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Abstract— In this paper, an evolutionary General Type-

2 Radial Basis Function Neural Network (GT2-RBFNN) for

trajectory planning in Remotely Operated underwater Vehicles

(ROVs) is suggested. The GT2-RBFNN is used as a data-

driven learning system to orient the current position of an

ROV in underwater environments. To determine the parameters

of GT2-RBFNN, Galactic Swarm Optimisation (GSO) was

implemented. A BlueROV2 and a squared water container of

2.5m⇥2.5m⇥ 3.5m were employed to run all experiments. To

control the ROV position, a sensory system that consists of a

compass, a micro data sonar, a ping sonar and a pressure sensor

was integrated. First, a Proportional Derivative fuzzy controller

was implemented to control the depth and yaw positions of the

ROV. Secondly, the GT2-RBFNN was applied to discriminate

between two different types of contours, i.e. corners and walls

in order to follow an obstacle-free trajectory. To compare the

efficiency of the GT2-RBFNN, a number of learning techniques

that are based on Extreme Learning Machine (ELM) and

evolutionary optimisation were implemented. Based on our

results, a high trade-off between model simplicity and low

computational burden are provided by the GT2-RBFNN.

Index Terms— Neural Networks, GT2 Fuzzy Logic, evolu-

tionary computing, Remotely Operated Underwater Vehicles.

I. INTRODUCTION

General Type-2 Fuzzy Logic Systems (GT2 FLSs) are
credited to outperform their Type-1 (T1) and Interval Type-
2 (IT2) counterparts in a number of different applications
[1–9]. This is mainly due to their ability to better deal with
uncertainties inherent in real world problems. Compared to
T1 and IT2 FSs, in terms of system’s design, GT2 FSs
are characterised by a footprint of Uncertainty (FOU) that
provides an extra dimension giving more degrees of freedom.
In underwater applications, uncertainties may result spe-
cially from sensor’s measurements, uncertainties in control
actions, linguistic uncertainties due to system’s design and
uncertainties that are present in training data [3, 7, 10]. Such
uncertainties may affect not only the performance of a GT2
FLS, but also the correct definition of the appropriate Mem-
bership Functions (MFs) and the parameter’s identification
of each antecedent and consequent. Within this context,
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different learning techniques have been suggested [5]. In
particular Gradient-Descent-based (GD) approaches [5] and
Evolutionary Optimisation (EO) [7] are the most popular for
the design of FLSs of high order that use Karnik-Mendel
algorithms (KM). Opposite to GD approaches, EO does not
require the iterative sorting process that is usually carried
out when computing each partial derivative. Moreover, the
application of EO favours the opimisation search to avoid
getting trapped in local minima.

This paper reports the use of Galactic Swarm Optimisation
(GSO) to design a General Type-2 RBF Neural Network
(GT2-RBFNN) that is based on the functional equivalence
between the RBF Neural Network (RBFNN) and General
Type-2 Fuzzy Logic Systems (GT2 FLSs) with a special
application to trajectory planning in Remotely Operated
Underwater Vehicles (ROVs). The computation complexity
of GT2 FLSs usually makes them difficult to be deployed
into real applications. In this sense, two versions of the
GT2-RBFNN are implemented using GSO as a training op-
timisation are suggested, i.e. a GT2-RBFNN with a Karnik-
Mendel type reduction layer, and a GT2-RBFNN with a Nie-
Tan direct defuzzification layer. To compare the effectiveness
with respect to other learning techniques such as Covariance
Matrix Adaptation Evolutionary Strategies CMA-ES, Particle
Swarm Optimisation (PSO), and GD applied to a GT2-
RBFNN, as well as neural structures based on Extreme
Learning Machine (ELM).

The rest of this paper is organised as follows: Section
II provides an overview of GT2 FLS theory, GT2-RBFNN
and GSO, while in section III the proposed methods are
presented. Section IV presents experiments and results, and
conclusions and future work are drawn in section V.

II. BACKGROUND THEORY

This section provides a brief review of General Type-2
Fuzzy Sets (GT2 FSs) and theory of ↵-plane representation
as well as the GT2-RBFNN and GSO methods are described.

