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Abstract—In this contribution we propose new methodology
to compare interval-valued fuzzy cardinal numbers (IVFCN).
The new methods are based on interval subsethood measures
which take into account widths of the intervals. An application
of introduced methodology is presented on an example of decision
algorithm for medical diagnosis support.

Index Terms—interval-valued cardinal number, interval-valued
aggregation function, selection of interval-valued cardinal num-
bers

I. INTRODUCTION

Many new methods and theories take into account impreci-
sion and uncertainty since Zadeh introduced fuzzy sets [1] in
1965. Especially, in the literature, many authors have proposed
different approaches to the definition of different types of dis-
tance measures, similarity measures and subsethood, inclusion
or equivalence measures between fuzzy sets (e.g. [2], [3], [4],
[5], [6]). We focus on subsethood measures, many applications
of them have been proposed and they have been adapted and
applied in different settings [7], [8]. As extensions of classical
fuzzy set theory, intuitionistic fuzzy sets [9] and interval-
valued fuzzy sets [10], [11] they are very useful in dealing
with imprecision and uncertainty (see [12] for more details).
In this setting, different proposals for subsethood measures
between interval-valued fuzzy sets have been proposed [5],
[13].

The motivation of the present paper is to propose a more
natural tool for estimating the degree of subsethood between
interval-valued fuzzy sets taking into account the widths of the
intervals and we assume that the precise membership degree
of an element in a given set is a number included in the
membership interval. For such interpretation, the width of the
membership interval of an element reflects the lack of precise
membership degree of that element. Hence, the fact that

two elements have the same membership intervals does not
necessarily mean that their corresponding membership values
are the same. This is why we have taken into account the
importance of the notion of width of intervals while defining
new types of subsethood measures. This approach reflects the
meaning of the interval values and is better adapted to real
applications. That allowed to construct an effective method
for comparing and ordering interval valued fuzzy cardinal
numbers. Such numbers are of great importance in solving
decision problems in which uncertainty occurs (see [14], [15],
[16], [17], [18], [19]).

The paper is organized as follows. In Section 2, basic infor-
mation of interval-valued fuzzy setting are recalled. Next, in
Section 3, an interval subsethood measure for interval-valued
fuzzy values by using partial or linear orders is presented.
Especially, some construction methods are proposed. Finally,
we propose the methodology to compare of interval-valued
fuzzy cardinal numbers and its application in decision model
of medical diagnosis support.

II. PRELIMINARIES

A. Interval-valued fuzzy set theory. Orders in the interval-
valued fuzzy settings

We use the following notation for the set of intervals

LI = {[x, x] : x, x ∈ [0, 1] and x ≤ x},

which are the basis of interval-valued fuzzy sets introduced
by L. A. Zadeh [10] and R. Sambuc [11].

Definition 1 (cf. [11], [10]). An interval-valued fuzzy set
IVFS Ã in X is a mapping Ã : X → LI such that
Ã(x) = [A(x), A(x)] ∈ LI for x ∈ X , where

Ã ∩ B̃ =
{
〈x,
[
min{A(x), B(x)},min{A(x), B(x)}

]
〉 : x ∈ X

}
,
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Ã ∪ B̃ =
{
〈x,
[
max{A(x), B(x)},max{A(x), B(x)}

]
〉 : x ∈ X

}
The well-known classical monotonicity (partial order) for

intervals is of the form

[x, x] ≤LI [y, y]⇔ x ≤ y and x ≤ y, (1)

where [x, x] <LI [y, y]⇔
[x, x] ≤LI [y, y] and (x < y or x < y).

In LI the operations joint and meet are defined respectively

[x, x] ∨ [y, y] = [max(x, y),max(x, y)], (2)

[x, x] ∧ [y, y] = [min(x, y),min(x, y)]. (3)

Note that the structure (LI ,∨,∧) is a complete lattice, with
the partial order ≤LI , where

1 = [1, 1] and 0 = [0, 0]

are the greatest and the smallest element of (LI ,≤LI ), respec-
tively.

