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Abstract—The concept of pre-aggregation function defined in
[0, 1]n has been recently extended to that of generalized pre-
aggregation function in the framework of a totally ordered set
T with maximum and minimum value. To do so, the concept of
monotonicity is transformed in that of conditioned monotonicity
based on the chains in T n, generalizing the idea of directional
monotonicity. In the present paper we explore the concept of
conditioned monotonicity considering some specific conditioning
structures (covers, partitions and projections). On this basis we
consider some situations where conditioned monotonicity ensures
monotonicity. Finally we use these definitions and properties to
define some pre-aggregation and aggregation functions that are
applied to image preprocessing problems.

Index Terms—Aggregation functions, pre-aggregation func-
tions, directional monotonicity, conditioned monotonicity.

I. INTRODUCTION

Aggregation functions [1] play a central role in information
fusion and decision making. This question has been mostly
focused on by means of variables taking values on [0, 1]
interval, aggregated through monotonic functions. Only in
recent years aggregation processes have been opened to new
approaches where unit interval and monotonic functions are
replaced by other options.

The [0, 1] interval can be extended to any complete lattice
[2] (defining generalized aggregation functions), or even to a
bounded poset as in [3] (working with type-2 fuzzy sets). A
different option is that of relaxing monotonicity through weak
monotonicity [4], directional monotonicity [5], or conditioned
monotonicity [6]. Directional monotonicity and conditioned
monotonicity are the basis for the definition of pre-aggregation
functions [7] and generalized pre-aggregation functions [6].

The present paper will continue with the analysis of condi-
tioned monotonicity and generalized pre-aggregation functions
started in [6]. We will work with a totally ordered set T
with maximum and minimum value. This set can even be
discrete and we need to reinterpret the concept of monotonic-
ity in terms of chains or linear orders in T n (conditioned
monotonicity). In this new framework (totally ordered sets and
conditioned monotonicity), we will concentrate on some spe-
cific cases. It could be also interesting to transfer the existing

relation between directional monotonicity and monotonicity,
to the case of conditioned monotonicity.

The rest of the paper is structured as follows. Section II
presents some preliminary concepts related to Aggregation
operators, as well as the recently introduced concepts of
conditioned monotonicity and generalized pre-aggregation.
Then, in Section III, the concepts of conditioned monotonicity
and generalized pre-aggregation are considered in the frame-
work of partitions related to a prototype, and particularly
for those partitions linked to projections. This idea leads
us to analyze the monotonicity of a function in terms of
conditioned monotonicity over its projections in Section IV.
Then, its application to define generalized pre-aggregation and
aggregation functions useful in image processing is shown in
Section V. Finally, some conclusions and open questions are
considered.

II. PRELIMINARIES

A. Aggregation operators

The usual definition of an aggregation operator is that of a
function

Agn : [0, 1]n → [0, 1]

which holds the following properties:
1) Agn is monotone, non decreasing.
2) Agn(0, . . . , 0) = 0.
3) Agn(1, . . . , 1) = 1.
The previous concept can be extended to a more general

case by replacing the lattice [0, 1] with a complete lattice (with
a maximum and minimum), leading to what is usually known
as generalized aggregation function (see for example [2], [8]).

Definition 1: Let (T ,≤) be a complete lattice (with maxi-
mum and minimum elements, 1T and 0T respectively) and let
(T n,≤n) be the natural lattice of n elements of type T (i.e.
T n = T × . . .× T︸ ︷︷ ︸

n times

).

A generalized aggregation function is a mapping Ag :
T n → T such that it satisfies:
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1) Ag(0T , 0T ..., 0T︸ ︷︷ ︸
n times

) = 0T and Ag(1T , 1T , .., 1T︸ ︷︷ ︸
n times

) = 1T .

2) Ag is monotonic with respect to the lattice’s order (≤n).

But this is not the only extension that can be defined.
As previously said weak monotonicity [4] extends classical
monotonicity property by requiring monotonicity only along
the direction of the first quadrant diagonal. This idea is further
extended with the concept of directional monotonicity [5]
based on that of r-increasing functions.

Definition 2: [5] Let f be a function from [0, 1]n to [0, 1].
And let r be an element of Rn. Then we will say that f is
r-increasing if for all x ∈ [0, 1]n and for all λ ≥ 0, the
following holds:

If x+ λr ∈ [0, 1]n then f(x+ λr) ≥ f(x).

Then, the concept of pre-aggregation function relies on that
of r-increasing functions.

Definition 3: [7] A mapping Agn : [0, 1]n → [0, 1] is an
n-dimensional pre-aggregation function if it satisfies:

1) There exists a real vector r ∈ [0, 1]n with r 6= 0 such
that Agn is r-increasing.

2) Agn(0, . . . , 0) = 0 and Agn(1, . . . , 1) = 1.

It is also possible to merge the two previously mentioned
extensions. Considering that pre-aggregation functions have
already produced good results (see for example [9]) in ag-
gregation processes working over the complete lattice [0, 1],
it could be interesting to extend pre-aggregations to problems
defined on T (a complete lattice with a maximum and mini-
mum element).