A. Definition of a General Type-2 Fuzzy Set
A General Type-2 Fuzzy Set (GT2 FS) denoted by Ã

(also called T2 FS) is characterised by a bivariate MF
µ
Ã
(x, u) ✓ [0, 1] on the Cartesian product µ

Ã
: X ⇥ [0, 1],

where the primary variable is x 2 X . And the y � axis is
called secondary variable or primary MF u 2 Jx ✓ [0, 1] as
illustrated in Fig. 1. Thus, Ã is represented by:

Ã = {(x, u), µ
Ã
(x, u)|8x 2 X, 8u 2 Jx ✓ [0, 1]} (1)

{µ
Ã
(u)|u 2 U} is a vertical slice of µ

Ã
(x, u).
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Ã
(x, u)

↵-plane

1/Ã1
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Fig. 1: Some ↵�planes raised to level ↵ for a GT2 FS.

B. ↵�plane Representation

An ↵�plane of a GT2 FS Ã is denoted by Ã↵, is the
union of the primary MFs of Ã whose secondary grades are
greater than or equal to ↵ (0  ↵  1)

Ã↵ = {(x, u), µ
Ã
(x, u) � ↵|x 2 X,u 2 [0, 1]} (2)

where the lower and upper limits for Ã↵ are defined as [11]
[a↵̃, b↵̃] = [LMF (Ã↵), UMF (Ã↵)]. That means when Ã↵

is raised to level ↵, it is a plane at that level that can be
obtained by connecting all the corresponding ↵ � cuts of
the associated vertical slices of the secondary MFs of x 2 X
[1]. where the horizontal-slice representation of a GT2 FS Ã
is:

Ã = sup
↵2[0,1]

↵/

Z

x2X

[a↵(x), b↵(x)]/x

�
=

[

↵2[0,1]

↵/Ã↵

(3)

C. General Type-2 Radial Basis Function Neural Network

According to [5, 12–14], a Radial Basis Function Neural
Network (RBFNN) can be viewed as Fuzzy Logic System
(FLS) under some mild conditions. This functional equiv-
alence has been extended in order to design higher order
FLSs based on the model of the RBFNN. An RBFNN can
be regarded as an FLSs whose main inference engine is
interpreted as an adaptive filter [1]. It resembles an additive
weighted combination of the MFs of the fired-rule output
sets in the hidden layer of the RBFNN (See Fig. 2) [1].
Each hidden receptive unit in the RBFNN is functionally
equivalence to a fuzzy rule Ri described by a multivariable
MF µRi(~xp, yp) = µRi [x1, . . . , xn, y] of Gaussian type,
whose input vector ~xp 2 X1 ⇥ . . . Xn and the implication
engine can be defined as:

µRi(~xp, y) = µAi!Gi =
h
Tn

k1
µF i

k
(xk) ? µGi(y)

i
(4)

Where ? is the minimum t � norm that represents the
shortest Euclidean distance of the input vector ~xp. And the
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Fig. 2: General Type-2 Fuzzy Neural Network (GT2-RBFNN).

ith receptive unit is represented as a fuzzy rule in the form:

Ri : IF x1 is F i

1 and . . . IF xk is F i

k
and . . .

IF xn is F i

n
THEN y is Gi; i = 1, . . . ,M (5)

The firing strength fi of each receptive unit is defined as:

µAi!Gi(~xp, y) = fi

 
exp

"
�
P

n

k=1 (xk �mki)
2

�2
i

#!
(6)

The GT2-RBFNN is a Fuzzy Neural Network of general
type-2 (GT2-RBFNN) with a Mamdani inference engine an a
Karnik-Mendel type-reduction layer, where all the FSs are of
GT2. The adopted neural structure for the GT2-RBFNN is a
GT2 FLSs with an uncertain width �i = [�1

i
,�2

i
] and a fixed

mean mi

k
where the input layer is a singleton fuzzification

with a secondary MF that is convex, a Center-Of-Sets (COS)
type reduction that uses the Karnik-Mendel algorithm and an
average of end-points defuzzification (AED). A horizontal-
slice representation for the GT2-RBFNN is used. In order
to avoid additional parameters and as the secondary MFs
are vertical slices, we choose a isosceles isosceles triangle
function where its base is equal to f0

i
� f0

i
and its Apex

location is

Apex(~xp) = f0
i
(~xp) + w[f0

i
(~xp)� f0

i
(~xp)] (7)

we choose a value for w = 1/2.