We are interested in extending the partial order ≤LI to a
linear order, solving the problem of existence of incomparable
elements. We recall the notion of an admissible order, which
was introduced in [20] and studied, for example, in [21] and
[22]. The linearity of the order is needed in many applications
of real problems, in order to be able to compare any two
interval data [23].

Definition 2 ([20]). An order ≤Adm in LI is called admissible
if it is linear and satisfies that for all x, y ∈ LI , such that
x ≤LI y, then x ≤Adm y.

Proposition 1 ([20]). Let B1, B2 : [0, 1]2 → [0, 1] be two
continuous aggregation functions, such that, for all x =
[x, x], y = [y, y] ∈ LI , the equalities B1(x, x) = B1(y, y)
and B2(x, x) = B2(y, y) hold if and only if x = y. If the
order ≤B1,2

on LI is defined by x ≤B1,2
y if and only if

B1(x, x) < B1(y, y) or

(B1(x, x) = B1(y, y) and B2(x, x) ≤ B2(y, y)),

then ≤B1,2 is an admissible order on LI .

Example 1 ([20]). The following are special cases of admis-
sible linear orders on LI :
• The Xu and Yager order:

[x, x] ≤XY [y, y]⇔ x+ x < y + y or

(x+ x = y + y and x− x ≤ y − y).
(4)

• The first lexicographical order (with respect to the first
variable), ≤Lex1 defined as:

[x, x] ≤Lex1[y, y]⇔ x < y or

(x = y and x ≤ y).
(5)

• The second lexicographical order (with respect to the
second variable), ≤Lex2 defined as:

[x, x] ≤Lex2[y, y]⇔ x < y or

(x = y and x ≤ y).
(6)

• The αβ order, ≤αβ defined as:

[x, x] ≤αβ [y, y]⇔Kα(x, x) < Kα(y, y) or

(Kα(x, x) = Kα(y, y) and

Kβ(x, x) ≤ Kβ(y, y))

(7)

for some α 6= β ∈ [0, 1] and x, y ∈ LI , where Kα :
[0, 1]2 → [0, 1] is defined as Kα(x, y) = αx+ (1− α)y.

The orders ≤XY , ≤Lex1 and ≤Lex2 are special cases of the
order ≤αβ with ≤0.5β (for β > 0.5), ≤1,0, ≤0,1, respectively.
The orders ≤XY , ≤Lex1, ≤Lex2, and ≤αβ are admissible
linear orders ≤B1,2

defined by pairs of aggregation functions,
namely weighted means. In the case of the orders ≤Lex1 and
≤Lex2, the aggregations that are used are the projections P1,
P2 and P2, P1, respectively.

Remark 1. In the later part we will use the notation ≤ both for
the partial or admissible linear order, with 0 and 1 as minimal
and maximal element of LI , respectively. Notation ≤LI will
be used while the results for the admissible linear orders will
be used with the notation ≤Adm.

B. Interval-valued aggregation functions

Let us now recall the concept of an interval-valued aggrega-
tion function, or an aggregation function on LI , which is an
important notion for many applications. We consider interval-
valued aggregation functions both with respect to ≤LI and
≤Adm.

Definition 3 ([22], [24]). An operation A : (LI)n → LI is
called an interval-valued aggregation function if it is increasing
with respect to the order ≤ (partial or total) and

A(0, ..., 0︸ ︷︷ ︸
n×

) = 0, A(1, ..., 1︸ ︷︷ ︸
n×

) = 1.

A special class of interval-valued aggregation functions is
the one formed by the so-called representable interval-valued
aggregation functions.

Definition 4 ([25], [26]). An interval-valued aggregation func-
tion A : (LI)n → LI is said to be representable if there exist
aggregation functions A1, A2 : [0, 1]n → [0, 1] such that

A(x1, . . . , xn) = [A1(x1, . . . xn), A2(x1, . . . , xn)]

for all x1, . . . , xn ∈ LI , provided that

A1(x1, . . . xn) ≤ A2(x1, . . . , xn).

