacks).
The presented below corollaries, received by employing the
Wilcoxon matched pairs tests. We used the test implemented
in STATISTICA program [37].

For each studied approach from among D1-D5, SubD1-
SubD2, SupD1-SupD2 we took into consideration 2 values
of epsilon which gave the best overall outputs. It is done
to maximally reduce number of multiple comparisons in
proceeded statistical tests. We tested if accuracy of recognizing
9 kinds of cyber-attacks and normal activity are the same for
raw data and for studied approaches - they were our null
hypothesis. We present outputs of performed statistical tests
for p values less than 0.1. Raw data approach works worse
than: D1 for ε = 0.2 with p = 0.059; D2 for ε = 0.3
with p = 0.059; D3 for ε = 0.5 with p = 0.093 and for
ε = 0.6 with p = 0.047; D4 for ε = 0.2 and ε = 0.3 with
p = 0.059; D5 for ε = 0.6 with p = 0.092 and for ε = 0.7
with p = 0.080.

VI. CONCLUSIONS

Ensembles are well established as a method for obtaining
highly accurate classifiers by combining less accurate ones.

The efficiency of the proposed approach has been proven
by comparing the classification accuracy obtained using the
proposed method with the classical k-NN algorithm based on
the raw dataset. With the appropriate value of the ε parameter
(Section V-C), we obtained results up to 37.8% better (than for
raw data) for individual decision classes (e.g., in the Table D3
and Table D5 for ε = 0.1 and decision class ”back” - 37.8%,
in the Table D3 and Table D5 for ε = 0.1 and decision class
”warezckient” - 10-10.2%). By selecting the ε parameter we



can adjust the sensitivity and specificity of the classifier, and
thereby make the proposed method will better detect attacks
or lack of them ”normal”.

It is worth adding that the construction method of a complex
classifier presented in this work can be used not only for
cyberattack data. These data should be treated only as an
example for which the proposed approach to the construction
of classifiers can be used. Let us remind also that this data has
the property of a hierarchical structure of decision classes, i.e.
from a general point of view there is a division of objects
into two decision classes: normal and attack. However, on
the lower level of detail, the decision class on attacks is
divided into 9 subclasses, corresponding to 9 types of attacks.
This structure can have decision classes for many important
applications related to the construction of classifiers. A very
similar structure is data relating to fraud, e.g., credit card
(fraud detection). Also, many medical data have a similar
structure. For example, in the prediction of coronary heart
disease, we generally divide patients into two classes, those
who do not have coronary artery stenosis, and those who
have such stenosis. However, more specifically, patients with
coronary artery stenosis are divided into, for example, those
with small, medium and large stenoses (see e.g., [10], [12],
[38]). The presented approach can be easily adapted to the
decision-making problems mentioned above, which we plan
to do as a part of further research.
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APPENDIX

ACC Raw data D1
ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9

smurf 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
neptune 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
satan 0.976 ± 0.001 0.986 ± 0.001 0.980 ± 0.001 0.976 ± 0.001 0.969 ± 0.001 0.965 ± 0.001 0.961 ± 0.001 0.953 ± 0.001 0.942 ± 0.002 0.931 ± 0.003
ipsweep 0.964 ± 0.004 0.972 ± 0.003 0.969 ± 0.004 0.966 ± 0.004 0.964 ± 0.004 0.962 ± 0.004 0.949 ± 0.007 0.931 ± 0.003 0.918 ± 0.005 0.896 ± 0.004
portsweep 0.945 ± 0.005 0.955 ± 0.004 0.955 ± 0.004 0.954 ± 0.004 0.954 ± 0.004 0.953 ± 0.004 0.936 ± 0.004 0.925 ± 0.003 0.919 ± 0.002 0.917 ± 0.002
nmap 0.825 ± 0.005 0.858 ± 0.013 0.832 ± 0.007 0.832 ± 0.006 0.831 ± 0.006 0.826 ± 0.007 0.810 ± 0.007 0.788 ± 0.007 0.746 ± 0.017 0.655 ± 0.017
back 0.616 ± 0.017 0.909 ± 0.018 0.710 ± 0.014 0.666 ± 0.011 0.585 ± 0.020 0.550 ± 0.010 0.537 ± 0.010 0.513 ± 0.012 0.506 ± 0.009 0.487 ± 0.011
warezclient 0.801 ± 0.084 0.876 ± 0.008 0.875 ± 0.008 0.858 ± 0.037 0.617 ± 0.042 0.536 ± 0.032 0.465 ± 0.021 0.270 ± 0.045 0.032 ± 0.024 0.000 ± 0.000
teardrop 0.959 ± 0.009 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.946 ± 0.007 0.923 ± 0.011 0.916 ± 0.011 0.912 ± 0.011
normal 0.988 ± 0.001 0.974 ± 0.001 0.986 ± 0.001 0.989 ± 0.001 0.992 ± 0.001 0.995 ± 0.001 0.997 ± 0.000 0.998 ± 0.001 0.998 ± 0.000 0.999 ± 0.000
overall 0.981 ± 0.001 0.984 ± 0.000 0.983 ± 0.001 0.983 ± 0.000 0.980 ± 0.001 0.980 ± 0.001 0.977 ± 0.000 0.973 ± 0.000 0.969 ± 0.001 0.965 ± 0.000

