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Abstract—Interpretability is an important and necessary topic
that needs to be discussed in relation to the fields of Artificial
Intelligence and Machine Learning. Within fuzzy logic systems
(FLSs), hierarchical fuzzy systems (HFSs) have been suggested
as a key component to help improve the interpretability of
FLSs. In this context, complexity is a key component in the
interpretability of FLSs. In FLSs, the complexity is commonly
expressed using in a rule-based manner, considering the number
of rules, variables, and fuzzy terms. Several studies have used
indicators (for example, the number of rules) to measure the
complexity of FLSs. However, this is not a perfect way of
assessing complexity in HFSs that have the structure of multiple
subsystems, layers and different topologies. Thus far, complexity
assessment associated with the structure of HFSs has not been
discussed. In this paper, we aim to put forward a new approach in
assessing the complexity of HFSs, which will combine rule-based
complexity and structural complexity. A detailed measurement of
complexity for different HFSs’ topologies, namely parallel and
serial, will be presented to showcase the features of the new
approach. The contribution of this paper is the introduction of a
combined rule-based and structural complexities-based approach
in order to establish a comprehensive measurement of complexity
in HFSs.

Index Terms—Hierarchical fuzzy systems, Complexity, Rule-
based complexity, Structural complexity.

I. INTRODUCTION

The field of FLSs has been making rapid progress in recent
years. There has been an increasing number of works in many
areas such as science, manufacturing, business and also in
the medical domain for decision making. Many researchers
[1]–[3] have used fuzzy systems as a tool for controlling and
modelling in many fields, proving it to be a useful technology.

One of the most important motivations for using FLSs for
system modelling is that an FLS uses linguistic variables and
rules [4] that are easy to understand. Moreover, FLSs are
good at capturing the complexity of a wide range of problems
through their linguistic modelling and approximate reasoning
capabilities [5]. However, the FLS rule-based structure poses
significant challenges, including the curse of dimensionality, in
which the number of required rules and the model complexity
commonly increase exponentially with the number of input
variables [6], [7], thus potentially reducing the transparency
and interpretability of FLSs. In exploring this problem, sev-
eral methods have been proposed for optimising the size of
the rule-based structure in FLSs, such as rule selection [8],
feature selection [9], rule interpolation [10], singular-value

decomposition-QR [11], evolutionary algorithms [12], fuzzy
similarity measures [7], rule learning [13] and hierarchical
fuzzy systems (HFSs) [14].

HFSs have been shown to be an effective way to reduce
the number of rules in FLSs, which in turn reduces the
model complexity and improves its interpretability. Indeed, in
literature, it has been claimed that reducing the complexity
is a way of improving the model interpretability in FLSs
[7]. Thus, complexity appears to be a key component in
the interpretability of FLSs. However, to fully understand
the concept of interpretability and complexity in HFSs is a
challenge and still remains uncertain.

In our previous work, as an introductory step to understand-
ing the interpretability of HFSs, an initial index was proposed
as a way to measure their interpretability [15] and further pro-
poses a generic index in [16]; this considered the structure of
multiple subsystems, layers and different topologies. However,
since interpretability is of a subjective nature, it is not clear as
to how different people may perceive interpretability in HFSs.
Hence, user perception of interpretability and complexity in
HFSs was then investigated with the aid of a user study [17].
It was found that users had different perceptions regarding
interpretability and complexity. For instance, the rules and
structure affected the users’ perceptions of interpretability and
complexity. Therefore, the current paper aims to focus on
understanding the complexity of HFSs, and to identify the
requirement of measuring the complexity in HFSs.

Although researchers usually measure complexity in FLSs
by looking principally at the rule-based complexity level
[7], [18]–[20], this is not necessarily strong enough research
especially for HFSs that have a structure of multiple subsys-
tems, layers and different topologies. Therefore, as an initial
approach, we introduced a way of assessing the structural
complexity in HFSs adapted from Software Engineering [21].