Example 2. Lattice operations ∧ and ∨ on LI are examples
of representable aggregation functions on LI with respect to
the partial order ≤LI , with A1 = A2 = min in the first case
and A1 = A2 = max in the second one. However, ∧ and
∨ are not interval-valued aggregation functions with respect
to ≤Lex1, ≤Lex2 or ≤XY . The following are other examples
of representable interval-valued aggregation functions with
respect to ≤LI .



• The projections:

AL([x, x], [y, y]) = [x, x], AR([x, x], [y, y]) = [y, y].
(8)

• The representable product:

Ap([x, x], [y, y]) = [xy, xy]. (9)

• The representable arithmetic mean:

Amean([x, x], [y, y]) = [
x+ y

2
,
x+ y

2
]. (10)

• The representable geometric mean:

Agmean([x, x], [y, y]) = [
√
xy,
√
xy]. (11)

• The representable power mean:

Apower([x, x], [y, y]) = [

√
x2 + y2

2
,

√
x2 + y2

2
]. (12)

Representability is not the only possible way to build
interval-valued aggregation functions with respect to ≤LI or
≤Adm.

Example 3. Let A : [0, 1]2 → [0, 1] be an aggregation
function.

• The function A1 : (LI)2 → LI , where

A1(x, y) =

{
[1, 1], if (x, y) = ([1, 1], [1, 1]),
[0, A(x, y)], otherwise,

is a non-representable interval-valued aggregation func-
tion with respect to ≤LI .

• The function A2 : (LI)2 → LI ([27]), where

A2(x, y) =

{
[1, 1], if (x, y) = ([1, 1], [1, 1])
[0, A(x, y)], otherwise

is non-representable interval-valued aggregation function
with respect to ≤Lex1.

• The function A3 : (LI)2 → LI ([27]), where

A3(x, y) =

{
[0, 0], if (x, y) = ([0, 0], [0, 0])
[A(x, y), 1], otherwise,

is non-representable interval-valued aggregation function
with respect to ≤Lex2.

• Amean is an aggregation function with respect to ≤αβ
(cf. [21]).

• The following function

Aα(x, y) = [αx+ (1− α)y, αx+ (1− α)y] (13)

is an interval-valued aggregation function on LI with
respect to ≤Lex1, ≤Lex2 and ≤XY for x, y ∈ LI and
α ∈ [0, 1] (cf. [22]).

III. SUBSETHOOD MEASURE

Subsethood, or inclusion measures have been studied mainly
from constructive and axiomatic approaches and have been
introduced successfully into the theory of fuzzy sets and
their extensions. Many researchers have tried to relax the
rigidity of Zadeh’s definition of subsethood to get a soft
approach which is more compatible with the spirit of fuzzy
logic. For instance, Zhang and Leung (1996) defended that
quantitative methods were the main approaches in uncertainty
inference, a key problem in artificial intelligence, so they
presented a generalized definition for subsethood measures,
called including degrees. There exist several works regarding
subsethood measures in the interval-valued fuzzy setting [28],
[4], [22], [5], [6], [29], however the condition regarding the
width of the intervals, with which we deal in this paper, has
not been so far considered.

A. Precedence indicator

We use the notion of an interval subsethood measure for a
pair of intervals with the partial and admissible orders and the
width of intervals introduced and examined in [30].

Definition 5. A function Prec : (LI)2 → LI is said to be a
precedence indicator if it satisfies the following conditions
for any a, b, c ∈ LI

P1 if a = 1LI and b = 0LI , then Prec(a, b) = 0LI
P2 if a < b, then Prec(a, b) = 1LI for any a, b ∈ LI
P3 Prec(a, a) = [1− w(a), 1] for any a ∈ LI
P4 if a ≤ b ≤ c and w(a) = w(b) = w(c), then

Prec(c, a) ≤ Prec(b, a) and Prec(c, a) ≤ Prec(c, b),
for any a, b, c ∈ LI ,

where w(a) = a− a.

Let us present two construction methods for such an interval
subsethood measure. The first one is given in the following
result.

Proposition 2 ([30]). For a, b ∈ LI the operation Precz :
(LI)2 → LI is the precedence indicator

Precz(a, b) =

 [1− w(a), 1], a = b,
1LI , a < b,
0LI , otherwise.