B. Conditioned Monotonicity

The idea now is to extend the concept of pre-aggregation
from [0, 1]n to T n. To do so, the idea of directional monotonic-
ity is adapted to a universe where directions may not exist.
Consequently, it is transformed in the more general concept
of conditioned monotonicity.

Definition 4: [6] Let (T ,≤) be a totally ordered set with
maximum and minimum elements (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T ,
let P≤(T n) be the set of all totally ordered subsets (chains)
of T n, and let C be a subset of P≤(T n). Consequently C =
{Ci : i ∈ I} where Ci are chains of T n.

A mapping F : T n → T is said to be a C-conditioned
increasing (decreasing) function if it satisfies that ∀a, b ∈
T n, if a ≤n b and ∃Ci ∈ C such that a, b ∈ Ci, then F (a) ≤
F (b) (F (a) ≥ F (b)).

In other words, the function F is said to be a C-conditioned
increasing (decreasing) function if F|Ci

is an increasing (de-
creasing) function, for every chain Ci in C. For this idea it
is important to notice that, first, any two elements in Ci are
comparable since chains are linearly ordered sets, and second,
any two images are comparable being the range of F a subset
of a totally ordered set (T ).

Definition 5: [6] Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T ,
let P≤(T n) be the set of all totally ordered subsets (chains)
of T n, and let C be a subset of P≤(T n).

A mapping F : T n → T is said to be a C-conditioned
monotonic function if it is either a C-conditioned increasing
function or a C-conditioned decreasing function.

Theorem 1: [6] Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T ,
let P≤(T n) be the set of all totally ordered subsets (chains)
of T n.

If F : T n → T is a P-conditioned monotonic function, i.e.,
it is a C-conditioned monotonic function with C = P≤(T n),
then F is a monotonic function.

C. Generalized pre-aggregation functions

Definition 6: [6] Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T ,
let P≤(T n) be the set of all totally ordered subsets (chains)
of T n, and let C be a subset of P≤(T n).

A generalized pre-aggregation function over C is a
mapping Ag : T n → T such that it satisfies:

1) Ag(0T , 0T ..., 0T︸ ︷︷ ︸
n times

) = 0T and Ag(1T , 1T , .., 1T︸ ︷︷ ︸
n times

) = 1T .

2) Ag is a C-conditioned increasing function.

Proposition 1: [6] A generalized pre-aggregation function
over P≤(T n) is a generalized aggregation function.

Definition 7: [6] A mapping Ag : T n → T is said to be
a partitioning generalized pre-aggregation function over C
when it is a generalized pre-aggregation function over C, and
C is a partition of T n.

Proposition 2: [6] Any pre-aggregation function in the sense
of Definition 3 from [7], is a partitioning generalized pre-
aggregation function.

Definition 8: [6] A mapping Ag : T n → T is said to be a
covering generalized pre-aggregation function over C when
it is a generalized pre-aggregation function over C, and C
covers T n.

We say that C covers T n, or C is a cover of T n, when C
is a family of nonempty (and non-duplicated) subsets of T n
whose union is equal to T n.

Proposition 3: [6] Any partitioning generalized pre-
aggregation function over C is a covering generalized pre-
aggregation function over C.

In summary, conditioned monotonicity offers many different
options for the analysis according to the relation between
the conditioning set C, and the overall set of chains in
T n (P≤(T n)). These options go from monotonicity when
C = P≤(T n) (see Proposition 1) to fusion functions (where
monotonicity is eliminated) when C = ∅.



Example 2.1: Let us consider the totally ordered set (T ,≤)
with T = {0, a, b, 1} and the order 0 < a < b < 1.
In (T 2,≤2), corresponding to the following Hasse diagram

11

1b

1a

10

b1

bb

ba

a1

b0

ab01

aa0b

a00a

00

we define the function F : T 2 → T as:
F (0, 0) = F (0, a) = F (0, b) = F (a, 0) = F (b, 0) =
F (b, a) = 0,
F (0, 1) = F (a, a) = F (1, 0) = F (b, b) = a,
F (a, b) = F (b, 1) = F (1, a) = b,
F (a, 1) = F (1, b) = F (1, 1) = 1.

If we consider the following chains in T 2:
C1 = {00, 0a, 0b, 01, a1}, C2 = {00, a0, aa, ab, a1}, C3 =
{0a, aa, ab, bb, b1, 11}, C4 = {a0, b0, ba, bb, b1} and C5 =
{b0, 10, 1a, 1b, 11}; the function F is monotonic when
restricted to C1, to C2, to C4 and to C5, but is not monotonic
when restricted to C3. Consequently, if we consider
C = {C1, C2, C4, C5}, F is a C-conditioned monotonic
function. In addition, as F (0, 0) = 0 and F (1, 1) = 1, F
is a generalized pre-aggregation function over C. Finally,
considering that C covers T 2, F is a covering generalized
pre-aggregation function over C. On the other hand, being
not increasing over C3, F is not a Generalized aggregation
function.

