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Abstract—The concept of pre-aggregation functions, which was
oriented as an elementary attempt to outstretch the notion of
monotonicity in aggregation functions, has enlarged the class
of operators for information accumulation by considering direc-
tional monotonicity with respect to a vector. This consideration
propels us to focus on the systematic investigation of the theoret-
ical framework of different forms of pre-aggregation functions,
particularly Bonferroni mean-type. In this regard, we propose
the construction methodology of Bonferroni mean-type (BM-
type) pre-aggregation functions by befitting suitable functions to
provide a descriptive configuration, which is quite interpretable
and understandable. Firstly, a construction method of BM-type
pre-aggregation function has been propounded by utilizing a
bivariate function M . Its properties are inspected in detail.
To enrich its capacity, the proposed BM-type pre-aggregation
function has been customized by utilizing two functions, namely
M and M∗, respectively. Several illustrative examples have been
presented in this regard.

Index Terms—Aggregation operator, Directional monotonicity,
Pre-aggregation operator, Bonferroni mean

I. INTRODUCTION

Aggregation functions form an expeditiously emerging field
of applied mathematics and information science, where a
fusion of information from a considered ordered scale is
deliberated to encapsulate the summarized representative of
the available information. It plays a pivotal role in many
processing problems, for instance, image processing [23], [22],
pattern recognition [12], decision making [25], deep learning
[30], data fusion [1], statistics [21]. A momentous property
gratified by aggregation functions, while defining them is
the boundary conditions, which corroborate that whenever
complete evidence of the information is available, that happens
when all input arguments equal 1, then the aggregated output
also equals 1. Contrarily, if there is no evidence of information,
i.e., all input arguments equal 0, then the aggregated value
has zero evidence. Another pivotal property gratified by the
aggregation function is the monotonically increasing property.
However, this property is unexploited and ill-favored in many

application problems, for instance, the mode function and the
Lehmer mean function [27] are not monotonic.
An elementary attempt to outstretch the concept of mono-
tonicity has been initiated by Wilkin and Beliakov [26] by
introducing the concept of weak monotonicity that requires
monotonicity along the direction of the first quadrant diagonal.
Further augmentation in this line of research has been done by
Bustince et al. [7], who revamped the notion of weak mono-
tonicity by introducing the concept of directional monotonicity
entitling monotonicity along a fixed ray. Lucca et al. [20]
exploited this concept to define the notion of pre-aggregation
functions. A different methodology has been proposed for the
construction of pre-aggregation functions. Some special prop-
erties of it have been investigated by Dimuro et al. [15] and
new construction methodology has been suggested. The notion
of light pre-t-norms has been initiated by Dimuro, which is
another pre-aggregation function mitigating the condition of
associativity.
Choquet integral is a pre-eminent aggregation function in
the existing literature of information fusion, that utilizes a
fuzzy measure (non-additive) to aggregate the information
in the data. Recently, this operator has been generalized to
pre-aggregation function in many vivid ways, for instance,
by utilizing t-norm T [20], by utilizing fusion function F
satisfying several properties [19], by utilizing a copula C [16],
[18], by utilizing pair of functions (F1, F2) [9] with some
restrictive constraints on F1 and F2 [17], and generalized
gCF1,F2 -integrals [9].
The structural interpretation of the BM operator was magnifi-
cently polished by Yager [28], where he analyzed the BM as
a combination of averaging and an ”anding” operator. The
homogenization of attributes that BM operator deliberately
model is realized through Yager’s interpretation as the product
of each input argument with the average of other interrelated
input arguments. He also propounded a generalized version
of the BM operator by subsequently substituting simple aver-
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aging operator by other mean-type aggregation operators like
Choquet integral and OWA operator [28]. As inspired by the
heuristic work of Yager, Beliakov et al. [2] further generalized
BM by decomposing the operator into various subcomponents
and subsequently substituting them with other averaging and
conjunctive aggregation operators. The decomposable struc-
ture of generalized BM operator (GBM) is convenient for
behavioral interpretation and facilitates modeling capability
through the behavior of its subcomponents.
In this study, we initiated the notion of Bonferroni mean-
type pre-aggregation functions, which amplifies the class of
pre-aggregation functions. Firstly, a Bonferroni-mean type
pre-aggregation function has been introduced by utilizing a
bivariate function M . Some restrictions have been thrust on the
operator M to make it satisfy certain properties like averaging,
idempotency, etc. Then, a generalized form of Bonferroni
mean-type pre-aggregation function has been proposed by
bringing into limelight two functions, namely, M and M∗,
respectively. Conditions have been imposed on these two
operators to make it pre-aggregation function and to make it
fulfill some beneficial properties. Section II summarizes some
basic pre-requisites that are indispensable for understanding
the related work. In section III, construction method of Bon-
ferroni mean-type pre-aggregation function has been proposed
that utilizes a bivariate function M . Section IV proposes
the construction methodology of Bonferroni mean-type pre-
aggregation functions by utilizing two operators, namely, M
and M∗, respectively, with extensive study of its several
preferable properties. In section V, some concluding remarks
are provided along with the future scope of this work.

