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Abstract—There is a growing demand for efficient and privacy-
preserving intelligent solutions in a multi-occupancy environ-
ment. This paper proposes a non-contact scheme for occupancy
estimation using an infrared thermal sensor array, which has
the advantages of low-cost, low-power, and high-performance
capabilities. The proposed scheme offers an accurate human heat
segmentation technique that extracts human body temperature
from a noisy environment. It is shown that the proposed system
can detect the empty occupancy state after utilising the segmen-
tation technique with an accuracy of 100%. By using adaptive
boosting, it is shown that the system is capable of measuring the
non-empty occupancy with an overall accuracy of 98.2%

Index Terms—Thermal Sensing, Occupancy Estimation, Ambi-
ent Intelligence, Multi-occupancy, Independent Living, Activities
of Daily Living, Image Segmentation, Adaptive Boosting

I. INTRODUCTION

Intelligent technological solutions applied to the home
environment have a significant potential impact on solving
important problems of independent living. For example, smart
homes may help elderly people to live their lives with less
reliance on others to help them with activities of daily living
[1]. However, there exist notable difficulties to deploy these
solutions. Specifically, most research in the field of human
activity modelling and predicting abnormal behaviour in smart
homes are based on the assumption of a single inhabitant
environment [2]. Homes in reality often contain more than
one occupant. For instance, in the United States, the average
number of individuals per household is more than 3.14 people
per home [3]. Therefore, there is a need for a new functional
layer to detect and determine the number of people in a
given area, which is referred to as occupancy estimation.
Furthermore, occupancy estimation is also valuable in other
areas, such as the energy efficiency of buildings, safety, and
many other vital applications [4].

The systems based on the visual sensors perform well in
the occupancy estimation problem. But the trade-off between
privacy and performance of these sensors used in the field of
Ambient Intelligence is another vital hindrance to escalating
the deployment of smart solutions in the broader range. For
instance, a high-performance human presence detection sensor
like a camera may have violation to people’s privacy in the
context of smart homes. By contrast, a very high privacy
sensor, such as a Passive Infra-Red (PIR) sensor does not
perform very well in multi-occupancy applications [1]. This

is because the PIR sensor can only detect the human body
movement but fails to distinguish individual occupants and
subsequently estimate the number of people.

This paper is concerned with the problem of occupancy
estimation. As mentioned above, the occupancy estimation is
a more complex problem than the occupancy detection. This
is because the system is not only able to discover the human
presence but also to determine the number of people in the
sensor environment in estimating occupancy. Specifically, this
research aims to realise it by designing a high-performance,
non-intrusive, cost-efficient, and well privacy-preserving occu-
pancy estimation system for the smart environment based on a
far infrared thermal sensor array. Also a data-driven learning
method is implemented to achieve great performance in the
occupancy estimation.

This paper is organised as follows: in Section II of this
paper, a summary of the related work regarding occupancy
estimation in the smart environment is presented. In Section
III, the methodology and the proposed system architecture is
explained. Section IV explains the proposed system phases.
Results of the experimental evaluation are presented in Section
V. Section VI concludes the paper.

II. RELATED WORK

Several different solutions have been proposed to estimate
the number of occupants in an indoor environment using
different sensing methods [5]. However, only a few occupancy
estimation systems have been proposed using a thermal sensor
array [4]. The authors in [6] integrated a thermal sensor array
with 8 × 8 resolution and a PIR sensor to estimate the oc-
cupancy for heating, ventilation, and air conditioning control.
They used the PIR sensor to detect the empty occupancy, and a
thermal sensor array to determine the number of people. Their
system was tested to estimate up to 3 people. However, their
proposed method may not work correctly when the person is
inactive for a long time, such as sleeping. In this case, the
likelihood of classifying human radiation as the background
radiation increases.

Authors in [4] have used a 4 × 16 thermal sensor array
to estimate the occupancy. They removed the background
infrared using the per-pixel and standard deviation values for
a short occupancy period, then the K* algorithm [7] was
applied to estimate the occupancy. They were able to achieve
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82.56% accuracy. It is reported that they were able to handle
a prolonged period of occupancy by using a complex scaling
algorithm. However, using per-pixel and standard deviation
values to remove the background is probably not the best so-
lution, because when a newer object with a higher temperature
than the human body enters the sensor environment, the system
may view the human body as radiation from the background,
which results in an error in estimation.

The authors in [8] have proposed a system for tracking
the elderly using High-performance Wireless Sensor Network
Node (iMote2) sensor with Enalab camera board in smart
homes. In their work, they were able to estimate the number
of occupants by calculating the peaks within the histograms.
Furthermore, the system also uses the PIR sensor to detect
the occupancy in some areas of the home. This makes their
system complicated, and privacy concerns are raised here due
to the use of the camera too. Other previous works have similar
concerns for using the camera in people-counting for indoor
applications such as [9], [10].