III. CONDITIONED MONOTONICITY ON PROTOTYPE-BASED
PARTITIONS

In previous section we have considered the concept of con-
ditioned monotonicity having its upper bound in monotonicity
when C = P≤(T n). On the other hand, applying the concept
of conditioned monotonicity, we have established different
levels of generalized pre-aggregations including covering and
partitioning pre-aggregation functions. Having in mind the re-
lation between conditioned monotonicity and pre-aggregation,
we can replicate these same intermediate levels in conditioned
monotonicity.

In a covering generalized pre-aggregation function, the
conditioning set C covers T n. It makes sense to say that
the conditioned monotonicity appearing in this case is a
covering conditioned monotonicity. With a similar reasoning
it is possible to establish the idea of partitioning conditioned
monotonicity.

Covering conditioned monotonicity seems to be an interest-
ing option since being C a cover ensures that the union of all
elements in C is T n. Consequently, every element x in T n
will be in, at least, one chain (Ci) in C. This situation ensures
that for any x ∈ T n there is at least a linear order Cx ∈ C,
with x ∈ Cx, that is, every element in T n could be a matter
of analysis in what concerns monotonicity. But, it could also
happen the linear order not being unique.

To cope with that potential problem could be interesting
to force the subsets in C being pairwise disjoint. Under
this restriction the cover becomes a partition of T n, and
the covering conditioned monotonicity is transformed into a
partitioning conditioned monotonicity. The function will be C-
conditioned monotonic, being C a partition of T n. In this case
we can assure that for any x ∈ T n there exist a unique linear
order Cx ∈ C, with x ∈ Cx. It is interesting to notice that the
r−directional monotonicity defined in [5] is a particular case
of partitioning conditioned monotonicity where T = [0, 1],
and the chains Cx are defined by the straight line with direction
r that contains the element x.

A direction r is a natural way to define a partition in [0, 1]n.
The question is how to define a partition in T n in a natural
way similar to that of the straight line used in r−directional
monotonicity. The main idea is to generate a partition on
the basis of a certain property or condition. We will refer to
this kind of partition a prototype-based partition, and to the
building property or condition as the prototype of the partition.

A. Conditioned monotonicity on projective partitions

A particular and interesting case could be that of partitions
where the prototype generates chains which elements are
constant in every component except for one, i.e, c ∈ C implies
c = {(a1, . . . , xj , . . . , an) : xj ∈ T , and ai is constant (i 6=
j)}. To explore this concept we will relate it to the idea of
projection.

Definition 9: Let T be a set, and let x be an element of Tn,
i.e., x = (x1, x2, . . . , xn), we define the i-th projection map
in Tn as a mapping proji : Tn → T such that proji(x) = xi.

We can now generalize this idea by selecting more than
one component of x, so producing a mapping onto Tm with
m ≤ n.

Definition 10: Let T be a set, let x be an element of Tn,
let J ⊂ I = {1, 2, , . . . , n}, with |J | = m. We define the J-th
projection map in Tn as a mapping projJ : Tn → Tm such
that projJ(x) = (xJ1 , xJ2 , . . . , xJm), where Jj , Jk ∈ J , and
Jj < Jk, when j < k.

On the basis of these definitions of projection we can gener-
ate equivalence relations by simply grouping in an equivalence
class all those elements having the same projection.

Definition 11: Let T be a set, let x be an element of Tn,
let J ⊂ I = {1, 2, , . . . , n}, let a, b ∈ Tn, and let projJ be the
J-th projection map in Tn. We define the equivalence relation
ΠJ as (a, b) ∈ ΠJ , if and only if projJ(a) = projJ(b).

If we denote now the set i as i = I − {i}, i.e., the
complementary of {i} in I , the relation Πi will produce
equivalence classes where all members will be identical except



for the value of their i-th component, i.e, (a, b) ∈ Πi, if
and only if proji(a) = proji(b), and consequently aj =
bj ,∀j 6= i. We will represent this equivalence class as
[(a1, a2, . . . , ai−1, xi, ai+1, . . . , an)]. This equivalence class
is made up of all elements having as common projection
(a1, a2, . . . , ai−1, ai+1, . . . , an).

The set of all possible equivalence classes of Tn by Πi,
denoted Tn/Πi, is the quotient set of Tn by Πi. And any
quotient set (in this case Tn/Πi) is a partition of Tn. We can
then define a partition by means of a projection.

Let us replace now the generic set T used in previous
definitions with a totally ordered set (T ,≤). We will first
consider the structure of its equivalence classes (being chains),
and apply then the concept of conditioned monotonicity by
conditioning through a projection (that generates a partition
as previously shown).

Proposition 4: Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T ,
and let proji : T n → T be the projection map over i. Then,
each equivalence class defined by Πi is a chain in (T n,≤n).

