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Abstract—This paper presents a new control method for path
tracking of autonomous vehicles. Takagi-Sugeno fuzzy control is
used to handle the time-varying vehicle speed and the uncertain
tire-road forces involved in the nonlinear vehicle dynamics. To
avoid using costly vehicle sensors while keeping a simple control
structure, a new fuzzy static output feedback (SOF) scheme is
proposed. Moreover, robust set-invariance is exploited to take
into account the physical limitations on the steering input and
the vehicle state in the control design for safety and comfort
improvement. Based on Lyapunov stability arguments, a non-
parallel distributed compensation SOF controller is designed
for autonomous driving with reduced conservatism. The control
design is reformulated as an optimization problem under linear
matrix inequalities, easily solved with available numerical solvers.
The path tracking performance of the proposed fuzzy controller
is evaluated via dynamic driving tests conducted with high-fidelity
CarSim/Simulink co-simulations.

Index Terms—Fuzzy systems, fuzzy control, autonomous vehi-
cles, path tracking, vehicle dynamics, vehicle control.

I. INTRODUCTION

Autonomous ground vehicles have been considered as a
promising solution to improve not only the safety, accessibility
and comfort of passengers but also the energy-saving effi-
ciency [1]. For these reasons, autonomous driving technology
has received a great deal of attention from academic re-
searchers, industrial companies and local governments. As one
of the most important parts of vehicle autonomous navigation,
path tracking of autonomous vehicles has been a significant
research topic [2]–[4]. The key control goal is to achieve
path following performance with acceptably small tracking
errors and smooth steering actions under various driving
conditions [4]. Remarkable contributions on path tracking
of autonomous vehicles have been reported in the literature.
Generally speaking, the path tracking control strategies can
be classified into three main categories: model-free control,
kinematic-based control and feedback control. First, model-
free controllers, such as PID control [5] or fuzzy logic control
[6], [7], generate the steering actions based on the tracking
errors. Without taking into account the information of vehicle
dynamics in the design, these control methods require a costly
tuning task to achieve an acceptable path tracking performance
[8]. Second, the kinematic-based controllers are designed

using a vehicle kinematics model and/or geometric relations
[9]. Despite their simplicity, these control approaches only
demonstrate their capabilities for low-speed driving situations.
Third, the feedback control designs are based on the vehicle
dynamics which can be used to overcome the above-mentioned
drawbacks [4].

Numerous works on path tracking feedback control of
autonomous vehicles have been proposed, which are mostly
based on conventional control theory [8], [9]. Sliding mode
control technique was applied to vehicle control in [10].
Despite its robustness with respect to uncertainties and dis-
turbances, the involved chattering issue still leads to both
theoretical and practical difficulties [8]. An active disturbance
rejection control (ADRC) was developed in [11] for vehicle
steering control in the presence of uncertainties and external
disturbance. Note that ADRC controllers require a heavy
tuning task to achieve a satisfactory control performance.
Model predictive control (MPC) has been largely applied to
path tracking and obstacle avoidance of autonomous vehicles
[12]–[14]. However, MPC technique requires solving an on-
line optimization problem at each control step, which leads
expensive computational cost for real-time implementation,
especially for nonlinear MPC schemes. Takagi-Sugeno (TS)
fuzzy approaches [15] have been proposed to deal with the
vehicle tracking control issues [3], [16], [17]. In contrast to
model-free fuzzy control [6], [18], stability and robustness
analysis can be achieved with TS fuzzy control approaches
[19], [20]. However, fuzzy model-based output feedback con-
trol for uncertain systems remains challenging [21].

Despite a great advance, the following issues related to
path tracking control for autonomous driving still remain
challenging. First, requiring full-state information for feedback
design is a strong assumption within vehicle control context
due to the sensor cost reasons [9]. The second challenge is the
reliance of the control design on the vehicle modeling. Using
an accurate vehicle model may lead to major difficulties for the
control design task due to the strong coupling nonlinearities.
Hence, the design of a model-based controller robust to the
unmodeled vehicle dynamics, time-varying parameters and
external disturbances, is of crucial importance [22]. The third
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challenge consists in considering the physical limitations,
e.g., steering saturation, in the control design to improve the
driving safety and comfort. This important issue has not been
well addressed for robust output feedback control schemes
[23]–[26]. In particular, most of existing constrained path
following control for autonomous vehicles are mainly based
state-feedback control schemes [3].