II. BASIC PRELIMINARIES

This section aims at providing the essential prerequisites
that are useful in subsequent initiation of this work.

Definition 1: [19] Let G : [0, 1]2 7→ [0, 1] be a bivariate
function. Then, G is said to satisfy left conjunctive property
if G(x, y) ≤ x ∀x, y ∈ [0, 1].

Definition 2: [14] An n-ary function A : [0, 1]n 7→ [0, 1] is
said to be an aggregation operator if it satisfies the following
properties:

1) A is increasing in each of its arguments, i.e., if
yi ≤ xi for every i = 1, ..., n, then A(y1, ..., yn) ≤
A(x1, ..., xn);

2) A(0, ..., 0) = 0 and A(1, .., 1) = 1, i.e., A satisfies
boundary conditions.

Some of the special aggregation operators over [0, 1]2 are t-
norms [14], overlap functions [19], and copula [19]. They can
be suitably extended over [0, 1]n [11], [10].

Definition 3: [20] Let ~0 6= ~r = (r1, ..., rn) be an n-
dimensional vector where all r′is are real numbers and let
G : [0, 1]n 7→ [0, 1] be an n-ary function. Then G is said
to be ~r-increasing if ∀(y1, ..., yn) ∈ [0, 1]n and for any c > 0,
such that (y1 + cr1, ..., yn + crn) ∈ [0, 1]n, the inequality

G(y1 + cr1, ..., yn + crn) ≥ G(y1, ..., yn) (1)

holds.

Similarly, one can define ~r-decreasing functions.
Definition 4: [20] Let G : [0, 1]n 7→ [0, 1] be n-ary function.

Then G is said to be pre-aggregation function if the following
conditions hold:

1) G is ~r-increasing for some non-zero vector ~r =
(r1, .., rn);

2) G satisfies boundary conditions, which are G(0, ..., 0) =
0 and G(1, ..., 1) = 1.

We call G as ~r-pre-aggregation functions.
Definition 5: [20] An n-ary function G : [0, 1]n 7→ [0, 1] is

said to be averaging if it satisfies the inequalities:

min ≤ G ≤ max

.
Definition 6: [29] Let F : [0, 1]n 7→ [0, 1] be an aggrega-

tion function and let σ : {1, ..., n} 7→ {1, ..., n} be a fixed
permutation on the set {1, ..., n}. Then F is said to be σ-
commutative (or σ-symmetric) if for any (y1, ..., yn) ∈ [0, 1]n,
we have F (y1, ..., yn) = F (yσ(1), ..., yσ(n)). Furthermore, F
is said to be commutative (or symmetric) if it is σ-commutative
(or σ-symmetric) for all permutations σ on {1, ..., n}.

Definition 7: [5], [28] With p, q ≥ 0 and p + q > 0, the
Bonferroni mean operator (BM) is a mapping BM:[0, 1]n →
[0, 1] which is defined as follows:

BM
(
y1, y2, ..., yn

)
=
( 1

n

n∑
i=1

ypi

( 1

n− 1

n∑
j 6=i
j=1

yqj

)) 1
p+q

III. CONSTRUCTION OF BONFERRONI MEAN-TYPE
PRE-AGGREGATION BY UTILIZING BIVARIATE FUNCTION M

This section proposes construction methodology of Bonfer-
roni mean-type pre-aggregation function by utilizing a bivari-
ate function M : [0, 1]2 7→ [0, 1]. Throughout this section,
it is assumed that diagonal of M , denoted by δM , be such
that it is surjective as well as injective so that it is invertible.
We denote the inverse diagonal of M by δ−1M . Clearly then,
δ−1M : [0, 1] 7→ [0, 1].