In this paper, we propose a more comprehensive way of
assessing the complexity of HFSs. This extends our previous
work [21] that only covered the structural complexity of
HFSs. Here, a new approach to complexity measurement in
HFSs is discussed, focusing on the combination of rule-based
complexity and structural complexity, in order to reach a more
comprehensive understanding (together with measures of) the
overall interpretability of HFSs.

The rest of this paper is organised as follows. Section II
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discusses background on the state-of- the-art of interpretability,
complexity in FLSs and other fields, and also hierarchical
fuzzy systems. Section III introduces a new approach to com-
plexity measurement in HFSs that consider both rule-based
complexity and structural complexity. Section IV demonstrates
the new approach of complexity measurement with a real-
world example, specifically seesaw control systems. Finally,
Section V present results of the complexity measure, with
Section VI providing concluding remarks together with some
suggestions for future work.

II. BACKGROUND

In this section, we briefly provide background in respect to
interpretability, complexity in FLSs, complexity in other fields
and HFSs.

A. Interpretability

Interpretability refers to the capability of FLSs to express
the behavior of the system in an understandable way [22].
In recent years, the interest of researchers in obtaining more
interpretable fuzzy models has increased. However, the choice
of an appropriate interpretability measure is still an open
question due to its subjective nature and the large number
of factors involved.

Gacto et al. [23] introduced a taxonomy for assessing
interpretability of FLSs, that includes the two key components;
(i) complexity-based interpretability; and (ii) semantic-based
interpretability. Complexity-based interpretability is devoted
to decreasing the complexity of the obtained model (usually
measured as the number of rules, variables, labels per rule,
and other factors). Meanwhile, semantic-based interpretability
is dedicated to preserving the semantics associated with the
membership functions (MFs), to ensure semantic integrity by
imposing constraints on the MFs or approaches considering
measures such as distinguishability, coverage and other factors.

Also, Gacto’s taxonomy identifies that complexity is an
essential component to determine the interpretability of FLSs.
Thus far, complexity has often been used as an indirect mea-
surement of the interpretability of FLSs. Several researchers
claim that the reduction of complexity in a system can lead to
better interpretability of fuzzy systems [7].

B. Complexity in FLSs

In FLSs, complexity could be related to the specific problem
described by the fuzzy model. In other words, from the
structural analysis of a knowledge base, we should expect to
gain information concerning the complexity of the underlying
problem [24]. Complexity is usually evaluated by a simple
measure mainly looking at the rule-based complexity.

1) Rule-based complexity: Rule-based complexity is pri-
marily related to the readability of the knowledge base [25];
that is, the complexity of the rule base is minimised so as
to improve its readability [24]. Standards which are used to
measure rule-based complexity include the number of rules,
variables, and labels per rule, amongst others [26], [27].
Furthermore, the study by Razak et al. [17] has shown the

relationship between the number of inputs, the number of rules
and the complexity in FLSs to be as follows:

↑ Number of inputs (FLSs), ↑ Number of rules (FLSs) (1)

↑ Number of rules (FLSs), ↑ Complexity (FLSs) (2)

where ↑ denotes increasing and ↓ indicates decreasing. The
relationships of (1) and (2), indicate that increasing the number
of inputs in FLSs will increase the number of rules in FLSs
and consequently, this will also increase the complexity of
FLSs.

In the related literature, there are several ways to measure
the rule-based complexity in FLSs. For example, Nauck [28]
has defined the complexity of an FLS as measurable by
the number of classes (NC) divided by the total number
of premises (NP). This complexity measurement is a part
of his proposed interpretability index – Nauck’s index. The
complexity, Comp, is computed as:

Comp =
NC
NP

(3)

An FLS model is less complex when the rule-based complexity
Comp gets higher and more complex when the rule-based
complexity Comp decreases.

Another study, by Alonso et al. [29], measured the com-
plexity by one minus the complexity value in (3), which can
be expressed as follows:

C = 1− Comp (4)

An FLS model is more complex when the rule-based com-
plexity C is close to 1 and less complex when the rule-based
complexity C is close to 0.