(14)

The second construction method is based on the aggregation
and negation functions which play important rule in many
applications (e.g. [25], [26], [31], [32]) and is presented in
the next theorem. Recall that an interval-valued fuzzy negation
NIV is an antytonic operation that satisfies NIV (0LI ) = 1LI
and NIV (1LI ) = 0LI ([33], [34])

Proposition 3 ([30]). For a, b ∈ LI the operation PrecA :
(LI)2 → LI is the precedence indicator

PrecA(a, b) =

 [1− w(a), 1], a = b,
1LI , a < b,
A(NIV (a), b), otherwise

(15)



for a, b ∈ LI and the interval-valued fuzzy negation NIV , such
that

NIV (a) = [N(a), N(a)] ≤ [1− a, 1− a],

where N is a fuzzy negation and A is a representable interval-
valued aggregation such that A ≤ ∨.

Using the construction methods from Proposition 3 we
obtain the following examples.

Example 4. The following function is an interval subsethood
measure with respect to ≤LI :

PrecAmeanLI (x, y) =


[1− w(x), 1], x = y,
1, x <LI y,

[
1−x+y

2 , 1−x+y2 ], otherwise,
(16)

where NIV (x) = [1− x, 1− x].
Moreover, the following function is a subsethood measure with
respect to ≤Lex2:

PrecAmeanLex2(x, y) =
[1− w(x), 1], x = y,
1, x <Lex2 y,

[
y

2 ,
1−x+y

2 ], otherwise.
(17)

Using the interval-valued aggregation function Aα for α ∈
[0, 1], we get the subsethood measure

PrecAαLex2(x, y) =
[1− w(x), 1], x = y,
1, x <Lex2 y,
[(1− α)y,

α(1− x) + (1− α)y], otherwise,

(18)

where

NIV (x) =

{
1, x = 0,
[0, 1− x], otherwise,

is an interval-valued fuzzy negation with respect to ≤Lex2.

Remark 2 ([22]). The aggregation Aα preserves the width of
the intervals of the same width.

Another construction method, which is inspired by the
construction presented for generalization of the subsethood
measure at paper [30], presents the following proposition.

Proposition 4. The operation

Precw(a, b) ={
1LI , a < b,
[1−max(w(a), r(a, b)), 1− r(a, b)], else

(19)

is the precedence indicator with respect to ≤, where r(a, b) =
max{|a− b|, |a− b|} for a, b ∈ LI .

We would like to point out the connection between interval-
valued implication functions [22] and the examined interval
subsethood measures.

Remark 3 ([30]). Let a, b, c ∈ LI and w(a) = w(b) = w(x).
If Prec is precedence indicator, then is an interval-valued
implication function.

Moreover, we observe that w(a) < w(b) (respectively,
w(a) = w(b)) if and only if Prec(b, b) < Prec(a, a) (re-
spectively, Prec(b, b) = Prec(a, a)) for a, b ∈ LI .

IV. INTERVAL-VALUED FUZZY CARDINAL NUMBERS

In this section we briefly introduce main ideas about
cardinalities of IVFSs. More details can be found in the
monographs [35], [15].

In further part we will use the following notations:
• For given fuzzy set A a symbol [A]i is defined as:

[A]i :=
∨
{t ∈ (0, 1] : |At| ≥ i} for i ∈ N.

• Function f : [0, 1]→ [0, 1] is called cardinality pattern if
it meets the following conditions:

1) is nondecreasing i.e. ∀a,b∈[0,1]f(a) ≤ f(b) if a ≤ b,
2) and meets limit conditions f(0) = 0 i f(1) = 1.

• Symbol ∩T means the triangular norm and N the fuzzy
negation.