This paper presents a new fuzzy SOF controller to simulta-
neously address the three above challenges of autonomous path
following control. Robust TS fuzzy model-based technique is
used to deal with the nonlinear uncertain vehicle dynamics.
Then, the time-varying feature of the vehicle speed and the
highly uncertain behaviors of the lateral tire-road forces can
be taken into account in the control design to improve the
path tracking performance. Moreover, exploiting the robust
set-invariance property and Lyapunov stability arguments, the
steering input saturation can be explicitly considered in the
control design for safety and confort reasons. Differently
from [27], [28], here a fuzzy Lyapunov function and a non-
parallel distributed compensation (non-PDC) scheme are used
to reduce further the design conservatism. The control design
procedure is recast as an optimization problem under linear
matrix inequalities (LMIs) with a single parameter line search,
which can be easily solved with available solvers [29]. The
effectiveness of the proposed TS fuzzy SOF controller is
clearly demonstrated using high-fidelity CarSim/Simulink co-
simulations under dynamic driving conditions. It is important
to note that this conference paper is a short version of the
work [30]. More technical extensions and details on control
validations can be found in [30].

Notation. For a vector x, xi denotes its ith entry. For a
square matrix X , X> denotes its transpose, X � 0 means
that X is positive definite, X(i) denotes its ith row and
HeX = X + X>. diag(X1, X2) denotes a block-diagonal
matrix composed of X1, X2. I denotes the identity matrix of
appropriate dimension. The set of nonnegative integers is de-
noted by Z+. For N ∈ Z+, we denote IN = {1, . . . , r} ⊂ Z+.
The symbol ’?’ stands for the terms deduced by symmetry in
symmetric block matrices. For brevity, the following notation
for convex sums is adopted:

Πh =

r∑
i=1

hi(θ)Πi, Π−1
h =

(
r∑
i=1

hi(θ)Πi

)−1

,

Σhh =

r∑
i=1

r∑
j=1

hi(θ)hj(θ)Σij ,

Φhhh =

r∑
i=1

r∑
j=1

r∑
k=1

hi(θ)hj(θ)hk(θ)Φijk. (1)

with Πi, Σij and Φijk are matrices of appropriate dimensions.

II. VEHICLE MODELING AND PROBLEM FORMULATION

We present hereafter the vehicle modeling for path tracking
control, see Fig. 1. The nomenclature is given in Table I.

TABLE I
VEHICLE NOMENCLATURE.

Symbol Description
vx/vy longitudinal/lateral speed
β sideslip angle at the center of gravity (CG)
r vehicle yaw rate
yL lateral deviation error
ψL heading error
δ steering angle
M total mass of the vehicle
lf/lr distance from CG to the front/rear axle
ls look-ahead distance
Iz vehicle yaw moment of inertia
Cf/Cr front/rear cornering stiffness

A. Road-Vehicle Model

A non-linear single track vehicle model is used to study the
vehicle motions, whose dynamics is given as follows [3]:

M(v̇x − rvy) = Fxf cos δ − Fyf sin δ + Fxr,

M(v̇y + rvx) = Fxf sin δ + Fyf cos δ + Fyr,

Iz ṙ = lf (Fxf sin δ + Fyf cos δ)− lrFyr.
(2)

The front and rear longitudinal forces Fxi and lateral forces
Fyi, for i ∈ {f, r}, are caused by the tire-road interaction. The
behaviors of these forces are highly nonlinear and depend on
several factors, for instance slip angles, tire/road characteris-
tics, normal load [31]. To reduce the design complexity, the
following norm-bounded uncertain tire model is used [22]:

Fyf = 2Cfαf = 2Cf

(
δ − vy + lfr

vx

)
,

Fyr = 2Crαr = 2Cr
lrr − vy
vx

.

(3)

where the cornering stiffness are time-varying to take into ac-
count the road friction changes or the nonlinear tire behaviors
[32]. These bounded parameters Cf ∈ [Cf min,Cf max] and
Cr ∈ [Crmin,Crmax], can be represented by

Cf = Cf + ∆Cfζf (t), Cr = Cr + ∆Crζr(t), (4)

where |ζi(t)| ≤ 1, i ∈ {f, r}, are unknown parameters, and

Cf =
Cf max + Cf min

2
, Cr =

Crmax + Crmin

2
,

∆Cf =
Cf max − Cf min

2
, ∆Cr =

Crmax − Crmin

2
.

For steering control purposes, we consider the small angles
assumption and a slow vehicle speed variation. Then, the
vehicle lateral dynamics can be derived from (2) and (3) as
follows [33], [34]:[
β̇
ṙ

]
=

[
− 2(Cr+Cf )

Mvx

2(lrCr−lfCf )
Mv2x

− 1

2(lrCr−lfCf )
Iz

−2(l2rCr+l2fCf )

Izvx

] [
β
r

]
+

[
2Cf

Mvx
2lfCf

Iz

]
δ(5)

where vy = vxβ. The vehicle positioning on the road can be
represented by the following dynamics [3]:

ẏL = vxβ + lsr + vxψL, ψ̇L = r − vxρr, (6)

where the road curvature ρr can be obtained from cameras.



Fig. 1. Schematic of vehicle lateral dynamics.