Proof: Each equivalence class defined by Πi can be rep-
resented by [(a1, a2, . . . , ai−1, xi, ai+1, . . . , an)]. As xi takes
values in T , if (a1, . . . , ai, . . . , an), (a1, . . . , bi, . . . , an) ∈
[(a1, a2, . . . , ai−1, xi, ai+1, . . . , an)], and
(a1, . . . , ai, . . . , an) 6= (a1, . . . , bi, . . . , an), it should
be either ai < bi or bi < ai (ai and bi are
comparable). In addition, ∀a ∈ T n and bi ∈ T ,
ai < bi ⇐⇒ (a1, . . . , ai, . . . , an) <n (a1, . . . , bi, . . . , an),
and bi < ai ⇐⇒ (a1, . . . , bi, . . . , an) <n (a1, . . . , ai, . . . , an)
(being (a1, . . . , ai, . . . , an) and (a1, . . . , bi, . . . , an) also
comparables). Consequently, each pair of elements in the
equivalence class defined by Πi are comparable, and the
equivalence class is a linear order (a chain).

If we consider again the set, and the function defined in
Example 2.1, it is possible to apply the concept of projection
to generate a partition and analyze conditioned monotonicity.

Example 3.1: Let us consider T = {0, a, b, 1}, with the
order 0 < a < b < 1, and (T 2,≤2). We define the function
F : T 2 → T as:
F (0, 0) = F (0, a) = F (0, b) = F (a, 0) = F (b, 0) =
F (b, a) = 0,
F (0, 1) = F (a, a) = F (1, 0) = F (b, b) = a,
F (a, b) = F (b, 1) = F (1, a) = b,
F (a, 1) = F (1, b) = F (1, 1) = 1.

The function F is a partitioning generalized pre-aggregation
function over T 2/Π2. The function is increasing over any
chain of the form {x0, xa, xb, x1}, with x ∈ T , that is, over
any equivalence classes of T 2.

On the other hand, F is not a partitioning generalized pre-
aggregation function over T 2/Π1 considering that F is not
increasing over the chains {0a, aa, ba, 1a}, {0b, ab, bb, 1b},
and {01, a1, b1, 11}.

The projections we have considered to this point produce
the dimensional reduction by means of removing part of
the components of x. If (T n,≤n) has additional properties,

it is possible to consider other projections when generating
our partitions. We can even define a different interaction in
between partitions and projections.

Definition 12: Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T ,
and let x = (x1, . . . , xn) be an element of T n. We define the
lower surface of (T n,≤n), denoted by Sl(T n) as:

Sl(T n) = {x ∈ T n : ∃i ∈ {1, . . . , n} with xi = 0T }.

In a similar way we can define the upper surface of (T n,≤n),
denoted by Su(T n) as:

Su(T n) = {x ∈ T n : ∃i ∈ {1, . . . , n} with xi = 1T }.
If we define now the set C ⊂ P≤(T n) in such a way that

it was a partition, and that every chain Ci ∈ C has one and
only one element of Sl(T n) (noted as Cil), and has one and
only one element of Su(T n) (noted as Ciu), the functions
ΠCl : T n → Sl(T n) and ΠCu : T n → Su(T n) defined
as ΠCl(x) = Cil ∀x ∈ Ci and ΠCu(x) = Ciu ∀x ∈ Ci
respectively, are projections of T n.

This kind of partition related to a prototype/projection being
not the canonical projection could also be of interest.

In particular we have said that r−directional monotonicity
defined in [5] is a particular case of partitioning conditioned
monotonicity where T = [0, 1], and the chains Cx are defined
by the straight line with direction r that contains the element
x. Is it possible to define such a partition as a prototype based
partition? Let us consider now this question.

In this case the definition of the partition C and the
corresponding projection is quite simple.

Definition 13: Let us consider T = [0, 1], let (T n,≤n)
be the natural lattice of n elements of type T , given v =
(v1, . . . , vn) ∈ T n, v 6= (0, . . . , 0), we define the projection
in the direction of v as a mapping projv : T n → Sl(T n), such
that for any x = (x1, . . . , xn) ∈ T n, projv(x) = x − λxv,

where λx = mini,vi 6=0

{
xi
vi

}
.

But we don’t need to consider such a complicated structure
if we want to create partitions in spaces as [0, 1]n. We can
simply create a prototype based partition on [0, 1]n by con-
sidering a prototype being a straight line with a certain slope
(that at the end is also a chain). This situation corresponds to
the so called directional monotonicity, being the direction that
of the line (prototype). In fact, the previous idea of prototypes
where only one component changes are related to this concept
by taking the directions of the coordinate axes.

This idea can be easily extended to other kind of patterns or
conditions (prototype chain) as a parabola or any other curve
or variety, with the only restriction that the prototype should
generate chains (linearly ordered sets).

IV. FROM CONDITIONED MONOTONICITY TO
MONOTONICITY

When the conditioned monotonicity of a function appears
over different partitions, it is in some cases possible to gener-
alize it to other chains not directly considered in the partitions.



In the case of monotonicity related to different projections we
can scale up the property by merging the projections. When
the conditioned monotonicity appears on every projection, the
function is monotonic, as will be shown below.