ACC Raw data D2
ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9

smurf 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
neptune 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
satan 0.976 ± 0.001 0.992 ± 0.000 0.984 ± 0.002 0.98 ± 0.001 0.973 ± 0.001 0.967 ± 0.001 0.964 ± 0.001 0.958 ± 0.001 0.950 ± 0.001 0.936 ± 0.002
ipsweep 0.964 ± 0.004 0.972 ± 0.003 0.972 ± 0.003 0.971 ± 0.003 0.966 ± 0.004 0.963 ± 0.004 0.960 ± 0.005 0.949 ± 0.005 0.938 ± 0.004 0.902 ± 0.006
portsweep 0.945 ± 0.005 0.953 ± 0.004 0.953 ± 0.003 0.953 ± 0.003 0.952 ± 0.004 0.952 ± 0.004 0.952 ± 0.004 0.952 ± 0.004 0.935 ± 0.004 0.919 ± 0.003
nmap 0.825 ± 0.005 0.858 ± 0.008 0.833 ± 0.007 0.832 ± 0.006 0.832 ± 0.006 0.832 ± 0.006 0.832 ± 0.006 0.825 ± 0.006 0.798 ± 0.007 0.730 ± 0.021
back 0.616 ± 0.017 0.972 ± 0.005 0.885 ± 0.008 0.703 ± 0.015 0.653 ± 0.012 0.565 ± 0.011 0.548 ± 0.008 0.532 ± 0.009 0.510 ± 0.010 0.500 ± 0.010
warezclient 0.801 ± 0.084 0.881 ± 0.009 0.877 ± 0.008 0.875 ± 0.008 0.765 ± 0.090 0.599 ± 0.015 0.514 ± 0.012 0.473 ± 0.018 0.320 ± 0.031 0.008 ± 0.008
teardrop 0.959 ± 0.009 0.957 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.946 ± 0.007 0.916 ± 0.011
normal 0.988 ± 0.001 0.944 ± 0.002 0.974 ± 0.003 0.986 ± 0.001 0.990 ± 0.001 0.992 ± 0.001 0.996 ± 0.000 0.997 ± 0.000 0.998 ± 0.000 0.999 ± 0.000
overall 0.981 ± 0.001 0.977 ± 0.001 0.983 ± 0.001 0.983 ± 0.000 0.982 ± 0.001 0.980 ± 0.000 0.980 ± 0.000 0.978 ± 0.001 0.974 ± 0.000 0.967 ± 0.001