A. Generalized fuzzy cardinal numbers

1) Generalized cardinal number FGCount is interpreted
as a degree to which fuzzy set A has at least k elements

FGf (k) := f([A]1) ∩T f([A]2) ∩T . . . ∩T f([A]k)

for k ∈ N.
2) Generalized cardinal number FLCount is interpreter

as a degree to which A includes at most k elements

FLf (k) :=

N(f([A]k+1)) ∩T N(f([A]k+2)) ∩T · ∩T N(f([A]n))

for k ∈ N.
3) Generalized cardinal number FECount expresses the

degree to which A has exactly k elements where

FEf (k) := f([A]1) ∩T f([A]2) ∩T . . . ∩T f([A]k)∩T

N(f([A]k+1))∩T N(f([A]k+2))∩T . . .∩T N(f([A]n))

for k ∈ N.
FEf is the intersection of FGf and FLf . It may be perceived
as the ’actual’ generalized cardinal number of a fuzzy set
A

B. Fuzzy Cardinality of IVFS

Cardinalities of interval-valued fuzzy sets are defined in a
natural manner using cardinalities of fuzzy sets described in
in previous section.

For a finite interval-valued fuzzy set Ã = (A,A) fuzzy type
cardinalities are defined as interval-valued fuzzy sets in N (see
[35]).



Definition 6. 1) f-FGCount of IVFS Ã for a given cardi-
nality pattern f is defined as:

F̃Gf (Ã) = [FGf (A), FGf (A)], (20)

i.e. for k ∈ N:

F̃Gf (Ã)(k) =[FGf (A)(k), FGf (A)(k)] =

=[f([A]k), f([A]k)],
(21)

where FGf (A) and FGf (A) are the fuzzy cardinalites
defined in previous section.

2) f-FLCount of IVFS Ã for a given cardinality pattern f
is defined as:

F̃Lf (Ã) = [FLf (A), FLf (A)], (22)

i.e. for k ∈ N:

F̃Lf (Ã)(k) =[FLf (A)(k), FLf (A(k)] =

=[1− f([A]k+1), 1− f([A]k)],
(23)

where FLf (A) and FLf (A) are the fuzzy cardinalites
defined in previous section.

3) f-FECount of IVFS Ã for a given cardinality pattern f
is defined as:

F̃Ef (Ã) = F̃Gf (Ã) ∩ F̃Lf (Ã), (24)

i.e. for k ∈ N:

F̃Ef (Ã)(k) = [f([A]k) ∧ (1− f([A]k+1)),

f([A]k) ∧ (1− f([A]k+1)].
(25)

To simplify the notations, f-FECount of an IVFS will
be denoted by σ̃ and we will call it Interval-Valued Fuzzy
Cardinal Number (in short IVFCN).

C. An idea of comparability algorithm

In many decision-making applications, an important prob-
lem to solve is comparing the cardinalities of IVFSs. The
example on Figure 1 shows two IVFCN σ̃1, σ̃2 and illustrates
how non-trivial task is to effectively compare such numbers,
if we accept the epistemic interpretation of meanings of the
intervals, where the real values are somewhere in the given
ranges.

Fig. 1. Two IV FCNs σ̃1 and σ̃2

An idea of our proposed algorithm is as follows. In the
first step divide a sum of supports of both IVFCNs S =
supp(6̃σ1)∪ supp(σ̃2) into two equal parts S1 and S2. In the

second step compare precedence indicators from both parts
separately. The idea is that: if σ̃1 to be greater than σ̃2 the
appropriate measure of precedence should be smaller on S1,
and greater on S2 and vice versa if σ̃1 to be smaller than
σ̃2 the appropriate measure of precedence should be greater
on S1, and smaller on S2. Figure 2 presents example of two
IV FCNs with appropriate values of precedence indicators.

To define algorithm more formally, we need to introduce
some basics notations.

Definition 7. Representative Rep(x) ∈ R of an interval x ∈
LI for a ∈ [0, 1] is defined as:

Rep(x) = x+ a ∗ w(x).

In a special case value of representative of an interval can
lead to middle or bounds of interval:

1) if a = 0 then Rep(x) = x - lower bound of the interval;
2) if a = 1 then Rep(x) = x - upper bound of the interval;
3) if a = 0.5 then Rep(x) = (x + x)/2 - middle of the

interval.