Definition 8: Let M : [0, 1]2 7→ [0, 1] be a bivariate function
such that diagonal of M is surjective and injective so that it is
invertible. Let δ−1M : [0, 1] 7→ [0, 1] denote inverse diagonal of
M . The Bonferroni mean-type operator based on the function
M , denoted by BM , is the function BM : [0, 1]n 7→ [0, 1]
which is defined as follows:

BM (y1, ..., yn) = δ−1M

{
1

n(n− 1)

n∑
i,j=1
i 6=j

M(yi, yj)

}
(2)

where (y1, ..., yn) ∈ [0, 1]n.
Note that such an operator M always exists. For instance,
one may take M as minimum operator given by M(x, y) =
min{x, y}. In that case, δ−1M (y) = y ∀y ∈ [0, 1]. Furthermore,
it is to be noted that if M is idempotent and commutative (or
symmetric) function with n = 2, then BM = M .

Remark 3.1: For any eligible function M (means M is such
that inverse diagonal δ−1M : [0, 1] 7→ [0, 1]), the following



functions are also eligible: 1 −M , Md(x, y) = 1 −M(1 −
x, 1 − y), and 1 −Md(x, y) = M(1 − x, 1 − y). Then, we
have BM = B1−M (thus the same operator BM can be
generated by two different binary operators M and 1 −M )
and BM

d

= B(1−Md) = (BM )d.
Example 3.1:
• Let d : [0, 1] 7→ [0, 1] be any injective and surjective

function. Define the operator M(x, y) = cd(x) + (1 −
c)d(y), c ∈ [0, 1]. The corresponding BM operator is
given as follows:

BM = d−1
{
d(y1) + ...+ d(yn)

n

}
Thus, quasi-arithmetic mean is obtained provided d is
monotone.

• On taking M(x, y) = min{x, y}, the following form of
BM operator is obtained:

BM (y1, ..., yn) =

{
1

n(n− 1)

{
(2n− 2)yσ(1)+

(2n− 4)yσ(2) + ...+ 2yσ(n−1)
}}

where σ : {1, ..., n} 7→ {1, ..., n} is a permutation such
that yσ(1) ≤ yσ(2) ≤ yσ(n−1). Note that here BM is an
OWA operator [13].

Theorem 3.1: For the bivariate function M , such that it
possesses inverse diagonal δ−1M : [0, 1] 7→ [0, 1], the operator
BM is well defined and satisfies idempotency property; hence
it satisfies the boundary conditions which are BM (0, ..., 0) = 0
and BM (1, ..., 1) = 1.

Proof 3.1: It is immediate to check that the operator BM

is well defined. To check that it is idempotent, let y ∈ [0, 1].
Then,

BM (y, ..., y) = δ−1M

{
1

n(n− 1)

n∑
i,j=1
i 6=j

M(y, y)

}

= δ−1M {M(y, y)} = δ−1M (δM (y)) = y.

Hence, the operator is idempotent, which further implies that
boundary conditions are satisfied.

Theorem 3.2: For any function M : [0, 1]2 7→ [0, 1] such
that M is (1,1)-increasing (M is weakly increasing), BM is
~1-increasing operator (i.e. BM is weakly increasing operator),
and hence a pre-aggregation function.

Proof 3.2: First of all, we show that if M is (1,1)-increasing,
then δM is an increasing function. Let c > 0 be any real
number. Consider,

δM (y+c) = M(y+c, y+c) ≥M(y, y) = δM (y) ∀y ∈ [0, 1].

Hence, δM is an increasing function.
To show that BM is ~1-increasing operator, let (y1, ..., yn) ∈
[0, 1]n and consider,

BM (y1+c, ..., yn+c) = δ−1M

{
1

n(n− 1)

n∑
i,j=1
i 6=j

M(yi+c, yj+c)

}
.