ACC Raw data D3
ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9

smurf 0.999 ± 0.000 1.000 ± 0.001 1.000 ± 0.001 1.000 ± 0.001 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
neptune 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
satan 0.976 ± 0.001 0.997 ± 0.000 0.994 ± 0.001 0.993 ± 0.001 0.990 ± 0.001 0.983 ± 0.002 0.976 ± 0.001 0.968 ± 0.001 0.962 ± 0.001 0.950 ± 0.002
ipsweep 0.964 ± 0.004 0.972 ± 0.003 0.972 ± 0.003 0.972 ± 0.003 0.972 ± 0.003 0.971 ± 0.003 0.968 ± 0.005 0.964 ± 0.004 0.958 ± 0.007 0.937 ± 0.004
portsweep 0.945 ± 0.005 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.003 0.953 ± 0.003 0.952 ± 0.004 0.952 ± 0.004 0.952 ± 0.004 0.935 ± 0.004
nmap 0.825 ± 0.005 0.870 ± 0.006 0.870 ± 0.006 0.864 ± 0.010 0.840 ± 0.008 0.832 ± 0.006 0.832 ± 0.006 0.832 ± 0.006 0.831 ± 0.006 0.796 ± 0.007
back 0.616 ± 0.017 0.994 ± 0.002 0.994 ± 0.002 0.990 ± 0.003 0.969 ± 0.005 0.875 ± 0.013 0.683 ± 0.010 0.593 ± 0.024 0.544 ± 0.009 0.509 ± 0.009
warezclient 0.801 ± 0.084 0.901 ± 0.009 0.895 ± 0.008 0.881 ± 0.009 0.878 ± 0.009 0.876 ± 0.008 0.861 ± 0.035 0.600 ± 0.014 0.504 ± 0.014 0.308 ± 0.030
teardrop 0.959 ± 0.009 0.963 ± 0.006 0.962 ± 0.006 0.957 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.946 ± 0.007
normal 0.988 ± 0.001 0.007 ± 0.003 0.173 ± 0.033 0.928 ± 0.004 0.954 ± 0.003 0.980 ± 0.001 0.988 ± 0.001 0.992 ± 0.001 0.997 ± 0.000 0.998 ± 0.000
overall 0.981 ± 0.001 0.744 ± 0.001 0.786 ± 0.008 0.974 ± 0.001 0.979 ± 0.001 0.984 ± 0.000 0.983 ± 0.000 0.980 ± 0.001 0.979 ± 0.001 0.974 ± 0.000

ACC Raw data D4
ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9

smurf 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
neptune 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
satan 0.976 ± 0.001 0.989 ± 0.001 0.982 ± 0.002 0.979 ± 0.001 0.972 ± 0.001 0.967 ± 0.001 0.964 ± 0.001 0.958 ± 0.001 0.949 ± 0.002 0.936 ± 0.002
ipsweep 0.964 ± 0.004 0.972 ± 0.003 0.972 ± 0.003 0.968 ± 0.004 0.966 ± 0.004 0.963 ± 0.004 0.960 ± 0.005 0.946 ± 0.004 0.931 ± 0.004 0.900 ± 0.005
portsweep 0.945 ± 0.005 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.004 0.952 ± 0.004 0.944 ± 0.004 0.928 ± 0.004 0.918 ± 0.002
nmap 0.825 ± 0.005 0.863 ± 0.011 0.833 ± 0.007 0.832 ± 0.006 0.832 ± 0.006 0.832 ± 0.006 0.829 ± 0.007 0.818 ± 0.007 0.792 ± 0.006 0.718 ± 0.020
back 0.616 ± 0.017 0.954 ± 0.008 0.826 ± 0.018 0.684 ± 0.010 0.648 ± 0.013 0.563 ± 0.011 0.546 ± 0.008 0.529 ± 0.009 0.510 ± 0.010 0.500 ± 0.011
warezclient 0.801 ± 0.084 0.878 ± 0.009 0.875 ± 0.008 0.874 ± 0.007 0.749 ± 0.092 0.593 ± 0.019 0.512 ± 0.012 0.455 ± 0.017 0.254 ± 0.033 0.005 ± 0.007
teardrop 0.959 ± 0.009 0.957 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.951 ± 0.008 0.933 ± 0.010 0.914 ± 0.011
normal 0.988 ± 0.001 0.964 ± 0.002 0.982 ± 0.001 0.987 ± 0.001 0.990 ± 0.001 0.993 ± 0.001 0.996 ± 0.001 0.997 ± 0.000 0.998 ± 0.000 0.999 ± 0.000
overall 0.981 ± 0.001 0.982 ± 0.000 0.984 ± 0.000 0.983 ± 0.001 0.982 ± 0.001 0.980 ± 0.000 0.980 ± 0.001 0.977 ± 0.000 0.973 ± 0.000 0.967 ± 0.000