Remark 1: Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type
T , let x be an element of T n, and let proji : T n → T
be the projection map over i. If F : T n → T is a
T n/Πi-conditioned increasing function then ∀a ∈ T n and
bi ∈ T , (a1, . . . , ai, . . . , an) ≤n (a1, . . . , bi, . . . , an) implies
that F (a1, . . . , ai, . . . , an) ≤ F (a1, . . . , bi, . . . , an).

Theorem 2: Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T ,
and let proji : T n → T be the projection map over i. If
F : T n → T is a T n/Πi-conditioned increasing function
∀i ∈ {1, 2, . . . , n}, then F is an increasing function in T n.

Proof: Let us consider a, b ∈ T n such that a ≤n b,
consequently ai ≤ bi∀i ∈ {1, . . . , n}. As F is T n/Πi-
conditioned increasing ∀i ∈ {1, 2, . . . , n}, it holds that

F (a1, a2, . . . , an) ≤ F (b1, a2, . . . , an) ≤
F (b1, b2, . . . , an) ≤ . . . ≤ F (b1, b2, . . . , bn)

where the first inequality follows from F being T n/Π1-
conditioned increasing, the second from F being T n/Π2-
conditioned increasing, and so on until the last inequality
following from F being T n/Πn-conditioned increasing. Then,
as

a ≤n b implies F (a1, a2, . . . , an) ≤ F (b1, b2, . . . , bn),

F is an increasing function in T n.

Lemma 1: Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T ,
and let proji : T n → T be the projection map over i. If
F (0T , 0T , . . . , 0T , 0T ) = 0T , F (1T , 1T , . . . , 1T , 1T ) = 1T ,
and F : T n → T is a T n/Πi-conditioned increasing function
∀i ∈ {1, 2, . . . , n}, then F is a generalized aggregation
function in T n.

Remark 2: It has been previously stated ( [5], [10]) that for
a function F : [0, 1]n → [0, 1], directional monotonicity in
the direction of every vector in the canonical basis, implies
monotonicity. Theorem 2 could be considered as a way to
adapt that result to the more general framework of the func-
tions T n → T .

A. Searching for generalized aggregations

The previous results can help us to define generalized
aggregation functions in the framework of applications that
work on lattices with some specific characteristics. This is the
case, as an example, of several image processing problems
requiring to merge the information of a tuple in {0, . . . , 255}n
in a single value in {0, . . . , 255}. In this scenario, it is possible
to find several functions that fulfill the conditions of Lemma

1 and consequently are generalized aggregation functions in
{0, . . . , 255}n.

Let us consider as an example, the Median of n values in
T .

Lemma 2: Let (T ,≤) be a totally ordered set with a
maximum and a minimum element (1T and 0T respectively),
let (T n,≤n) be the natural lattice of n elements of type T
with n an odd number, and let φmedian : T n −→ T be the me-
dian function, φmedian(x1, . . . , xn) = Median{x1, . . . , xn}.
Then, φmedian is an increasing function in T n.

Proof: By Theorem 2, if φmedian : T n → T is a
T n/Πi-conditioned increasing function ∀i ∈ {1, 2, . . . , n},
then φmedian is an increasing function in T n.

To find the median of a set of data, the data have to
be first arranged in order from least to greatest, and the
median will be the middle number in the ordered set, so
φmedian(x1, . . . , xn) = φmedian(xσ(1), . . . , xσ(n)), being σ :
{1, . . . , n} → {1, . . . , n} any permutation. Then,

φmedian(a1, . . . , ai−1, x, ai+1, . . . , an) =

φmedian(x, a1, . . . , ai−1, ai+1, . . . , an)

Thus, we can take i = 1 and show that φmedian is a T n/Π1-
conditioned increasing function.

Given (x, a2, . . . , an) ∈ T n with a2 ≤ · · · ≤ an and n an
odd natural number, it holds that:
• if x ≤ an+1

2
⇒ φmedian(x, a2, . . . , an) = an+1

2
,

• if an+1
2

< x ≤ an+1
2 +1 ⇒ φmedian(x, a2, . . . , an) = x,

and
• if x > an+1

2 +1 ⇒ φmedian(x, a2, . . . , an) = an+1
2 +1.

Let us take, (x, a2, . . . , an) ≤n (y, a2, . . . , , an) and, we
can consider {a2, . . . , an} an ordered set. As x ≤ y, we have
the following cases:
• if y ≤ an+1

2
⇒ x ≤ y ≤ an+1

2

and φmedian(x, a2, . . . , an) = an+1
2

=

φmedian(y, a2, . . . , an),
• if x ≤ an+1

2
< y ≤ an+1

2 +1 ⇒ φmedian(x, a2, . . . , an) =

an+1
2

, φmedian(y, a2, . . . , an) = y and an+1
2
< y.

• if x ≤ an+1
2
≤ an+1

2 +1 < y⇒ φmedian(x, a2, . . . , an) =

an+1
2

, φmedian(y, a2, . . . , an) = an+1
2 +1, and an+1

2
≤

an+1
2 +1 since {a2, . . . , an} is an ordered set.