Other solutions based on wearable sensors have also been
suggested. But the designs of wearable sensors are inconve-
nient to most of the users. For instance, [11] integrated the
PIR sensor with active radio frequency identification (RFID)
tags to estimate the occupancy. The main limitation of this
work is that users must have these tags wherever they go in
the smart environment.

One of the new solutions that take the privacy issue into
consideration in a smart home is reported in [12]. In this work,
the authors measured the entropy of binary data collected from
PIR sensors to discover the visiting time in a single-occupancy
environment. The authors find that if entropy at a particular
time is high, the number of house occupancy is larger than one.
However, their solution was simply to predict that the house
contains more than one person, which means that there is no
real-time estimation of the number of people in the house.

A multimodal system for occupancy measurement is pro-
posed in [13]–[15]. They used various environmental sen-
sors to detect the occupancy, such as CO2, CO, lighting,
temperature, movement, humidity, and acoustics sensors. The
use of multiple sensors increases its accuracy, but they can
only operate in a highly controlled environment and not a
real home environment. This is because the authors of these
papers assumed that ventilation does not affect the estimate
of room occupancy. In fact, ventilation changes the CO2
and humidity level of the room, thus changes the projected
occupancy estimate [6].

The work of [16] used heterogeneous sensors with neutro-
sophic (an extension of intuitionistic fuzzy logic) for occu-
pancy detection without counting the number of people in
a given place. The classification results were obtained by
Random Forest (RF), Linear Discriminant Analysis (LDA),
and FUzzy GEnetic (FUGE) algorithms.

The proposed solution in this paper differs from previous
works. The differences are in

• the choice of the sensor resolution;

• inclusion of a computational method to segment human
heat-map from the background of the environment (an
environment may contain objects such as a kettle with
the same as body temperature of higher);

• the choice of the classification method, and
• the ability to adapt appropriately to an unseen indoor

environment with a new temperature degree.

The experimental results have shown 100% accuracy for
empty occupancy estimation and 98.2% for occupancy esti-
mation of up to four people.

III. METHODOLOGY

A flow-chart of the proposed system is depicted in Fig.1.
The proposed system is composed of a data collection stage, an
image histogram-based pre-processing, a conditional layer to
predict the empty occupancy state, and the Adaptive Boosting
technique in the classification phase. A detailed description
of these functional phases are provided below. At first, a
brief description of the characteristics of the Infrared Thermal
Sensor Array is provided.

A. Infrared Thermal Sensor Array

The Infrared Thermal Sensor Array is used as an ambient
sensor to measure the circumference temperature in a specific
area. In this research, the MLX90640 sensor [17] has been
used. This sensor is a 32× 24 pixel IR array, which makes a
total of 768 Far Infrared Radiation (FIR). The sensor can be
accessed via the I2C interface, and its current consumption is
less than 23mA. This consumption makes it suitable for even
a battery-powered solution. The refresh rate of this sensor is
between 0.5 and 64Hz, and this makes it capable of detecting
swift human movements.

B. General Framework of the Proposed System

The proposed system architecture for occupancy estimation
is following a similar pattern as most of pattern recognition
systems, but for the analysis of occupancy estimation using a
non-contact thermal sensor array and its deployment in a real
environment, it is important to take the characteristics of the
infrared thermal sensor array. For the case, the thermal sensor
array is not light sensitive compared to the visual sensors.
However, they are sensitive to environmental temperature.
Therefore, it is essential to develop a systematic framework
that depends on the type of sensor per itself.

As shown in Fig.1, in the pre-processing stage, the system
removes all heat sources from the acquired heat-map scene
except for human infrared. This results in a zero matrix for
the view of empty human existence. Accordingly, the system
predicts the vacant occupancy if the sum of the pixel values is
zero. Otherwise, the system will use the classification model
described in section IV-C to forecast the number of people in
the scene.



Fig. 1: Flow-chart for the proposed occupancy estimation system.

Fig. 2: An illustration of adaptive boosting applied to a binary
classification problem.

C. Adaptive Boosting

There are several classification techniques to deal with the
problem of occupancy estimation. Boosting algorithms are one
of these possible methods that seek to boost the accuracy of a
given learning algorithm by converting weak learners to strong
learners [18]. In this context, a weak learner means a classifier
that performs relatively poor in classification and is slightly
better than random guess. In contrast, a strong learner can label
the testing examples more accurate than the weak classifiers.