D. GT2-RBFNN Input Layer
The adopted GT2-RBFNN is a Multi-Input-Single-Output

FLS, in which the input data is a multidimensional crisp
vector represented by ~xp = [x1, . . . , xn] 2 Rn where only
the current state is fed into the layer and then forwarded to
next layer.



E. General Type-2 RBF Layer
Singleton fuzzification is employed, i.e. for each value xk

only a T1 vertical slice for an antecedent GT2 FS F̃ i

k
is

activated. Based on [15], for each fuzzy rule and input ~xp in
the GT2-RBFNN (Mamdani type), only one firing interval
F↵s
i

is activated for level ↵s in the GT2 RBF layer as
follows (See Fig. 2) - F↵s

i
:= [f↵s

i
(~xp), f

↵s
i
(~xp)]

F↵s
i

:=

8
>>>><

>>>>:

f↵s
i
(~xp) = exp

"
�

nX

k=1

✓
xk �mi

k

�2
i

◆2
#

↵s

f↵s
i
(~xp) = exp

"
�

nX

k=1

✓
xk �mi

k

�1
i

◆2
#

↵s

(8)

Note the term ↵ is not a variable, but a subscript 0s0 to denote
in which level the information in the GT2 RBFNN is being
processed [1].

F. Type-reduction Layer
In the type reduction layer, we use a Center Of Sets

Type Reduction (COS TR). This layer performs a mathe-
matical operation that maps a GT2 FS into a T1 FS. Due
to the adaptability of the GT2 RBFNN, the centroid of
each consequent at the ↵s-plane can be defined as:C

G̃i
↵s

=

↵s/[wi

l,↵s
, wi

r,↵s
]. According to [15], for a Mamdani GT2-

RBFNN [wi

l,↵s
, wi

r,↵s
] is an Interval Weighted Average

(IWA) that is used along with the firing interval F↵s
i

to
compute the reduced set [y↵s

l
(~xp), y↵s

r
(~xp)] for ↵s-level as:

y↵s
l

=

PL↵s
i=1 wi

l,↵s
f↵s
i

+
P

M

i=L↵s+1 w
i

l,↵s
f↵s
i

PL↵s
i=1 f↵s

i
+
P

M

i=L↵s+1 f
↵s
i

(9)

y↵s
r

=

PR↵s
i=1 wi

r,↵s
f↵s
i

+
P

M

i=R↵s+1 w
i
r,↵s

f↵s
i

PR↵s
i=1 f↵s

i
+
P

M

i=R↵s+1 f
↵s
i

(10)

where YCOS,↵s = 1/[y↵s
l
(~xp), y↵s

r
(~xp)].

G. Defuzzification Layer
This layer performs the defuzzification that consists of a

process of aggregation of all horizontal slices. This work
uses the Average of End-Points Defuzzification (AEPD) [3]

yp(~xp) =
SX

s=1

↵s[(y
↵s
l
(~xp) + y↵s

r
(~xp)) /2]

,
SX

s=1

↵s (11)

H. Simplified GT2-RBFNN based on Nie-Tan Algorithm
To avoid the iterative nature that frequently results from

the number of permutations that are needed to calculate the
reduced set with KM algorithms, simplified structures with
direct-defuzzification have been proposed [5]. Usually, the
term direct-defuzzification or closed-form type reduction is
used indistinctly to refer to the mapping that goes from GT2
FS to a crisp number (type-0). Because of its simplicity and
accuracy with respect to KM algorithms, in this work, a GT2
RBFNN with a Nie-Tan closed-form (NT) as output layer
is suggested as a comparison method to the GT2-RBFNN
using KM. Such method uses the vertical representation of

the Footprint of Uncertainty (FOU) [16] before the process
of dedifuzzification to finally compute the centroid of the
IT2 FS. The NT layer can be considered a zero order Tay-
lor series approximation of Karnik-Mendel+dedifuzzification
methods. It has been proved the Nie-Tan operator is equiv-
alent to an exhaustive and accurate type-reduction for both
discrete and continuous IT2 FSs [16]. Although there has
been improvements on the Nie-Tan operator, in this paper,
the centroid yNT,↵s at each ↵�level is:

yNT,↵s =

P
M

i=1 w
↵s
i

�
f↵s
i

+ f↵s
i

�

P
M

i=1 f
↵s
i

+
P

M

i=1 f
↵s
i

(12)