C. Complexity in others fields

Complexity arises from either the structure of the interac-
tions between very similar units, or from the units and the
interactions themselves having specific characteristics. In both
cases, the abstract representation of a complex system can be
achieved by a collection of nodes (units) and edges (repre-
senting interactions between the units) forming a network (or
graph) [30].

One common view of a complexity measure is that it
is dependent on the number of structural features contained
within an organisation rather than simply on the number of
its basic elements [31]; this idea is also known as structural
complexity.

1) Structural complexity: Structural complexity is an at-
tribute of any general type of system. This attribute can
be assessed by different measures, and it is often linked to
interaction among various properties of the given system, such
as nodes, edges and network (topology structure) [30], [32].

McCabe in [33] proposed a graph-theoretic structural com-
plexity measure that measures and controls the number of
paths through a programme. The complexity measure devel-
oped here is defined in terms of basic paths that when taken in
combination will generate every possible path. The cyclomatic



Fig. 1. One main program M, two subroutine A and B. Adapted from
McCabe [33].

number v(G) of graph G with n vertices, e edges, and p
connected components is:

v(G) = e− n+ 2p (5)

The overall strategy involves measuring the complexity of a
programme by computing the number of linearly independent
paths v(G). However, calculating the complexity of a collec-
tion of programmes (p 6= 1 ), particularly a hierarchical nest
of subroutines, (5) becomes:

V
( G⋃

i=1

)
= e− n+ 2p (6)

where,
⋃

denotes a summation complexity of collection of
programmes. For instance, assuming a main program M and
two called subroutines A and B having a control structure as
shown in Fig. 1. Let us denote the total graph above with 3
connected components as M ∪A ∪B. Now, since p = 3, the
complexity can be computed using (6) as follows:

v(M ∪A ∪B) = e− n+ 2p = 13− 13 + 2× 3 = 6

A graph is more complex when the structural complexity
v(G) value is large and less complex when the v(G) value is
small. In this paper, we will assess the structural complexity of
HFS using a measure in [21], which is adapted from McCabe’s
measure.

D. Hierarchical Fuzzy Systems

HFSs are characterized by composing the input variables
into a collection of low-dimensional fuzzy logic subsystems
[14], [34]. HFSs can be illustrated as a cascade structure in
which the output of each layer is considered as an input to the
following layer, as shown in Fig. 2 (see Section IV). Also, a
system that goes from one layer as shown in Fig. 2 to two or
more layers as in Fig. 4 (see Section IV) has fewer rules than
those in a FLS with one layer. The most extreme reduction
of rules will be if the structure of the HFS has two input
variables for each subsystem and has (n − 1) layers [14].
However, the fundamental issue with this HFS is to handle
the (potentially) reduced physical meaning of the intermediate
output variable(s) — which consequently makes them more
difficult to design, with increased model complexity [35].

1) Limpid - Hierarchical Fuzzy Systems (L-HFS): Lee at
al. [36] proposed a new method to overcome the issue of an
intermediate output that does not possess physical meaning in
the middle layer. They introduced a new mapping rule base
called L-HFS in order to obtain the HFS rule base. They
claim that, by implementing L-HFS, a smaller rule base is
achievable with the same input-output model as in the original
FLS. Furthermore, the design of the fuzzy rule involved in this
approach is easier than in a conventional HFS.

III. A COMPREHENSIVE MEASUREMENT OF COMPLEXITY
IN HIERARCHICAL FUZZY SYSTEMS

A comprehensive measurement of complexity is needed to
evaluate complexity in HFSs that have multiple subsystems,
layers and different topologies. A new approach to complexity
measurement referred to as CHFS (for HFS complexity) is
proposed that combines rule-based complexity and structural
complexity. The CHFS process for measuring complexity in
HFSs is explained in the following steps.

A. Step 1: Calculating the Rule-based Complexity of HFSs

Although there are several ways of measuring rule-based
complexity in FLSs, it is challenging to measure the com-
plexity of HFSs that have multiple subsystems. It should be
noted that each subsystem will have a small number of inputs
and outputs, and a small rule base that will serve a single
purpose [37].