• if an+1
2
< x ≤ y ≤ an+1

2 +1 ⇒ φmedian(x, a2, . . . , an) =

x, φmedian(y, a2, . . . , an) = y, and x ≤ y.
• if an+1

2
< x ≤ an+1

2 +1 < y⇒ φmedian(x, a2, . . . , an) =

x, φmedian(y, a2, . . . , an) = an+1
2 +1, and x ≤ an+1

2 +1.
• if an+1

2 +1 < x ≤ y ⇒ φmedian(x, a2, . . . , an) =

φmedian(y, a2, . . . , an) = an+1
2 +1.

Therefore, φmedian is a T n/Π1-conditioned increasing func-
tion.

Remark 3: The demonstration can be extended to the case
of n being an even number by defining the median as either:
φmedian(x1, . . . , xn) = xσ(dn+1

2 e) or φmedian(x1, . . . , xn) =

xσ(bn+1
2 c), being σ an ordering permutation such that xσ(1) ≤

xσ(2) ≤ . . . ≤ xσ(n).



Proposition 5: The function φmedian is a generalized ag-
gregation function for T = {0, . . . , 255}.

Proof: Following Lemma 2, φmedian is a monotonic non-
decreasing function. In addition, φmedian(0, 0, . . . , 0) = 0 and
φmedian(255, 255, . . . , 255) = 255. Consequently φmedian :
{0, . . . , 255}n → {0, . . . , 255} is a generalized aggregation
function.

It is important to emphasize that in the same way that the
concept of directional monotonicity for Riesz spaces defined
in [5] allows to extend the set of aggregation operators that
can be used for soft computing, the directional monotonicity
concept here introduced extends in a more general way the
set of pre-aggregation functions allowing now to deal with
any space T in which a partial order is defined.

An example of how this concept of directional monotony
allows us to include functions as aggregation operators is in
the field of image processing. The information that is extracted
from a pixel belongs to the set T = {0, . . . , 255}. Therefore,
the functions that operate with this class of information and
type of data is not a vector or Riesz space. In the following
two examples, two functions frequently considered in image
processing applications are analyzed, demonstrating that can
be characterized as a generalized aggregation and a generalized
pre-aggregation respectively.

V. AN APPLICATION TO EDGE DETECTION PROBLEMS

Image processing and aggregation problems are very well
related topics during recent years. In image processing recent
literature [11]–[13], we can find the use of aggregation tech-
niques in the developing of more efficient algorithms.

From a mathematical point of view, let us denote by I
a digital image, and by (i, j) the pixel coordinates of the
spatial domain. The coordinates are integers, where each point
(i, j) represents a pixel with i = 0, . . . , r and j = 0, . . . , s.
Therefore, the size of an image, r × s, is the number of
its horizontal pixels multiplied by its number of verticals.
As we are dealing with color images, then a k = 1, . . . , k̃
index is needed for expressing the number of channels in the
image. Thus, let us denote by I=P ki,j the spectral information
associated with each pixel (i,j) at channel k. As well, I = P ki,j
is equivalent to k̃ images of one single channel (gray-scale im-
ages) I = {I1, . . . , I k̃}. The values range of this information
depends on the type of image considered.
• Binary map: Ibin = Pi,j ∈ {0, 255} (as well it is usually

expressed as {0, 1}).
• Gray-scale: Igray = Pi,j ∈ {0, 1, . . . , 255}.
• RGB: IRGB = Pi,j ∈ {0, 1, . . . , 255}3. (R=Red;

G=Green and B=Blue).
• Fuzzy image: Ifuzzy = Pi,j ∈ [0, 1].
As it can be deduced from the previous formulation, we can

conclude that when working with gray-scale images or color
images, the associated domain for each pixel with coordinates
(i, j) for a channel k (that is, P ki,j) should be the discrete set
T = {0, . . . , 255}. Taking into account this fact, it would be
natural to think that any aggregation operator that deals with
this class of spectral information should have the same set.

Nevertheless, most of aggregation operators used in this
topic are defined on the real interval [0, 255] or its normalized
version [0, 1]. Let us analyze the following two very well-
known examples in which aggregation operators should be
defined over a discrete domain.

Example 5.1: The first example that we present in this
section is a classical smoothed aggregation of a grey-scale
image. Let us assume that we have a gray-scale image
Igray = Pi,j ∈ {0, 1, . . . , 255}.