For each input vector ~xp, the GT2RBFNN output with a NT
method is:

yp(~xp) =
SX

s=1

↵syNT,↵s

,
SX

s=1

↵s (13)

I. Galactic Swarm Optimisation

Galactic Swarm Optimisation (GSO) is a new meta
heuristic technique that mimics the movement of stars,
galaxies and super galaxies [17]. GSO involves two
independent levels of execution, where first multiple 0S0

p

sub-populations of 0N 0
p

solutions (stars) are randomly
created to explore search space efficiently. Such populations
are small galaxies (also called subswarms) that interact
themselves while updating their current position x̂ij

and minimising their potential energy [17]. Secondly,
a super swarm of stars is recruited from the best-
found solutions g

best,i
at each ith sub-population. At

each level, the main search engine is based on the
original work of Particle Swarm Optimisation (PSO) [17].
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Algorithm 1: PSEUDOCODE FOR THE EVOLUTION OF A GT2-

RBFNN USING A GALATIC SWARM OPTIMISATION (GSO)

Input: Input Training Data (xp, tp)
Output: Optimal mk

s
, �1

k
,�2

k
and wi

l,↵s
, wi

r,↵s

1 function Galactic Swarm Optimisation (GSO)
2 Level 1 Initialisation: xij , vij , g

best,i
, p

best,ij

3 Level 2 Initialisation: vi, g
best

, p
best,i

4 Calculate Jt(xij), j = 1, . . . , Np

5 Initialise the particle’s best position pbest,j  x̂j

6 while t  EpMAX do

7 Begin PSO: Level 1

8 for i 1 to Sp do

9 for l1  0 to L1 do

10 for j  1 to Np do

11 Update vij and x̂ij (Eq. 14,15)
12 Calculate Jt(x̂j) of solutions x̂ij

13 Select the best GT2 parameters
14 if Jt(xp) < p

best,ij
then

15 Update p
best,ij

 xi

16 if p
best,ij

< g
best,i

then

17 Update g
best,i

 p
best,ij

18 Begin PSO: Level 2

19 Initialise Swarm y
i
= g

best,i
, i = 1, . . . , Sp

20 for l2  0 to L2 do

21 for i 1 to Np do

22 Update star’s velocity
23 vi = w2vi + c3r3

�
p
best,i

� y
i

�
+

c4r4 (gbest
� y

i
)

24 Update particle’s position y
i
 y

i
+ vi

25 Calculate fitness Jt(x̂j) of each
optimal solution x̂ij

26 if Jt(x̂p) < p
best,i

then

27 Update p
best,i

 y
i

28 if p
best,i

< g
best

then

29 Update g
best
 p

best,i

30 t = t+ 1

31 return (mk
s
,�1

i
,�2

i
, wi

l,↵s
, wi

r,↵s
)best

At first level, every jth star in the ith sub-population
moves with a specific velocity vij while keeping track of its
best position p

best,ij
. Thus, at each time step, each particle

changes its velocity and position (direction) xij towards the
best location g

best,i
. The associated acceleration of each

star is weighted by a random term. Hence, the velocity and
position is defined

vij = wdvij + c1r1
�
p
best,ij

� xij

�
+ c2r2

�
g
best,i

� xij

�

(14)

x̂ij = x̂ij + vij ; j = 1, . . . , Np (15)

where c1, c2 > 0 are acceleration constants; rp and rg are
random numbers between 0 and 1. The term wd is used for
adaptation purposes as an inertial weight. Such parameter is
decreased gradually as the number of generation for the PSO
increases according to the rate:

wd(t) = (wmax � winit)/Maxiter (16)

in which, winit and wmax are the initial and final inertial
weights respectively. Finally, PSO is applied again to find
the set of the best global optimum using the set of gbest,ij .

III. METHODS

A. Evolution of the GT2-RBFNN using GSO
The evolution of GT2-RBFNN with a Gaussian MF having

a fixed mean msi and a variable standard deviation [�1
i
,�2

2 ]
and KM type-reduction, whose learning methodology is
based on the GSO is described in the Algorithm 1. A
Multiple-Input-Single-Output (MISO) structure for the GT2-
RBFNN is selected. According to Algorithm 1, the fitness
of each candidate model Jt(xp) is estimated using the Root-
Mean-Squared-Error (line 4, Eq. 17) in which Np is the
number of particles.