For an initial solution, in this step, equation (4) is used to
calculate the rule-based complexity of each subsystem in a
given HFS. However, another challenge is to aggregate all the
rule-based complexity values at each subsystem across and
within layers, in obtaining the overall rule-based complexity
of HFSs. For this challenge, an aggregation strategy namely
a layer-weighted average strategy has been proposed in [15]
which considers all subsystems across and within layers.
Therefore, in this step, the layer-weighted average strategy is
used to obtain the final rule-based complexity of a given HFS.
This strategy now becomes as follows:

CRB =

q∑
j=1

(
lj

sj∑
k=1

Cjk/sj

)
, (7)

where Cjk is the complexity value associated with the sub-
system k at layer j, for example as shown in (4), lj is the
weight associated with layer j of the HFS, sj is the number
of subsystems located in layer j, s is the total number of
subsystems, q is the number of layers of the HFS and CRB is
the rule-based complexity of the HFS. An HFS model is less
complex when the CRB is close to 0 and more complex when
CRB is close to 1.

B. Step 2: Calculating the Structural Complexity of HFSs

As discussed in Section II, structural complexity in the case
of HFSs is related to the interaction amongst its elements; that
is, the multiple subsystems, layers and different topologies.
However, to evaluate structural complexity in HFSs is a
challenging task, particularly when quantifying the interaction



between the HFSs’ elements. So far, however, assessment on
the structural complexity in HFSs has not been investigated.

Therefore, in this step, as an initial solution, a well-
established measure, namely the McCabe measure [33] (as
discussed in Section II-C) is used to measure the complexity in
the structure of HFSs. In order to that, an approach of mapping
the McCabe measure to the HFSs’ design was introduced
previously as follows [21]:

CS

( s⋃
i=1

)
= l − x+ 2s (8)

where x indicates the number of input variables in HFSs, l
indicates the number of layers in HFSs, and s indicates the
number of subsystems in HFSs. Also, CS indicates the non-
normalised structural complexity in HFSs.

C. Step 3: Overall Measurement of the Complexity of HFSs

The final challenge is to combine the rule-based complexity
and structural complexity calculation from Step 1 and Step
2 respectively in order to obtain the overall complexity of
the HFS. However, to combine both rule-based complexity
and structural complexity is not a straightforward task. In
this case, two important questions are examined: (i) “What
approach might be used to make both rule-based complexity
and structural complexity comparable in that both should have
the same scale of output?” (ii) “What is the best operator to
combine rule-based complexity and structural complexity?”.
Therefore, in order to answer these questions, a method
to address the challenges is proposed and explained in the
following subsection.

1) Normalising the structural complexity values to be in
the same range as rule-based complexity values: McCabe’s
measure ranges from [1,∞] whereas CS range from [−∞,∞].
Whilst there is no inherent problem with this, other measures
of interpretability for FLSs (such a Nauk’s index [28] or
Alonso et al’s index [38]) have traditionally been defined
over [0, 1]. Given this, it will be easier to subsequently
combine an HFS complexity measure with other components
of interpretability if it lies over the same range. Thus, in this
paper, the complexity values of CS will be normalised to the
range [0, 1]. There are several alternative functions that can
be used but for this paper, one of the principal functions in
mathematics, which is an inverse trigonometric function is
chosen. This function can be expressed as follows:

C̃S =
2arctan(CS) + π

2π
(9)

where arctan() is the inverse of the tangent function and C̃S

indicates the normalised structural complexity in HFSs. An
HFS model is less complex when the C̃S is close to 0 and
more complex when C̃S is close to 1, in terms of structural
complexity.