In Adaptive Boosting (AdaBoost) [19], the weak learners

Fig. 3: Acquiring the heat-map of a warm object.

are decision trees with a single split, referred to as the decision
stump. The prediction model in AdaBoost improved through
training the weak learners sequentially. Each of these weak
learners aims to correct its predecessor. The weights of the



Fig. 4: Human heat-map segmentation, (a) original heat-map, (b) mask, (c) object of interest.

observations in the first decision stump are equal. In the
next iteration, the incorrect observations that were inaccurately
classified in the previous round carry more weights than the
true classified observations to force the weak learner to focus
on the hard samples in the training set.

Fig. 2 shows an illustration of a simple binary classification
problem using AdaBoost. The first decision stump (D1 and
D2) separates stars from circles. In this separation, there
are two misclassified stars. These incorrectly rated stars will
carry more weights than others to feed the second learner.
Combining these two learners leads to a strong final classifier
that correctly classifies the objects.

IV. OCCUPANCY DETECTION AND ESTIMATION

In this section, details of the gathered data, pre-processing
and classification phases are presented below.

A. Data Acquisition

To evaluate the performance of the proposed system, a data
collection system based on MLX90640 infrared thermal sensor
array in a domestic environment is used. The sensor returned
the temperature of the captured objects in the Celsius scale.

To choose an appropriate placement of the sensor in the
room is an important step to get accurate results. For instance,
placing the sensor on a vertical position, such as on the wall,
will affect the proposed pre-processing method in distinguish-
ing human radiation and other radiations of noise due to the
different distances, so the temperature of the environmental
objects changes respectively. For this experiment, one sensor
was installed on the ceiling of the room as shown in Fig 3.
Since the heights of the ceiling are similar in most residential
homes, the distance between the sensor and the objects is
generally fixed in different residential buildings. It means that
the pre-processing technique described in the following section
should work well for most of the home environments. The
data-set consists of six different states: an empty occupancy
scene, the human existence scenes with the number of 1 to 4
persons and a scene with noise.

B. Pre-processing

Objects in the thermal scene are categorised as either noise
or an object of interest. This research found that the human
temperature can be any value within 27◦C and 33◦C using
the proposed sensor with the consideration of the following
factors:

• the distance between the sensor on the ceiling and objects
on the floor;

• the body covered has a lower temperature than the
exposed parts.

In this way, the pre-processing stage can filter noise is any
other objects that has a certain temperature similar to the
indoor environment temperature, such as chairs, tables, etc.
or an object with the temperature higher than the human’s
temperature such as a hot kettle.

As such, the human heat-map in the original thermal scene
which is shown in Fig 4(a) is segmented by applying the
mask obtained by the possible human presence in the original
thermal scene. The mask is calculated by looping through all
the values of the thermal matrix and filter those values out
of the range to obtain a binary mark as shown in Fig. 4(b).
Then the mask is multiplied by the original thermal scene. The
resulting image about objects of interest process is shown in
Fig. 4(c). Hot objects are also considered in this research. Fig.
3 shows a hot kettle placed in the sensor environment where
we collected the data-set. The proposed system was able to
remove such kind of smaller objects as a result of the empty
human heat environment.

C. Classification

The system can detect the empty occupancy class by cal-
culating the summation of the temperature values from the
pre-processed heat-map. If the summation of a given heat-
map is zero, the system will predict an empty occupancy class.
Otherwise, the system will use a classification model that uses
AdaBoost.M2 algorithm (Algorithm 1) to predict the number
of people in the heat-map in a holistic approach. AdaBoost.M2
is one of the extensions of AdaBoost to a multi-class problem
[19] in which Y is a multiple-class label.



Algorithm 1 AdaBoost.M2: an extension of the original AdaBoost algorithm - an ensemble technique to create a strong
classifier from a number of weak classifiers.
Input: 1) Sequence of N of samples {(x1, y1), . . . , (xn, yn)} with labels yn ∈ Y = {1, . . . , k}

2) Distribution D over the N samples
3) Weak learning algorithm WeakLearn
4) Integer T specifying number of iterations

1: Initialize: The weight vector: w1
i,y = D(i)/(k − 1), where i = 1, . . . , N, y ∈ Y − {yi}.

2: for t = 1, 2, . . . , T do
3: qt(i, y) =

wt
i,y∑

y 6=yi
wt

i,y

4: Dt(i, y) =
W t

i∑N
i=1W

t
i

(y 6= yi)
5: Call WeakLearn. . Providing it with the distribution D, and label weighting function qt; return a hypothesis
ht : X × Y → [0, 1]

6: εt =
1
2

N∑
i=1

Dt(i, y)

(
1− ht(xi, yi) +

∑
y 6=yi

qt(i, y)ht(xi, y)

)
. Calculate the psudo-loss of ht.