Jt(xp) =

 
1

P

PX

p=1

(yp � tp)
2

!1/2

(17)

Model accuracy of the GT2-RBFNN is calculated as follows:

Model Accuracy(%) =
TN + TP

TP + TN + FP + FN
(18)

Where TP and TN are the true positive and true negative
classification respectively. FP and FN are false positive and
false negative classification correspondingly. in which Np

is the number of particles and EpMAX is used to denote
the max number of evolutionary epochs. Thus, given a
predefined number of fuzzy rules, the GSO starts from
randomly selecting the values of each GT2 antecedent whose
particle’s codification x̂j ⇠ U(lj , uj) is described in Eq. (19)
(line 2), where lj and uj are the lower and upper dimension
limits respectively. At each iteration, two optimisation levels
are performed (line 7-29). At first level (7-17), the best
candidate (solution, g

best,i
) of each sub-population is found

using the fitness function Jt(xp), which is used to create a
super swarm (line 13-17). At second level (line 18-29), the
best solution g

best
in the super swarm is used as the final

parameters mk
s
, �1

k
,�2

k
of each antecedent as well as the

optimal value for the consequent vector wi

l,↵s
, wi

r,↵s
defined

in the output layer of the GT2-RBFNN.

x̂j =

0

B@

GT2 antecedent 1z }| {
mk1,�

1
1 ,�

2
1 , . . . ,

GT2 antecedent nz }| {
mkM ,�1

M
,�2

M| {z }
Rule 1

, . . . ,

GT2 antecedent 1z }| {
mk1,�

1
M
,�2

M
, . . . ,

GT2 antecedent nz }| {
mkM ,�1

M
,�2

M| {z }
Rule M

, wi

l,1, w
i

r,1, . . . , w
i

l,↵S
, wi

r,↵S| {z }
Consequent weights

1

CA (19)
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Tether & Computer

Depth/Pressure Sensor
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(b) Remotely Operated Underwater Vehicle (BlueROV2) 
                     and its sensory system

Fig. 4: (a) Water container (open-tank) and computer station used for experiments, and (b) BlueROV2 equipped with a
sensory system with four sensors.

B. Robotic Platform

In this research work, a Remotely Operated Underwater
Vehicle (ROV) with a six-thruster vectored configuration
from Bluerobotics (See Fig. 4) was used for all experiments.
The ROV has an open-source electronics whose sensory
system (See Fig. 5) was integrated at the Laboratory of
Submarine Robotics, (LSR, CIDESI). As detailed in Fig.
4, such system consists of a pressure sensor that is able to
measure up to 30 Bar (300m depth) with a depth resolution
of 2mm (Bluerobotics), 2) a ping sonar which is an open-
source sensor able to measure distances up to 30 meters with
a 30 degree beam width, b) micro data sonar Titrech with
a range resolution of 7.5 mm, a beam width of 3�, and a
variable scanned sector and d) the Sparton compass that is a
micro-sized and light weight attitude heading sensor with a
Static Heading Accuracy of 0.2� RMS and full 360� rollover
capability. As detailed in Fig. 4, the micron data sonar is used
as a dynamic echo-sounder whose scanned sector is defined
by a sample window of five beams separated at 8� one to
the other. A water container of 2.5 ⇥ 2.5 ⇥ 3.5 metres in
height, width and length respectively, was used to carried
the experiments with salty water whose density is about
1028kg/m3. As indicated in Fig. 5, the main computer in the
ROV is a Raspberri Pi3, in which ROS ubiquity (algorithms
coded in Python, C++ and Matlab) was installed in order to
implement all machine learning algorithms and controllers.
A line SSH connection between the Raspberri Pi3 and an
Ubuntu computer was used to monitor sensor values and
define parameters of each algorithm.