Since, M is (1,1)-increasing, we have M(yi + c, yj + c) ≥
M(yi, yj) ∀i 6= j.

⇒ 1

n(n− 1)

n∑
i,j=1
i 6=j

M(yi+c, yj+c) ≥
1

n(n− 1)

n∑
i,j=1
i 6=j

M(yi, yj).

Now, δM is increasing function, it follows that δ−1M is strictly
increasing function. Hence, BM is ~1-increasing. By 3.1,
BM always satisfies boundary conditions, therefore a pre-
aggregation function.

Example 3.2: Consider the Lehmer mean operator [27]
given by

L(x, y) =
x2 + y2

x+ y

with convention that 0
0 = 0. Then, this operator is (1,1)-

increasing function [3] (in fact, it is increasing only for
~r = (r, r), r > 0). The corresponding BL operator is given
by:

BL(y1, ..., yn) =

{
1

n(n− 1)

n∑
i,j=1
i 6=j

(y2i + y2j
yi + yj

)}

is an example of proper Bonferroni mean-type ~1-pre-
aggregation operator, which is not an aggregation operator.

Remark 3.2: BM operator is σ-commutative (or σ-symmet-
ric) for every permutation σ on {1, ..., n}, hence the operator
is commutative (or symmetric).

It is to be noted that due to the commutativity of BM

operator, we have BM is a pre-aggregation function if and
only if it satisfies the boundary conditions and it is weakly
increasing, i.e., it is ~1-increasing. Therefore, our investigations
concerning the pre-aggregation functions in the form of BM

can be reduced to the case of weak increasingness.
Theorem 3.3: Let a function M : [0, 1]2 7→ [0, 1] be such

that it satisfies the following properties:
1) min(x, y) ≤M(x, y) ∀x, y ∈ [0, 1];
2) M satisfies left conjunctive property.

Then, min ≤ BM ≤ max, i.e., BM is an averaging operator.
Proof 3.3: Since, M satisfies min(x, y) ≤M(x, y) ≤ x
∀x, y ∈ [0, 1], so we have M is idempotent. Let
yk = minni=1{yi}, and maxni=1{yi} = yp. Then,

yk =
n

min
i=1
{yi} ≤ min{yi, yj}

≤M(yi, yj) ≤ yi ≤
n

max
i=1
{yi} = yp

⇒ yk ≤
1

n(n− 1)

n∑
i,j=1
i 6=j

M(yi, yj) ≤ yp.

Since M is idempotent, which implies that δ−1M is identity
function hence strictly increasing, we have

n
min
i=1
{yi} = yk = δ−1M {δM (yk)} = δ−1M {yk}



≤ δ−1M
{

1

n(n− 1)

n∑
i,j=1
i 6=j

M(yi, yj)

}

≤ δ−1M {yp} = δ−1M {δM (yp)} = yp =
n

max
i=1
{yi}

Hence, the theorem follows.

IV. CONSTRUCTION OF BONFERRONI MEAN-TYPE
PRE-AGGREGATION OPERATORS BY UTILIZING FUNCTIONS

M AND M∗

This section proposes construction methodology of Bon-
ferroni mean-type pre-aggregation operators by utilizing two
functions, namely M and M∗ respectively. We assume that
M : [0, 1]2 7→ [0, 1] be such that δM is surjective and injective
function so that it is invertible. Denote inverse diagonal
of M by δ−1M : [0, 1] 7→ [0, 1]. Further we assume that
M∗ : [0, 1]n(n−1) 7→ [0, 1] is a commutative (or symmetric)
function.

Definition 9: Let M : [0, 1]2 7→ [0, 1] be a binary function
such that its diagonal δM : [0, 1] 7→ [0, 1] is bijective and
let M∗ : [0, 1]n(n−1) 7→ [0, 1] be a commutative (symmet-
ric) function. The Bonferroni mean-type operator based on
functions M and M∗ respectively, denoted by BMM∗ , is the
function BMM∗ : [0, 1]n 7→ [0, 1] which is defined as follows:

BMM∗(y1, ..., yn) = δ−1M

[
M∗
{
M(yi, yj) : i, j = 1, .., n; i 6= j

}]
(3)

where (y1, ..., yn) ∈ [0, 1]n.
One wishes to find out conditions on M and M∗ respectively,
such that BMM∗ is a pre-aggregation operator. Unless otherwise
stated, we are assuming conditions on δ−1M and M∗ as given
in Definition 9.