Definition 8. Set of precedence indicators for given interval-
valued fuzzy sets X,Y is defined as follows:

PrecI(X,Y ) := {Prec(xi, yi) : for all xi ∈ X, yi ∈ Y },

where Prec ∈ {Precz,PrecA,Precw}.

Next, we define the Immersion measure using the previously
introduced concept of the set representative.

Definition 9. Immersion measure for given interval-valued
fuzzy sets X,Y and support set S is defined as follows:

Conn(X,Y, S) =
∑
i∈S

Comp(xi, yi),

where

Comp(x, y) =

{
1, Rep(x) <= Rep(y),
0, otherwise.

D. The comparability algorithm

Algorithm to rank two interval-valued fuzzy cardinal num-
bers (IVFCNs) σ̃1 and σ̃2 more formally we can define in a
following steps:

Step 1 Divide support S of sum of both interval-valued fuzzy
cardinal numbers σ̃1 and σ̃2, i.e.,

S = supp(σ̃1 ∪ σ̃2)

into two parts:
S1 = [min(S), (max(S)−min(S)/2)],
S2 = [(max(S)−min(S))/2,max(S)].

Step 2 Construct precedence sets on both parts of support, i.e.,
Iσ̃1,σ̃2,S1

= PrecI(σ̃1, σ̃2, S1),
Iσ̃2,σ̃1,S1

= PrecI(σ̃2, σ̃1, S1),
Iσ̃1,σ̃2,S2

= PrecI(σ̃1, σ̃2, S2),
Iσ̃2,σ̃1,S2

= PrecI(σ̃2, σ̃1, S2).
Step 3 Calculate immersion measures.

Cσ̃1,σ̃2,S1
= Conn(Iσ̃1,σ̃2,S1

, Iσ̃2,σ̃1,S1
),



Fig. 2. Two IV FCNs σ̃1 and σ̃2 with set of precedence indicators (σ̃1 > σ̃2)

Cσ̃2,σ̃1,S1
= Conn(Iσ̃2,σ̃1,S1

, Iσ̃1,σ̃2,S1
),

Cσ̃1,σ̃2,S2
= Conn(Iσ̃1,σ̃2,S2

, Iσ̃2,σ̃1,S2
),

Cσ̃2,σ̃1,S2
= Conn(Iσ̃2,σ̃1,S2

, Iσ̃1,σ̃2,S2
).

Step 4 Compare Immersion measure on the both parts of the
support.

1 if Cσ̃1,σ̃2,S1
> Cσ̃2,σ̃1,S1

2 and Cσ̃1,σ̃2,S2
< Cσ̃2,σ̃1,S2

then
3 σ̃1 > σ̃2

4 else if Cσ̃1,σ̃2,S1
< Cσ̃2,σ̃1,S1

5 and Cσ1,σ2,S2
> Cσ̃2,σ̃1,S2

then
6 σ̃1 < σ̃2

7 else
8 σ̃1 = σ̃2

Figure 3 presents result of algorithm for given IVFCN, with
corresponding precedence sets.

V. APPLICATION IN DECISION MAKING

The presented methodology for comparing IVFCNs can be
applied in the decision model used in the OvaExpert system.
OvaExpert is an intelligent decision support system for the
diagnosis of ovarian tumors. The system was developed as a
result of joint research of two Polish research centers: the
Division of Gynecologic Surgery of the Poznan University
of Medical Sciences and the Department of Imprecise Infor-
mation Processing Methods, Faculty of Mathematics. More
detailed information about the system can be found in [15].

Figure 4 presents diagram showing OvaExpert counting ap-
proach for making decisions. This method of decision making
utilised in the system is based on voting strategy with counting.
On input system gets incomplete information about patient. In
step 1 many diagnostic models are computed and it results as
IVFS of decisions. Then in step 2 two IVFSNs are computed
(which represents positive and negative diagnosis). And finally
in step 3 comparison of this two IVFSNs resulting decision.