Now let us define the neighborhood N(i, j) of each pixel
with coordinates (i, j). The idea of the smoothing process is
to define a new image that is the result of aggregate to each
pixel the spectral information of its neighborhood N(i, j).
Frequently, with the intention of softening the original image
Igray, another Isgray = {Is(i, j) ∀i = 1, . . . , s; j = 1, . . . , r}
where

Is(i, j) = φ (I(u, v), (u, v) ∈ N(i, j))

with
φ : [0, 255]n −→ [0, 255]

being an aggregation function in the classical sense.
Given a pixel Pi,j , let us suppose that N(i, j) = {(i−1, j−

1), (i−1, j), (i−1, j+1), (i, j−1), (i, j), (i, j+1), (i+1, j−
1), (i + 1, j), (i + 1, j + 1)}. If we denote by PN(i,j) the 9
dimensional vector(

P(i−1,j−1), P(i−1,j), P(i−1,j+1), P(i,j−1),

P(i,j), P(i,j+1), P(i+1,j−1), P(i+1,j), P(i+1,j+1))
)
,

a smoothed aggregation operator could be defined in a natural
way as:

φsmoo : {0, . . . , 255}9
PN(i,j)

−→ {0, . . . , 255}
Median{P(u,v) ,(u,v)∈N(i,j)}

With this definition, as shown in previous section, φsmoo is
a Generalized aggregation function.

The smoothing methods of an image are especially useful
in edge detection problems. Just to test the effectiveness of
the smoothing aggregation here presented, the edge detection
algorithm known as Sobel has been applied after smoothing
the image using the φsmoo aggregator and compared with the
output provided directly by the Sobel algorithm. The following
table shows the results obtained for the first 50 known images
of the Berkeley [14] database with the maximum human
pairing method.

As it can be seen, the results obtained after the application
of φsmoo significantly improve the overall performance, since
they decrease the average recall but increasing the precision
and the F measured.

Example 5.2: Let us now present an aggregation operator
that can be viewed as a Generalized Pre-Aggregation but is
neither a pre-aggregation in the sense of [5] nor a generalized
aggregation operator. In edge detection problems it is frequent
to identify changes in luminosity in different directions. To do
so it is common to transform the original image Igray into



TABLE I
PRECISION AND RECALL IN THE SOBEL ALGORITHM WITH AND WITHOUT

SMOOTHING.

Sobel Smooth Sobel
Imag F Prec Rec F Prec Rec
100075.jpg’ 0,4951 0,5060 0,5848 0,4447 0,4501 0,5344
100080.jpg’ 0,1219 0,3217 0,0853 0,2991 0,4720 0,3959
100098.jpg’ 0,7183 0,6532 0,7977 0,6285 0,4792 0,9147
103041.jpg’ 0,3884 0,7431 0,2629 0,4714 0,5894 0,3927
104022.jpg’ 0,4429 0,6692 0,3428 0,5621 0,7434 0,5563
105019.jpg’ 0,5562 0,7707 0,4402 0,6117 0,7272 0,5279
105053.jpg’ 0,3672 0,5571 0,3129 0,3552 0,4942 0,3185
106020.jpg’ 0,2264 0,1857 0,2899 0,2113 0,1418 0,4147
106025.jpg’ 0,6143 0,9612 0,4525 0,6337 0,9320 0,4855
108041.jpg’ 0,2473 0,2158 0,4498 0,2346 0,1791 0,5135
108073.jpg’ 0,3232 0,2724 0,3973 0,3603 0,2519 0,6321
109034.jpg’ 0,2895 0,2239 0,5851 0,2144 0,1319 0,7154
112082.jpg’ 0,4162 0,4018 0,4367 0,3335 0,2219 0,6754
113009.jpg’ 0,6387 0,8460 0,5619 0,6800 0,8305 0,6280
113016.jpg’ 0,7377 0,7935 0,7506 0,4015 0,2646 0,8691
113044.jpg’ 0,6786 0,7816 0,6378 0,4001 0,2700 0,8509
117054.jpg’ 0,5983 0,6158 0,6732 0,4540 0,3385 0,6891
118020.jpg’ 0,4692 0,5085 0,4655 0,4443 0,3629 0,6376
118035.jpg’ 0,7419 0,7689 0,9541 0,7715 0,7805 0,9684
12003.jpg’ 0,6073 0,5986 0,7439 0,5536 0,4778 0,7928
12074.jpg’ 0,5986 0,4782 0,8261 0,5279 0,3827 0,8509
122048.jpg’ 0,5009 0,5039 0,6062 0,4711 0,4104 0,6436
124084.jpg’ 0,7006 0,7910 0,7858 0,6587 0,6534 0,8586
126039.jpg’ 0,5481 0,7132 0,5945 0,5698 0,7283 0,6270
130034.jpg’ 0,3274 0,3003 0,3600 0,2172 0,1312 0,7707
134008.jpg’ 0,2910 0,2030 0,5134 0,2056 0,1241 0,6216
134052.jpg’ 0,4327 0,3070 0,7328 0,2943 0,1814 0,9130
135037.jpg’ 0,4730 0,8256 0,3721 0,4501 0,8320 0,4179
135069.jpg’ 0,9247 0,8855 0,9883 0,9367 0,8891 0,9927
138032.jpg’ 0,3833 0,4839 0,3685 0,3103 0,2387 0,4800
138078.jpg’ 0,7029 0,7823 0,7062 0,6734 0,6947 0,8536
140055.jpg’ 0,2123 0,4340 0,1628 0,2785 0,2287 0,3621
140075.jpg’ 0,6065 0,7306 0,7527 0,5436 0,5053 0,7737
144067.jpg’ 0,3672 0,3143 0,4421 0,2593 0,1640 0,6662
145014.jpg’ 0,5557 0,5292 0,5910 0,5206 0,4094 0,7262
145053.jpg’ 0,5650 0,5835 0,6928 0,4131 0,2965 0,7947
147021.jpg’ 0,4073 0,5916 0,3248 0,3998 0,3490 0,5151
147062.jpg’ 0,4547 0,3760 0,6548 0,3643 0,2285 0,9154
15004.jpg’ 0,4303 0,4189 0,4422 0,3837 0,2798 0,6165
15088.jpg’ 0,2908 0,1897 0,6743 0,3384 0,2103 0,8791
151087.jpg’ 0,6741 0,7831 0,6341 0,6220 0,5669 0,7489
153077.jpg’ 0,5276 0,6976 0,4925 0,4953 0,6074 0,4963
153093.jpg’ 0,5531 0,7281 0,5582 0,5311 0,5941 0,6663
155060.jpg’ 0,6154 0,7256 0,5774 0,5984 0,5139 0,7804
156079.jpg’ 0,5214 0,6561 0,5420 0,4937 0,5452 0,5782
157036.jpg’ 0,8226 0,8796 0,8921 0,6585 0,5416 0,9395
159029.jpg’ 0,3707 0,3553 0,3875 0,2920 0,1978 0,5836
159045.jpg’ 0,5281 0,4864 0,5929 0,5334 0,4565 0,6480
159091.jpg’ 0,6006 0,5307 0,7751 0,4771 0,3937 0,8797
16052.jpg’ 0,4746 0,4039 0,5754 0,3421 0,3963 0,3010