ACC Raw data D5
ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9

smurf 0.999 ± 0.000 1.000 ± 0.001 1.000 ± 0.001 1.000 ± 0.001 1.000 ± 0.001 1.000 ± 0.001 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
neptune 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
satan 0.976 ± 0.001 0.996 ± 0.001 0.996 ± 0.000 0.994 ± 0.001 0.993 ± 0.001 0.989 ± 0.001 0.978 ± 0.001 0.969 ± 0.001 0.963 ± 0.001 0.951 ± 0.001
ipsweep 0.964 ± 0.004 0.971 ± 0.003 0.971 ± 0.003 0.971 ± 0.003 0.971 ± 0.003 0.971 ± 0.003 0.971 ± 0.003 0.964 ± 0.004 0.961 ± 0.004 0.944 ± 0.005
portsweep 0.945 ± 0.005 0.953 ± 0.003 0.953 ± 0.003 0.953 ± 0.003 0.953 ± 0.003 0.953 ± 0.003 0.952 ± 0.004 0.952 ± 0.004 0.952 ± 0.004 0.951 ± 0.003
nmap 0.825 ± 0.005 0.863 ± 0.006 0.863 ± 0.006 0.862 ± 0.008 0.839 ± 0.008 0.831 ± 0.006 0.831 ± 0.006 0.831 ± 0.006 0.831 ± 0.006 0.808 ± 0.007
back 0.616 ± 0.017 0.994 ± 0.002 0.994 ± 0.002 0.994 ± 0.002 0.992 ± 0.002 0.987 ± 0.003 0.804 ± 0.018 0.651 ± 0.012 0.546 ± 0.008 0.510 ± 0.010
warezclient 0.801 ± 0.084 0.903 ± 0.010 0.903 ± 0.010 0.890 ± 0.011 0.884 ± 0.011 0.879 ± 0.010 0.874 ± 0.010 0.618 ± 0.035 0.506 ± 0.013 0.362 ± 0.020
teardrop 0.959 ± 0.009 0.963 ± 0.006 0.963 ± 0.006 0.962 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007
normal 0.988 ± 0.001 0.000 ± 0.000 0.014 ± 0.004 0.110 ± 0.014 0.200 ± 0.036 0.422 ± 0.085 0.986 ± 0.001 0.991 ± 0.001 0.996 ± 0.001 0.998 ± 0.000
overall 0.981 ± 0.001 0.742 ± 0.000 0.746 ± 0.001 0.770 ± 0.004 0.792 ± 0.009 0.846 ± 0.021 0.984 ± 0.000 0.981 ± 0.001 0.980 ± 0.001 0.976 ± 0.000



ACC Raw data
SubD1

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
L R L R L R L R

smurf 0.999 ± 0.000 0.022 ± 0.006 0.022 ± 0.006 0.022 ± 0.006 0.022 ± 0.006 0.022 ± 0.006 0.022 ± 0.006 0.022 ± 0.006 0.022 ± 0.006
neptune 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
satan 0.976 ± 0.001 0.084 ± 0.006 0.087 ± 0.006 0.084 ± 0.006 0.087 ± 0.006 0.082 ± 0.006 0.086 ± 0.006 0.081 ± 0.006 0.085 ± 0.006
ipsweep 0.964 ± 0.004 0.041 ± 0.002 0.050 ± 0.002 0.041 ± 0.002 0.050 ± 0.002 0.041 ± 0.002 0.050 ± 0.002 0.041 ± 0.002 0.050 ± 0.002
portsweep 0.945 ± 0.005 0.032 ± 0.005 0.035 ± 0.004 0.032 ± 0.005 0.035 ± 0.004 0.032 ± 0.005 0.035 ± 0.004 0.032 ± 0.005 0.035 ± 0.004
nmap 0.825 ± 0.005 0.074 ± 0.026 0.337 ± 0.055 0.074 ± 0.026 0.337 ± 0.055 0.074 ± 0.026 0.337 ± 0.055 0.052 ± 0.023 0.323 ± 0.056
back 0.616 ± 0.017 0.519 ± 0.017 0.536 ± 0.017 0.519 ± 0.017 0.536 ± 0.017 0.518 ± 0.018 0.536 ± 0.017 0.518 ± 0.018 0.535 ± 0.017
warezclient 0.801 ± 0.084 0.431 ± 0.018 0.798 ± 0.044 0.431 ± 0.018 0.798 ± 0.044 0.420 ± 0.021 0.796 ± 0.044 0.412 ± 0.021 0.780 ± 0.047
teardrop 0.959 ± 0.009 1.000 ± 0.000 0.999 ± 0.001 1.000 ± 0.000 0.999 ± 0.001 0.998 ± 0.001 0.999 ± 0.001 0.993 ± 0.003 0.993 ± 0.002
normal 0.988 ± 0.001 0.000 ± 0.000 0.000 ± 0.000 0.014 ± 0.004 0.009 ± 0.003 0.111 ± 0.014 0.097 ± 0.014 0.197 ± 0.035 0.187 ± 0.035
overall 0.981 ± 0.001 0.033 ± 0.001 0.039 ± 0.002 0.036 ± 0.002 0.042 ± 0.002 0.060 ± 0.003 0.064 ± 0.004 0.081 ± 0.009 0.085 ± 0.008