2) Combining the structural and rule-based complexity
using a generic operator: In order to combine structural com-
plexity and rule-based complexity, it may be sufficient to use
an aggregation operator that selects something between min

and max values. Alternatively, it also could be something else
such as a t-conorm operator. Hence, in the second challenge,
several options are employed to combine the aforementioned
rule-based complexity and structural complexity, such that:

CHFS = CRB

⊕
C̃S (10)

where
⊕

indicates the generic operator 1.
In this case, the generic operator will represent basic aggre-

gation operators namely min, max and mean, and also another
operator strategy that is a t-conorm operator, specifically one
of probabilistic sum, bounded sum and Einstein sum. These
alternative aggregation and t-conorm operators are as follows:

(i) Aggregation operator: min

CHFS = MIN(CRB , C̃S)

(ii) Aggregation operator: max

CHFS = MAX(CRB , C̃S)

(iii) Aggregation operator: mean

CHFS = MEAN(CRB , C̃S)

(iv) T-conorm operator: probabilistic sum

CHFS = CRB + C̃S − CRB · C̃S

(v) T-conorm operator: bounded sum

CHFS = MIN(CRB + C̃S , 1)

(vi) T-conorm operator: Einstein sum

CHFS =
CRB + C̃S

1 + CRB · C̃S

An HFS model is expected to be less complex when the
CHFS is close to 0 and expected to be more complex when the
CHFS is close to 1.

IV. EXPERIMENTS AND RESULTS

In this experiment, the example of a seesaw control applica-
tion is used which tackles the problem of balancing a seesaw
using an FLS [36]. The involved parameters of the seesaw are
the distance of the cart (x1), the angle that the wedge makes
with the vertical line (x2), the height of the wedge (x3), and the
centre of mass of the wedge (x4). The topology and complete
rules set for this FLS (81 rules) can be seen in Fig. 2 and
Table I, respectively.

This experiment aims to explore the features of the proposed
complexity measurement by using a seesaw control as an
example. The experiment process consists of three main steps:

1) produce a Parallel L-HFS and a Serial L-HFS for the
Seesaw Control;

2) measure the complexity of the Parallel L-HFS and the
Serial L-HFS by using the proposed measure;

3) measurement of the overall complexity of the Parallel and
Serial L-HFS.

1In this paper, we consider that both qualities (CRB and C̃S ) are equally
important (weight). Clearly, it may be worth considering different weighting
for both qualities, and we will consider it in the future date.



Fig. 2. Seesaw control Application: FLS

TABLE I
THE RULES OF FLAT FLS

x3 x4
x1

nb ze pb

x2 x2 x2

nb ze pb nb ze pb nb ze pb

nb nb nb nm nb nm ns nm ns ze
nb ze nb nm ns nm ns ze ns ze ps

pb nm ns ze ns ze ps ze ps pm

nb nb nm ns nm ns ze ns ze ps
ze ze nm ns ze ns ze ps ze ps pm

pb ns ze ps ze ps pm ps pm pb

nb nm ns ze ns ze ps ze ps pm
pb ze ns ze ps ze ps pm ps pm pb

pb ze ps pm ps pm pb pm pb pb

A. Produce a Parallel L-HFS and a Serial L-HFS for the
Seesaw Control

First, this experiment begins by producing two types of
HFS, namely a parallel version and a serial version. In this
case, the L-HFS algorithm is used to decompose the FLS from
the seesaw system to reproduce two types of HFS models, also
known as Parallel L-HFS and Serial L-HFS. The topologies
of these HFSs can be seen in Figs. 3 and 4, respectively. The
complete rules for these HFSs are shown in Tables III–VIII.
A summary of both HFSs is presented in Table II.

As can be seen in Table II, the decomposition process
from FLS to HFSs (Parallel L-HFS and Serial L-HFS) has
effectively reduced the number of rules by almost 50% from
the original FLS. Intuitively and perhaps naively, one may say
that both the Parallel L-HFS and Serial L-HFS have reduced
approximately 50% of the complexity from the original FLS,

TABLE II
DESCRIPTION OF THE FLS, PARALLEL L-HFS AND SERIAL L-HFS FOR

SEESAW CONTROL APPLICATIONS

Descriptions FLS Parallel L-HFS Serial L-HFS

Number of inputs 4 4 4
Number of layers 1 2 3
Number of subsystems 1 3 3
Number of rules in FLS1 81 9 9
Number of rules in FLS2 - 9 15
Number of rules in FLS3 - 25 21
Total number of rules 81 43 45