0,56 0,56 0,56 0,53 0,44 0,67
Average Average

another that gathers the differences in some specific directions
(see for example [15]–[17]).

Given a pixel Pi,j , with intensity Igray(i, j), let us denote
by Igray(i, j)φ ∈ {0, . . . , 255} the gray scale value obtained
after applying the function φ to the intensity of the pixel Pi,j .
And let us denote by Iφgray the associated image. In [17], two
functions φv and φh were defined to detect directional changes
in luminosity. Formally, given a pixel with coordinates (i, j)
we have:

• φv : {0, . . . , 255}9 −→ {0, . . . , 255} defined as

φv (Igray(i− 1, j − 1), . . . , , Igray(i+ 1, j + 1))

= Max{0, Igray(i+ 1, j)− Igray(i− 1, j)}.

Fig. 1. Directional aggregation operator in discrete space

• φh : {0, . . . , 255}9 −→ {0, . . . , 255}

φh (Igray(i− 1, j − 1), . . . , , Igray(i+ 1, j + 1))

= Max{0, Igray(i, j + 1)− Igray(i, j − 1)}.

Figure 1 illustrates these two operators detecting directional
changes. φh corresponds to the changes in the direction
described as V (1, 0) while φv corresponds to V (0, 1).

It is very easy to check that φv and φh are not classical
generalized aggregation operators since the monotonicity con-
dition is not satisfied.

For example if we take the inputs x =
(0, 0, 0, 70, 0, 120, 0, 0, 0), y = (0, 0, 0, 80, 0, 120, 0, 0, 0) ∈
{0, . . . , 255}9. It its clear that x ≤ y in the partial order of
the set {0, . . . , 255}9, but φh(x) = 120 − 70 > φh(y) =
120 − 80 = 40, and φh(x) is not a monotonic increasing
function. Also it is easy to check that these functions are not
pre-agregation in the sense of [5] since we have a discrete
space.

Nevertheless, we can see that there exist directions (the sixth
coordinate i.e. r = (0, 0, 0, 0, 0, 1, 0, 0, 0)) in which the φh is
monotone.

So it is not very difficult to see that the functions φv and
φh are Generalized Pre-Aggregations.

The Generalized Pre-Aggregation function φh is growing in
the sixth coordinate since we are searching the changes from
right to left in the image (see Figure 2 and Figure 3) and
we want that the function increases in the position (i,j+1) that
corresponds with the sixth coordinate.

VI. CONCLUSIONS

The present paper explores the concept of conditioned
monotonicity considering some specific conditioning struc-
tures (covers, partitions and projections). On this basis we
study some situations where conditioned monotonicity ensures
monotonicity. Finally we use these definitions and properties
to consider some generalized pre-aggregation and aggregation
functions that correspond to operators commonly applied to
image preprocessing problems. In this way we include under
the umbrella of generalized pre-aggregation functions those
operators that were previously not considered as aggregations.



Fig. 2. Original, vertical and horizontal images after applying the Generalized
Pre-Agregation φv and φh (Iφv

126007 image from Berkeley dataset).
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[17] D. Gómez, J. Montero, and J. Yáñez, “A coloring fuzzy graph approach
for image classification,” Information Sciences, vol. 176, no. 24, pp.
3645–3657, 2006.