Remark 4.1: It is to be observed that if M∗ is an arithmetic
mean operator then the definitions 8 and 9 coincides, i.e., we
have BMM∗ = BM .

Remark 4.2: It is to be observed that if M∗ is a
weighted arithmetic mean operator, and wij ∈ [0, 1] for every
i, j = 1, ..., n, i 6= j, satisfying

∑n
i,j=1
i 6=j

wij = 1 then the

definition 9 reduces to

BMM∗ = (y1, ..., yn) = δ−1M

[ n∑
i,j=1
i 6=j

wijM(yi, yj)

]
.

Theorem 4.1: The operator BMM∗ is well defined. Further-
more, the necessary and sufficient condition for BMM∗ to be
idempotent is that M∗ should be idempotent.

Proof 4.1: It is easy to show that BMM∗ is well defined.
To check idempotency property, we first assume that M∗ is
idempotent. Consider,

BMM∗(y, .., y) = δ−1M

[
M∗
{
M(y, y) : i, j = 1, .., n; i 6= j

}]
= δ−1M

[
M(y, y)

]
= δ−1M

[
δM (y)

]
= y

Now, assume that BMM∗ is idempotent. If possible let M∗ is
not idempotent. Consider,

BMM∗(y, .., y) = δ−1M

[
M∗
{
M(y, y) : i, j = 1, .., n; i 6= j

}]
If M(y, y) = b (say) and M∗(b, ..., b) = c 6= b, then

BMM∗(y, .., y) = δ−1M

[
M∗(b, .., b)

]
= δ−1M (c).

Now, it is given that BMM∗ is idempotent, then we have c =
δM (y) = M(y, y) = b, which is a contradiction. Hence, M∗

has to be idempotent.
Remark 4.3: It is to be noted that on taking

M(x, y) = min{x√y, y
√
x} and M∗ as quadratic mean

function, then the corresponding BMM∗ is given by the
following form:

BMM∗(y1, ..., yn) =

[
1

n(n− 1)

n∑
i,j=1
i 6=j

min{y2i yj , y2j yi}
] 1

3

The operator BMM∗ is idempotent in spite of taking M as non-
idempotent operator.

Theorem 4.2: If the operator M is (1,1)-increasing and the
operator M∗ is an increasing function, then the operator BMM∗

is ~1-increasing.
Proof 4.2: Since M is (1,1)-increasing, we have

M(yi + c, yj + c) ≥M(yi, yj) ∀i 6= j, c > 0.

M∗ is an increasing function, so we have

M∗
{
M(yi + c, yj + c) : i, j = 1, .., n; i 6= j

}
≥M∗

{
M(yi, yj) : i, j = 1, .., n; i 6= j

}
Now, M is (1,1)-increasing, it follows that δM and hence δ−1M
is strictly increasing. Thus,

BMM∗(y1 + c, .., yn + c)

= δ−1M

[
M∗
{
M(yi + c, yj + c) : i, j = 1, .., n; i 6= j

}]
≥ δ−1M

[
M∗
{
M(yi, yj) : i, j = 1, .., n; i 6= j

}]
= BMM∗(y1, .., yn)

.
Theorem 4.3: If M(0, 0) = a, M(1, 1) = b, then the

necessary and sufficient condition on BMM∗ to satisfy boundary
conditions is that a and b are idempotent elements of M∗

Proof 4.3: To check the boundary condition, consider the
following argument.
First, we assume that a and b are idempotent elements of M∗.
Consider,

BMM∗(0, ..., 0) = δ−1M

[
M∗
{
M(0, 0) : i, j = 1, .., n; i 6= j

}]
= δ−1M

[
M∗(a, ..., a)

]
= δ−1M (a)

= δ−1M (M(0, 0)) = δ−1M (δM (0)) = 0



Now, let BMM∗ satisfies boundary condition at (0,...,0). Then,

BMM∗(0, ..., 0) = δ−1M

[
M∗
{
M(0, 0) : i, j = 1, .., n; i 6= j

}]
= 0

⇒M∗
{
M(0, 0) : i, j = 1, .., n; i 6= j

}
= δM (0) = M(0, 0)

Thus, it implies that M(0, 0) = a is an idempotent element
of M∗.
Similarly, we can prove it for ~1.