Fig. 3. Seesaw control Application: Parallel L-HFS

TABLE III
THE RULES OF PARALLEL L-HFS:

FLS1

x2
x1

nb ze pb

nb A B C
ze B C D
pb C D E

TABLE IV
THE RULES OF PARALLEL L-HFS:

FLS2

x4
x3

nb ze pb

nb F G H
ze G H I
pb H I J

if only considering the total number of rules as an indicator
to measure HFS complexity. However, the uncertainty of the
structure of HFSs, namely due to multiple subsystems, layers,
and different topologies, may also affect the complexity of
HFSs. Therefore, in the following step, the proposed measure,
CHFS , is used to measure complexity for both the Parallel
L-HFS and Serial L-HFS.

B. Measuring Complexity of the Parallel L-HFS and Serial
L-HFS

Secondly, the proposed measure, CHFS is utilised to measure
the complexity in the Parallel L-HFS and the Serial L-HFS.
The measurement is described in detail in the following
subsections.

Step 1: Calculating the rule-based complexity of the Parallel
and Serial L-HFS: To calculate the rule-based complexity,
equation (7) is applied to measure the complexity in Parallel
L-HFS and Serial L-HFS. Table IX shows a summary of the
two systems’ rule-based complexity.

Fig. 4. Seesaw control Application: Serial L-HFS



TABLE V
THE RULES OF PARALLEL L-HFS:

FLS3

y2
y1

A B C D E

F nb nb nm ns ze
G nb nm ns ze ps
H nm ns ze ps pm
I ns ze ps pm pb
J ze ps pm pb pb

TABLE VI
THE RULES OF SERIAL L-HFS:

FLS1

x2
x1

nb ze pb

nb A B C
ze B C D
pb C D E

TABLE VII
THE RULES OF SERIAL L-HFS:

FLS2

x3
y1

A B C D E

nb F G H I J
ze G H I J K
pb H I J K L

TABLE VIII
THE RULES OF SERIAL L-HFS:

FLS3

x4
y2

F G H I J K L

nb nb nb nm ns ze ps pm
ze nb nm ns ze ps pm pb
pb nm ns ze ps pm pb pb

As seen in Table IX, the computed rule-based complexity,
CRB , produces a higher complexity value of 0.768 for the
Parallel L-HFS, compared to 0.756 for the Serial L-HFS. This
suggests that the Parallel L-HFS may be more complex than
the Serial L-HFS in terms of rule-based complexity.

Step 2: Calculating the structural complexity of the Parallel
and Serial L-HFS: For the structural complexity, Equation (8)
is used to measure the structural complexity, CS , in the two
HFSs. Table X presents an overview of the summary of this
structural complexity, CS , measured for the Parallel L-HFS
and Serial L-HFS. Equation (9) is then used to normalise the
computed structural complexity of Parallel L-HFS and Serial
L-HFS to be within the range [0,1], as shown in the last
column of Table X.

Table X shows the pattern of the computed structural
complexity that produces a higher value for the Serial L-HFS
(CS = 5) in comparison to the Parallel L-HFS (CS = 4).

TABLE IX
THE RULE-BASED COMPLEXITY BETWEEN THE FLS, PARALLEL L-HFS

AND THE SERIAL L-HFS OF SEESAW CONTROL APPLICATION

Seesaw Systems Rule-based Complexity

NC NP Comp C (1- Comp)

FLS 7 324 0.022 0.978

Parallel L-HFS
- FLS1 5 18 0.278 0.722
- FLS2 5 18 0.278 0.722
- FLS3 7 50 0.140 0.860
CRB 0.768

Serial L-HFS
- FLS1 5 18 0.278 0.722
- FLS2 7 30 0.233 0.767
- FLS3 7 42 0.167 0.833
CRB 0.756