C. Proposed Methodology for Trajectory Planning based on
an Evolutionary GT2-RBFNN

GT2 Fuzzy Logic has demonstrated to be an efficient
concept to dealing with different types of uncertainties. In

     Computer (Command Line-SSH Connection)

Ethernet Connection

USB

USB HUB

Raspberri Pi 3

Battery

ESC Thrusters

Ethernet

Voltage Regulator

I2C

Micro Sonar

Ping Sonar

Compass

Pressure Sensor

Fig. 5: System’s configuration used by the BlueROV2.

particular, in real modelling and prediction problems [5, 12]
GT2 FLSs quantify uncertainty not only from imprecise
boundaries in Fuzzy Sets (FSs) but also as ambiguity due
to the variation in the output system. In this work, the
implementation of a GT2 neural network (GT2-RBFNN)
is implemented in the ROV to discriminate (binary con-
tour classification) between walls and corners when moving
forward in the water container (tank) as it is illustrated in
Fig. 4. The idea behind the proposed methodology is to
integrate a number of control algorithms that guide the to
complete a circuit (as shown in Fig. 6(a)) that consists of the
trajectory passing by all walls (from 1 to 4 or from 4 to 1)
either at clockwise or counterclockwise direction, Fig. 6). As
illustrated in Fig. 7 (flow diagram), a compass and a pressure
sensor are used to estimate the yaw angle (See Fig. 4(b)- axis
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Fig. 7: Flow diagram of the processes implemented to the
trajectory planning of the ROV to complete one circuit.

Zb) and the ROV’s depth (axis Zb) respectively. The ping
sonar and the micro data sonar are utilised to estimate the
distance between the ROV and the closest wall. While the
ping sonar estimates a straight distance, as described in Fig.
4, the micro data sonar obtains five different distances (esti-
mates) in a predefined scanned sector, where the value of the
reading 180� is aligned to the ROV front. In Fig. 8, sample
data obtained by the micro data sonar that corresponds to one
circuit of the ROV in the container and from three different
angles, namely; [148�, 164�, 179�] is presented. Based on
Fig. 6, the reading frequency of the ROV sensory system
is about 0.02Hz. The initial target of the ROV’s trajectory
is to achieve a predefined heading angle that is within the
error range between [�5�,+5�] making the heading of the
vehicle parallel to the closest wall. To control the orientation
and depth of the ROV (yaw angle) a PD fuzzy controller
of type-1 (Mamdani) with three and five fuzzy rules were
implemented respectively [18, 19]. Since a dynamic model
of the BlueROV2 is not available, the dynamic properties of
the closed-loop structure have to be derived intuitively and
experimentally. Once the ROV heading is within a predefined

yaw angle range, the ROV employs the ping sonar readings
to move to a position that is within a predefined distance
range [min distance, max distance] parallel to the closest wall
as described in Fig. 6(a). At this position the ROV moves
forward while scanning five different distances to the closest
walls at the angles [148�, 156�, 164�, 172�, 179�]. Such data
is used by the evolutionary GT2-RBFNN to discriminate
between a wall and a corner. If a corner is reached by the
ROV, then the robot rotates 90� counterclockwise.

IV. EXPERIMENTAL RESULTS

In this section, the efficiency of the proposed framework
is compared to other existing machine learning techniques.
Training data Sonar from five random experiments was col-
lected using the micro data sonar resulting in a collection 586
records (See Fig. 8), where each input vector consists of five
attributes, each one corresponding to a distance measured
at angles {180�, 172�, 164� 156�, 148�} (See Fig. 6(b)). The
sonar data set is an imbalanced binary classification problem
where label 1 is used to denote the presence of a corner, and 0
to denote a wall (438 records out of 582). For cross validation
purposes, a number of ten off-line random experiments were
implemented. From this, the sonar data set was divided into
two subsets, i.e. 80% for training and 20% for testing. For
real experiments, in order to make a decision about the
type of contour, the average classification value of three
consecutive values of yp, (ypt + yt�1

p
+ yt�2

p
)/3 > ⌧ are

used, where ⌧ is a predefined threshold. The experimental
setup for the GSO consists of a maximum number of 200
evolutionary epochs, optimal population size was found to
be 40. The GT2-RBFNN consists of 5 fuzzy rules with
three slices (S = 3), ⌧ = 0.7, and a [min,max] value
for �1

k
= [0.3, 3.0], �2

k
= [0.3, 2.0], and the limits for

mk
s

= [�1, 1]. wi
r,↵

= wi

l,↵
= [�5, 5]. As indicated in

Table I, to evaluate the GT2-RBFNN accuracy, four different
training configurations are suggested, i.e. GT2-RBFNN GSO
+ KM = GSO used to train a GT2-RBFNN with a KM type-
reduction layer, GT2-RBFNN + GSO + NT, GT2-RBFNN
PSO + KM and GT2-RBFNN + GD + KM.
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Fig. 8: Sample of Sonar measurements used as training data.