ACC Raw data
SubD2

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
L R L R L R L R

smurf 0.999 ± 0.000 0.023 ± 0.006 0.023 ± 0.006 0.023 ± 0.006 0.023 ± 0.006 0.023 ± 0.006 0.023 ± 0.006 0.023 ± 0.006 0.023 ± 0.006
neptune 1.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
satan 0.976 ± 0.001 0.097 ± 0.006 0.098 ± 0.006 0.096 ± 0.006 0.097 ± 0.006 0.092 ± 0.006 0.093 ± 0.006 0.092 ± 0.006 0.092 ± 0.006
ipsweep 0.964 ± 0.004 0.061 ± 0.003 0.060 ± 0.003 0.061 ± 0.003 0.060 ± 0.003 0.061 ± 0.003 0.060 ± 0.003 0.060 ± 0.003 0.060 ± 0.003
portsweep 0.945 ± 0.005 0.040 ± 0.003 0.039 ± 0.003 0.040 ± 0.003 0.039 ± 0.003 0.040 ± 0.003 0.039 ± 0.003 0.040 ± 0.003 0.039 ± 0.003
nmap 0.825 ± 0.005 0.386 ± 0.061 0.370 ± 0.061 0.381 ± 0.061 0.370 ± 0.060 0.381 ± 0.061 0.370 ± 0.060 0.381 ± 0.061 0.370 ± 0.060
back 0.616 ± 0.017 0.536 ± 0.018 0.536 ± 0.018 0.534 ± 0.018 0.535 ± 0.018 0.529 ± 0.018 0.531 ± 0.018 0.523 ± 0.018 0.526 ± 0.018
warezclient 0.801 ± 0.084 0.915 ± 0.018 0.920 ± 0.017 0.897 ± 0.018 0.906 ± 0.017 0.868 ± 0.016 0.874 ± 0.019 0.868 ± 0.016 0.869 ± 0.017
teardrop 0.959 ± 0.009 0.973 ± 0.005 0.976 ± 0.013 0.973 ± 0.005 0.975 ± 0.013 0.973 ± 0.005 0.974 ± 0.012 0.973 ± 0.005 0.974 ± 0.012
normal 0.988 ± 0.001 0.872 ± 0.005 0.861 ± 0.004 0.915 ± 0.006 0.896 ± 0.005 0.937 ± 0.001 0.930 ± 0.001 0.947 ± 0.004 0.939 ± 0.002
overall 0.981 ± 0.001 0.261 ± 0.001 0.258 ± 0.002 0.271 ± 0.002 0.266 ± 0.002 0.276 ± 0.001 0.274 ± 0.002 0.278 ± 0.002 0.276 ± 0.002