7: βt = εt/(1− εt)
8: wt+1

i,y = wti,yβ
1
2 (1+ht(xi,yi)−ht)(xi,y)
t . Set the new weights vector, for i = 1, . . . , N, y ∈ Y − {yi}

9: end for
Output: hf (x) = argmax

y∈Y

T∑
t=1

log 1
βt
ht(x, y)

Fig. 5: The Confusion Matrix for the proposed Classification
model.

AdaBoost.M2 is described in Algorithm 1. The n-th training
set for AdaBoost.M2 contains the pre-processed heat-map x
and the class label y as a pair (xn, yn). The possible number
of occupancy belongs to the set Y . The distribution Dt(i, y)
is maintained over the training set and is updated according
to the output of each iteration’s classifier on the training set.
Misclassified training samples carried more weights than those
truly classified in the next iteration. By doing so, the update
rule is designed to guarantee upper bounds on the training and
generalisation error rates. In each iteration t, a new classifier
is trained with respect to the distribution Dt. In non-empty
occupancy estimation, the scores of individual classifiers are
weighted summation of the classifier’s training error, to give

Fig. 6: The cumulative resubtition losses for the proposed
classification model.

the final output.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the experimental results and their
interpretations. The collected dataset contains 220 samples.
These samples are taken from single and multi-occupancy
scenarios.

A. Experiment 1: Adaptive Boosting in Occupancy Estimation

The purpose of this experiment is to examine the effective-
ness of the classification model described in Section IV-C. In
this validity, the data set divided into 75% for model training
and 25% for the testing stage.



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7: Heat-map Histograms of different occupancy states, (a) single occupancy prior pre-processing, (b) single occupancy post
pre-processing technique, (c) two people prior pre-processing, (d) two people post pre-processing, (e) three people prior pre-
processing technique, (f) three people post-processing, (g) four people prior pre-processing, (h) four people post-preprocessing.



Fig. 5 shows the visualisation of the performance of the
classification model. Each column of this matrix represents
the predicted number of people in the scene, while each row
represents the instances in an actual class. The system achieves
100% accuracy for predicting the number of people up to three.
The only misleading rating was one in classifying the class
“four” as class “three”. The overall accuracy of the system to
estimate the number of people from one to four people was
98.2% and 100% for empty occupancy.

Fig. 6 shows the resubstitution loss of the boosting classi-
fication ensemble. Looking more closely, this graph indicates
that when the number of decision trees in the trained classifi-
cation ensemble increases, the resubstitution loss decreases.

B. Experiment 2: Image Histogram Analysis in Occupancy
Estimation

The objective of this experiment is to examine the use of
the histogram in occupancy estimation. Fig. 7 shows multiple
histograms of different numbers of people in the sensor
environment before and after applying the pre-processing
technique described in Section IV-B. As shown in Figs. 7(b),
7(d), 7(f), and 7(h), the segmentation technique succeeds in
dividing the heat values into two segments. The first segment
is the noise represented in the zero value. The second segment
shows human radiation. Another remarkable insight drawn
from the segmented heat-map-based histograms is the ratio
between noise, and human temperature varies with the number
of people. In other words, with more people in the sensor
environment with zero value at a lower frequency. Therefore,
it is possible to use the ratio between the noise and the
human temperature after applying the segmentation technique
to estimate the occupancy.

Figs. 7(f) and 7(h) show that when the number of people in-
creases in the sensor scene, the Inter-class similarity increases
accordingly. This makes it difficult to estimate the occupancy
by only looking at the ratio between noise and human heat in
the aforementioned histograms. Considering the proportion of
human heat per itself in addition to the ratio between human
heat-map and noise segments can be useful in the case of
inter-class similarity.

VI. CONCLUSION

This paper proposed an occupancy estimation scheme that
uses thermal based sensing. Also, a computational method to
segment human heat-map from the background of the environ-
ment is presented. The resolution of the used sensor is 32×24
in a grid pattern. This research shows the possibility of using
the proposed segmentation technique and the image histogram
to estimate the number of people in a specific area. Further, an
investigation of the usage of adaptive boosting in determining
the occupancy is described. Importantly, the proposed system
is capable of predicting the empty occupancy state directly
after using the proposed pre-processing technique.

Based on the achieved results, It can be concluded that the
use of the adaptive boosting with the thermal sensor array

in occupancy estimation is an accurate method of classifi-
cation to help with the occupancy estimation in an ambient
intelligent environment. Future work can be to consider other
noise factors that affect the performance of estimating human
occupancy such as animals pet.
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