A. Decision Making Algorithm based on bipolar voting strat-
egy

The idea behind decision algorithm is to use bipolar per-
spective on IVFS. Because such an IVFS contains information
on uncertainty level, it carries both information supporting
and rejecting the decision. This property of IVFS is used

in decision algorithm. The basic idea behind this algorithm
consists of a couple of steps:
• As an input we have two IVFS’s P and C (representing

number of decision’s Dpro and Dcontra supporting given
decision):

– P = σ(Dpro) - representing the number of decisions
’for’;

– C = σ(Dcontra) - representing the number of
decisions ’against’;

• To make decisions, we must choose a set that is more
numerous e.g. decide if (or vice versa):

P < C.

B. Performance of the model

The presented algorithm have been tested on real medical
data. These data described 388 cases of patients diagnosed
and treated in the Division of Gynecological Surgery, Poznan
University of Medical Sciences, between 2005 and 2015. Out
of them 61% have been diagnosed as suffering from benign
tumours and 39% as suffering from malign tumours. Moreover,
56% of patients had full diagnostic (no test required by
diagnostic scales was missing), 40% had significant amounts
of missing data varying from (0%, 50%], and for the remaining
ones 50% of data was missing. Detailed description of data
used for evaluation can be found in [36]. More information
on the data format used and technical details can be found in
[16].

The goal of evaluation was to select a decision algorithm
that would best classify malignity cases with the top possi-
ble decisiveness. There are many measures of classification
quality. In the medical problem under consideration high
sensitivity and specificity is crucial. Additionally, selection of
a right, unified quality measure constitutes a difficult task (see
[37]). Thus, we decided to use a cost matrix for main model
assessment.

Specific value of costs matrix have been selected in coop-
eration with experts in ovarian cancer diagnosis. The Table I
presents costs (penalties) attributed to classifiers for incorrect
decisions. Correct decisions (TP and TN) do not receive
a penalty. A classifier receives top penalty in the case of
committing type II error (FN), i.e., if a patient with malign
tumour is classified as a benign case. Penalty for FP type errors
was half of it, as unjustified operation is still dangerous for a
patient but death risk is much lower. Additionally, there are



Fig. 3. Two IV FCNs σ̃1 and σ̃2 with set of precedence indicators and comparison result (σ̃1 > σ̃2)

Fig. 4. OvaExpert counting approach for making medical decision

also penalties for the classifier for failure to make a decision
(NA). The penalty is lower, as in such a case the patient needs
additional diagnostics and will probably be directed to a more
experienced specialist who would make a correct diagnosis.
However, we differentiated penalties for lack of decision in
positive (malign) is twice as high as in the negative (benign)
case. The Figure 5 presents performance result for the best

TABLE I
COST MATRIX USED FOR MODELS ASSESSMENT.

predicted
benign malignant NA

acual benign 0 2.5 1
malignant 5 0 2

four algorithms based on counting (with different cardinality
functions and with the precedence indicator Precw, which
gave the optimal results) with comparison to OWA baseline
model (which is current decision method in OvaExpert sys-
tem). As can be seen the best version reach better result in total
cost with very similar values of other performance measures
(like sensitivity and specificity). Which allows us to initially
positively evaluate the new method, but it requires further
evaluation on larger data sets. We are currently working on
a more in-depth analysis of results based on other data sets.

VI. CONCLUSIONS AND FUTURE PLANS

In this presentation, we discuss possible axiomatically def-
initions of inclusion for interval-valued fuzzy setting, where

the notion with widths of intervals involved. Moreover, the
inclusion measure and new algorithm of comparing and rank-
ing cardinalities of interval-valued fuzzy sets were applied
in decision making algorithm. The considered model used
a intelligent decision support system (OvaExpert) for the
diagnosis of ovarian tumors. We are currently working on
several other types of ranking methods that uses inclusion
measures and aggregation methods.
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[17] A. Dąbrowski, P. Matczak, A. Wójtowicz, and M. Leitner, “Identification
of experimental and control areas for cctv effectiveness assessment—the
issue of spatially aggregated data,” ISPRS International Journal of Geo-
Information, vol. 7, no. 12, p. 471, 2018.

[18] M. Jasiulewicz-Kaczmarek and P. Żywica, “The concept of maintenance
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