TABLE X
THE STRUCTURAL COMPLEXITY BETWEEN THE FLS, PARALLEL L-HFS

AND THE SERIAL L-HFS OF SEESAW CONTROL APPLICATION

Seesaw Systems Structural Complexity

l n s CS C̃S

FLS 1 4 1 -2 0.250
Parallel L-HFS 2 4 3 4 0.844
Serial L-HFS 3 4 3 5 0.874

TABLE XI
SUMMARY OF OVERALL MEASUREMENT COMPLEXITY FOR FLS,

PARALLEL L-HFS AND SERIAL L-HFS WITH VARIOUS ALTERNATIVES
COMBINATION STRATEGIES

Alternative combination
strategies

FLS Parallel L-HFS Serial L-HFS

CRB C̃S CHFS CRB C̃S CHFS CRB C̃S CHFS

Aggregation - min 0.978 0.250 0.250 0.768 0.844 0.768 0.756 0.874 0.756
Aggregation - max 0.978 0.250 0.978 0.768 0.844 0.844 0.756 0.874 0.874
Aggregation - mean 0.978 0.250 0.614 0.768 0.844 0.806 0.756 0.874 0.815
T-conorm - probabilistic sum 0.978 0.250 0.984 0.768 0.844 0.964 0.756 0.874 0.969
T-conorm - bounded sum 0.978 0.250 1.000 0.768 0.844 1.000 0.756 0.874 1.000
T-conorm - einstein sum 0.978 0.250 0.987 0.768 0.844 0.978 0.756 0.874 0.981

This suggests that the Serial L-HFS is more complex than
the Parallel L-HFS and also the FLS in terms of structural
complexity.

Step 3: Overall measurement of the complexity of the
Parallel and Serial L-HFS: The structural complexity has been
normalised to be the same scale as the rule-based complexity
in the previous step as shown in Table X. Therefore, both
rule-based complexity and structural complexity for Parallel
L-HFS and Serial L-HFS are comparable. Next, to obtain the
overall complexity of Parallel L-HFS and Serial L-HFS, the
proposed CHFS as shown in (10) is used to combine the rule-
based complexity and structural complexity by using several
combination options, namely aggregation and t-conorm opera-
tors. Table XI provides a summary of the overall measurement
complexity in FLS, Parallel L-HFS and Serial L-HFS using
various combination strategies. In addition, the results of the
overall measurement complexity in FLS, Parallel L-HFS and
Serial L-HFS can also be viewed graphically in Fig. 5.

V. DISCUSSION

This paper has presented a new approach to measuring
complexity in HFSs, namely the CHFS approach, which fo-
cusses on combining rule-based complexity and structural
complexity. An experiment was conducted and observed the
proposed measure using a real-world example; in this case, the
Seesaw systems problem. Note that we are focusing on control
example in this paper because it is a convenient example of
application and available in the literature. However, in general,
we are interested in modelling example context.

First, an FLS was decomposed into two HFS models,
namely a Parallel L-HFS and a Serial L-HFS. By doing so,
both Parallel L-HFS and Serial L-HFS produced approxi-
mately 50% fewer rules than the original FLS of the Seesaw
System. The rule-based complexity reveals that the FLS is
more complex than the Parallel L-HFS and Serial L-HFS, as
shown in Table IX. Intuitively, it may be assumed that this



Fig. 5. Summary of the overall complexity (CHFS ) for FLS, Parallel L-HFS and Serial L-HFS, using different aggregation functions

is because the reduction of the number of rules reduces the
complexity of both models. However, it is not appropriate
to consider only the number of rules as an indicator when
measuring complexity in HFSs, without taking into account its
structure, namely the existence of multiple subsystems, layers
and different topologies.