In Fig. 9, their corresponding evolution performance is
illustrated. In Table I, the average performance of ten
random experiments using seven different machine learn-
ing algorithms is described. ELM, FELM and ML-ELM
are neural structures based on Extreme Learning Machine
(ELM), Fuzzy ELM (FELM) and Multilayer ELM (ML-
ELM) respectively. From Table I, Column time(s) indi-
cates the average training time required by each algorithm.
According to our cross-validation results, it is clear that
ML-EL with two layers of AutoEncoders (AEs) and one
classification layer provides the highest trade-off between
accuracy and computational burden. The number of Hidden
Units (column No. of HU) is selected as [200, 70], the first
and second AEs has 200 and 100 units respectively, while
a No. of HU for the classification layer is 70. For practical
purposes, those models trained with an evolutionary optimi-
sation and BEP represent a higher trade-off between model
accuracy and model simplicity. From this, in particular, an
evolutionary GT2-RBFNN provides a higher accuracy with
better generalisation properties [20]. In Fig. 10, a confusion
matrix that corresponds to average testing performance of the
evolutionary GSO is presented. To evaluate the performance
of the ROV, five real experiments were carried out using the
trained neural structure of the GT2-RBFNN for a depth of
1.2m as suggested in [21].

TABLE I: AVERAGE PERFORMANCE FOR CONTOUR CLASSIFICATION.

Model Training Testing

Mean (%) Time(s) Mean (%) No. of HU

G
T2

-R
B

FN
N GSO + KM 94.30 31.01 90.29 7

CMA-ES + KM 92.95 28.56 91.22 7

GSO + NT 92.08 29.57 89.37 7

PSO + KM 92.74 24.33 89.01 7

BEP + KM 93.22 22.14 86.12 7

ELM 94.36 1.30 93.98 90

FELM 95.77 3.21 94.19 90

ML-ELM 98.61 1.23 95.01 [200, 70]
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Fig. 9: Average training accuracy for the GT2-RBFNN using
GSO, PSO and CMA-ESs.
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Fig. 10: Average testing accuracy.

Accuracy for Real Experiments: 85.48%
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Fig. 11: Average testing accuracy for real experiments.

Each experiment follows a counterclockwise circuit delin-
eated by the point sequence wall(1)-to-wall(2)-to-wall(3)-to-
wall(4) as described in Fig. 6. The average classification of
five experiments provided by the GT2-RBFNN to recognise
contours (accuracy: 85.48%) is presented in Fig. 11. As
can be noted from Fig. 11, the ability of the GT2-RBFNN
to properly suffers a small decrease when discriminating
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between walls and corners. In Fig. 12, the performance
achieved by the yaw and depth fuzzy controllers and the
distance that the ROV kept between its current position and
the closest wall throughout a random circuit is presented
respectively. The reference value used for the distance width
was proposed as [0.4� 0.6]m.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an evolutionary General Type-2 Fuzzy Neu-
ral Network (GT2-RBFNN) that is based on the functional
equivalence between RBFNNs and GT2 FLS for trajectory
planning in Remotely Operated underwater Vehicles (ROVs)
is suggested. The proposed GT2-RBFNN is used as a data-
driven learning system to orient the current position of
ROVs in underwater environments. The parameter identifi-
cation of the GT2-RBFNN is determined by using Galactic
Swarm Optimisation (GSO). To compare the performance
of the GT2-RBFNN, a number of different techniques based
on evolutionary computing and Extreme Learning Machine
(ELM) were suggested. A squared water container and an
ROV BlueROV2 were employed to run all experiments.
To control the ROV’s position (depth, yaw and motion), a
sensory system that includes a micro data sonar, a pressure
sensor, a ping sonar and a compass was integrated. Based
on our results, the GT2-RBFNN offers a robust trade-off
between model accuracy and model simplicity in underwater
environments.

Future work includes underwater environments whose
contour is unknown as well as the implementation of online
learning methods that allows the GT2-RBFNN updates its
parameters in the presence of new evidence.
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L. Nava-Balanzar, R. Hernández-Alvarado, and J. A. Cruz-Ledesma,
“Modelling, design and robust control of a remotely operated under-
water vehicle,” International Journal of Advanced Robotic Systems,
vol. 11, no. 1, p. 1, 2014.