Corollary 4.1: Let the operator M is (1,1)-increasing, and
the operator M∗ satisfies the following conditions:

1) M(0, 0) = a and M(0, 0) = b are idempotent elements
of M∗.

2) M∗ is an increasing function.
Then the operator BMM∗ is a pre-aggregation function.
Proof: Proof follows immediately by using theorems 4.2, 4.3.

Example 4.1: On taking M as Lehmer mean given by
L(x, y) = x2+y2

x+y , and M∗ as maximum operator, we get the
following form of BLM∗ :

BLM∗(y1, .., yn) = max

{
y2i + y2j
yi + yj

: i, j = 1, ..., n; i 6= j

}
,

with the convention that 0
0 = 0 ( [24], [4], [8]).

The operator BLM∗ is a proper pre-aggregation operator, which
is not an aggregation operator.
On taking a particular case of n = 2, the corresponding BLM∗

operator is given as follows:

BLM∗(y1, y2) =
y21 + y22
y1 + y2

,

which is Lehmer mean operator and is weakly monotone but
not monotone, therefore a proper pre-aggregation operator is
obtained.

Theorem 4.4: If the operator M satisfies the following
conditions:

1) M satisfies left conjunctive property;
2) M ≥ min;

and the operator M∗ is an idempotent and an increasing
function, then we have min ≤ BMM∗ ≤ max.

Proof 4.4: Since, M satisfies min{x, y} ≤ M(x, y) ≤ x
∀x, y ∈ [0, 1], so we have M as idempotent function. Now,
consider

BMM∗(y1, .., yn) = δ−1M

[
M∗
{
M(yi, yj) : i, j = 1, .., n; i 6= j

}]
.

Let, minni=1{yi} = yk, and maxni=1{yi} = yp. Then we have,

yk =
n

min
i=1
{yi} ≤ min(yi, yj) ≤M(yi, yj)

≤ yi ≤
n

max
i=1
{yi} = yp ∀i, j = 1, .., n; i 6= j.

Also, M∗ is an increasing and idempotent function, we have

yk = M∗
(
yk, ..., yk

)
≤M∗

(
M(yi, yj) : i, j = 1, .., n; i 6= j

)
≤M∗

(
yp, ..., yp

)
= yp

Since, δ−1M is an identity function, so we have
n

min
i=1
{yi} = yk = δ−1M (yk)

≤ δ−1M
[
M∗
(
M(yi, yj) : i, j = 1, .., n; i 6= j

)]
≤ δ−1M (yp) = yp =

n
max
i=1
{yi}

Hence, the theorem follows.
Remark 4.4: The operator BMM∗ is σ-commutative (or σ-

symmetric) for every permutation σ of the set {1, ..., n}, hence
the operator is commutative.

V. CONCLUSION

This paper develops a theoretical framework for Bonferroni
mean-type pre-aggregation operators. Firstly, a family of op-
erators is developed by utilizing a bivariate function M such
that diagonal of M is surjective and invertible. By imposing
several conditions on the function M , a family of Bonfer-
roni mean-type ~1 pre-aggregation functions, namely BM , has
been proposed. This family satisfies several advantageous
properties, and it is illustrated by a set of examples. More
generalized family of BM-type pre-aggregation functions has
been constructed by suitably befitting two functions, namely
M and M∗ respectively.
Future scope in the direction of this work includes the propo-
sition of partitioned Bonferroni mean-type pre-aggregation
function and extended partitioned Bonferroni mean-type pre-
aggregation function, along with its application in classifi-
cation problem. Furthermore, the proposed operators can be
generalized by constructing ordered directionally monotone
Bonferroni-mean type functions [6], [9].
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fuente, Graçaliz Pereira Dimuro, Radko Mesiar, and Anna Kolesárová.
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