ACC Raw data
SupD1

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
L R L R L R L R

smurf 0.999 ± 0.000 1.000 ± 0.001 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
neptune 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
satan 0.976 ± 0.001 0.994 ± 0.001 0.995 ± 0.001 0.992 ± 0.000 0.992 ± 0.001 0.985 ± 0.001 0.985 ± 0.001 0.980 ± 0.001 0.980 ± 0.001
ipsweep 0.964 ± 0.004 0.972 ± 0.003 0.972 ± 0.003 0.972 ± 0.003 0.972 ± 0.003 0.972 ± 0.003 0.971 ± 0.003 0.972 ± 0.003 0.971 ± 0.003
portsweep 0.945 ± 0.005 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.003 0.953 ± 0.003 0.953 ± 0.003 0.953 ± 0.003
nmap 0.825 ± 0.005 0.866 ± 0.006 0.876 ± 0.006 0.865 ± 0.006 0.876 ± 0.006 0.849 ± 0.009 0.849 ± 0.009 0.834 ± 0.009 0.833 ± 0.008
back 0.616 ± 0.017 0.985 ± 0.004 0.984 ± 0.004 0.958 ± 0.007 0.957 ± 0.007 0.852 ± 0.013 0.849 ± 0.013 0.703 ± 0.016 0.702 ± 0.016
warezclient 0.801 ± 0.084 0.903 ± 0.013 0.890 ± 0.014 0.881 ± 0.009 0.880 ± 0.009 0.881 ± 0.009 0.878 ± 0.009 0.878 ± 0.009 0.876 ± 0.008
teardrop 0.959 ± 0.009 0.962 ± 0.006 0.957 ± 0.007 0.957 ± 0.007 0.957 ± 0.007 0.957 ± 0.007 0.957 ± 0.007 0.956 ± 0.007 0.956 ± 0.007
normal 0.988 ± 0.001 0.903 ± 0.008 0.927 ± 0.003 0.942 ± 0.001 0.952 ± 0.003 0.965 ± 0.001 0.975 ± 0.001 0.982 ± 0.003 0.985 ± 0.001
overall 0.981 ± 0.001 0.968 ± 0.002 0.974 ± 0.001 0.977 ± 0.000 0.979 ± 0.001 0.981 ± 0.001 0.983 ± 0.001 0.982 ± 0.001 0.983 ± 0.001

ACC Raw data
SupD2

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
L R L R L R L R

smurf 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
neptune 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
satan 0.976 ± 0.001 0.993 ± 0.001 0.992 ± 0.000 0.992 ± 0.001 0.985 ± 0.001 0.986 ± 0.001 0.980 ± 0.001 0.981 ± 0.001 0.973 ± 0.001
ipsweep 0.964 ± 0.004 0.972 ± 0.003 0.972 ± 0.003 0.972 ± 0.003 0.972 ± 0.003 0.972 ± 0.003 0.971 ± 0.004 0.972 ± 0.003 0.966 ± 0.004
portsweep 0.945 ± 0.005 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.004 0.953 ± 0.003 0.953 ± 0.004 0.953 ± 0.003 0.953 ± 0.003 0.952 ± 0.004
nmap 0.825 ± 0.005 0.876 ± 0.006 0.859 ± 0.008 0.864 ± 0.008 0.833 ± 0.007 0.837 ± 0.009 0.832 ± 0.006 0.832 ± 0.006 0.832 ± 0.006
back 0.616 ± 0.017 0.988 ± 0.002 0.976 ± 0.004 0.972 ± 0.005 0.911 ± 0.016 0.930 ± 0.013 0.731 ± 0.013 0.802 ± 0.017 0.668 ± 0.011
warezclient 0.801 ± 0.084 0.882 ± 0.010 0.880 ± 0.009 0.879 ± 0.009 0.877 ± 0.008 0.876 ± 0.008 0.876 ± 0.008 0.875 ± 0.008 0.796 ± 0.089
teardrop 0.959 ± 0.009 0.957 ± 0.007 0.957 ± 0.007 0.957 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007 0.956 ± 0.007
normal 0.988 ± 0.001 0.933 ± 0.001 0.946 ± 0.002 0.953 ± 0.004 0.976 ± 0.001 0.975 ± 0.001 0.986 ± 0.001 0.985 ± 0.001 0.989 ± 0.001
overall 0.981 ± 0.001 0.975 ± 0.001 0.978 ± 0.001 0.980 ± 0.001 0.984 ± 0.001 0.984 ± 0.000 0.984 ± 0.001 0.984 ± 0.000 0.982 ± 0.000