Furthermore, measuring the complexity of both the Parallel
L-HFS and the Serial L-HFS was implemented using CHFS,
consisting of three main steps. For the first step, the rule-based
complexity for the FLS, Parallel L-HFS and Serial L-HFS
was measured using the proposed CRB as shown in (7). In
summary, the results show that FLS is more complex than both
HFSs in term or rule-based complexity, i.e. the number of rules
in FLS is higher than both HFSs. Moreover, the findings also
reveal that the Parallel L-HFS produced a higher value of CRB

than the Serial L-HFS. This would indicate that the Parallel
L-HFS was more complex than the Serial L-HFS in terms of
rule-based complexity. Interestingly, the total number of rules
in the Parallel L-HFS was slightly less than in the Serial L-
HFS. This result of CRB gives insight into the complexity
of HFSs, nevertheless, it is not appropriate to consider only
the number of rules when measuring complexity in HFSs.
Next, for the second step, the structural complexity for the
FLS, Parallel L-HFS and Serial L-HFS was measured using
the proposed CS as shown in (8). In contrast, for this case,
the results showed that the Serial L-HFS produces a higher
value of CS than the Parallel L-HFS, which would indicate
that the Serial L-HFS is more complex than the Parallel L-
HFS. This finding was expected and suggests that in HFSs, the
complexity increases exponentially with the number of HFS
layers in terms of the structural complexity. Further, the results
confirm the expectation that the structural complexity of FLS
is less complex than both HFSs as its structure is simpler than
the HFSs, possessing just a single layer and subsystem.

For the third step, the overall complexity of the plain
FLS, the Parallel L-HFS and the Serial L-HFS was calculated
using the proposed CHFS as shown in (10). This aimed to

combine the results of the rule-based complexity and structural
complexity calculations from Steps 1 and 2 respectively, using
several combination alternatives. The results from this step
indicate that the combination from operators max, mean,
probabilistic sum and Einstein sum presented a similar pattern,
namely that the overall complexity value of CHFS for the
Serial L-HFS is higher than the Parallel L-HFS, indicating
that the Serial L-HFS is more complex than the Parallel L-
HFS. However, the operator min showed a different pattern,
namely that the overall complexity value of CHFS for the
Parallel L-HFS is higher than that of the Serial L-HFS,
indicating that the Parallel L-HFS is more complex than the
Serial L-HFS. However, the operator bounded sum produced
an equal complexity value for both Parallel L-HFS and Serial
L-HFS, which could indicate that they are equally complex.
Overall, the results generated for the proposed measure using
most operators follow intuition in the sense that one expects
the Serial L-HFS to be more complex than the Parallel L-
HFS. For the case of the plain FLS, both aggregation and
t-conorm operators produced a variety of complexity results.
For instance, the max, probabilistic sum and Einstein sum
operators all show the FLS is more complex than both HFSs.
In contrast, the min and mean operators indicated that the FLS
is less complex than both HFSs.

There are several possible explanations for this result: (i) the
overall complexity of HFSs is more affected by the structural
complexity than rule-based complexity; (ii) complexity in
HFSs intuitively increases exponentially with the number of
layers; and (iii) rule-based complexity in HFSs does not en-
tirely depend on the total number of rules, but also depends on
the aggregation process of individual rule-based complexities
in each HFS subsystem.

VI. CONCLUSION

In conclusion, we have contributed to the field a new
approach to measuring complexity in HFSs, known as CHFS.
The new approach allows the combination of rule-based
complexity and structural complexity as a way to obtain a



more comprehensive measurement of complexity, particularly
in HFSs.

Although the combination strategies explored in this paper
are not exhaustive and some different approaches may be
appropriate, based on the current evidence, the proposed
measure (CHFS) shows promise for measuring the complexity
in HFSs and it behaves in an intuitive manner. Also, the
proposed measure (CHFS) appears to be a better approach for
measuring complexity in HFSs because it considers both rule-
based complexity and structural complexity.

In future research, we will focus on exploring other aspects
of complexity, including the semantic complexity of fuzzy
sets, intermediate output and the logical complexity of the
rules. For other future work, we will focus on investigating
the combination of the proposed measure with interpretability
measures that take into account the semantics of fuzzy sets
and fuzzy rules, and also the different weighing aggregation.
In doing so, we would hope to gain further insight into a
deeper understanding of the overall interpretability of HFSs.
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