B. Vehicle Control-Based Model

From the vehicle model (5), the dynamics for path tracking
(6), the road-vehicle model can be represented as follows:

ẋ(t) = Âv(t)x(t) + B̂v(t)δ(t) + Ev(t)w(t), (7)

where x =
[
β r ψL yL

]>
is the vehicle state, w = ρr is

the system disturbance. The steering control input δ(t) of the
vehicle system (7) is subject to actuator saturation

δ(t) = sat(u(t)) = sign(u(t)) min (|u(t)| , δmax) ,

where u is the steering control angle with its maximal physical
limitation δmax. The matrices of system (7) are given by
Âv(t) = Av(t) + ∆Av(t), B̂v(t) = Bv(t) + ∆Bv(t) with

Av =


a11 a12 0 0
a21 a22 0 0
0 1 0 0
vx ls vx 0

 , Bv =


b1
b2
0
0

 , Ev =


0
0
−vx

0

 ,
and

a11 = −2(Cr + Cf )

Mvx
, a12 =

2(lrCr − lfCf )

Mv2
x

− 1,

a21 =
2(lrCr − lfCf )

Iz
, a22 =

−2(l2rCr + l2fCf )

Izvx
,

b1 =
2Cf
Mvx

, b2 =
2lfCf
Iz

.

Moreover, ∆Av and ∆Bv represent the system norm-bounded
uncertainties caused by Cf and Cr in (4), represented as

∆Av(t) = Hv∆(t)Lv, ∆Bv(t) = Hv∆(t)Nv,

with

Hv =


2∆Cr

Mvx

2∆Cf

Mvx

− 2∆Crlr
Iz

2∆Cf lf
Iz

0 0
0 0

 , Lv =


−1 −1
lr
vx

− lf
vx

0 0
0 0


>

,

∆(t) = diag(ζr(t), ζf (t)), Nv =
[
0 1

]>
.

For real-time implementation, the control design is performed
in the discrete-time domain. Then, the Euler’s discretization is
used to transform system (7) into its discrete-time counterpart

x(κ+ 1) = Â(vx)x(κ) + B̂(vx)sat(u(κ)) + E(vx)w(κ). (8)

where Â(vx) = I + TeÂv(vx), B̂(vx) = TeB̂v(vx) and
E(vx) = TeEv(vx). The value of the sampling time is selected
as Te = 0.01 [s], which is compatible with real-time hardware
setup [3]. Due to the cost reason, the measurement of β
is unavailable in practice [27]. Then, the vehicle output is
defined as

y =

0 1 0 0
0 0 1 0
0 0 0 1

x = Cx.

The controlled output vector z is defined such that it can
represent both the path following performance (via ψL and yL)
and the driving comfort (via the lateral acceleration ay ' vxr)

z =

ψLyL
ay

 =

0 0 1 0
0 0 0 1
0 vx 0 0

x = D(vx)x. (9)

III. SET-INVARIANCE BASED OUTPUT FEEDBACK
CONTROL FOR CONSTRAINED FUZZY SYSTEMS

This section formulates the fuzzy SOF control problem for
autonomous driving under uncertainties and constraints.

A. System Description
We consider the following class of uncertain input-

constrained TS fuzzy systems with N inference rules [15]:

RULE Ri : IF θ1(κ) is Mi
1 and . . . and θp(κ) is Mi

p. THEN

x(κ+ 1) = Âi(κ)x(κ) + B̂i(κ)sat(u(κ)) + Eiw(κ)

z(κ) = Dix(κ), y(κ) = Cx(κ),
(10)

where x(κ) ∈ Rnx is the state vector, u(κ) ∈ Rnu the control
input, w(κ) ∈ Rnw the system disturbance, z(κ) ∈ Rnz the
controlled output, and y(κ) ∈ Rny the measured output, and
Âi(κ) = Ai + ∆Ai(κ), B̂i(κ) = Bi + ∆Bi(κ). The vector of
premise variables is defined as θ(κ) = [θ1(κ) · · · θp(κ)]> ∈
Rp. The ith local matrices with appropriate dimensions
(Ai, Bi, Ci, Di, Ei) are known constant. Using notation (1),
the fuzzy system (10) can be rewritten in the compact form

x(κ+ 1) = Âhx(κ) + B̂hsat(u(κ)) + Ehw(κ)

z(κ) = Dhx(κ), y(κ) = Cx(κ), (11)

where the uncertain state-space matrices satisfy

Âh = Ah + ∆A(κ), B̂h = Bh + ∆B(κ),

∆A(κ) = Hh∆(κ)Lh, ∆B(κ) = Hh∆(κ)Nh.
(12)

The constant matrices with proper dimensions Hi, Li, Ni,
i ∈ IN , in (12), are known, and the time-varying uncertain
matrix satisfies ∆(κ)>∆(κ) � I . The membership functions
(MFs) hi(θ), for i ∈ IN , satisfy the convex sum property

N∑
i=1

hi(θ) = 1, 0 ≤ hi(θ) ≤ 1, ∀i ∈ IN .



The input saturation function is defined as

sat(ul(κ)) = sign(ul(κ)) min(|ul(κ)|, ūl), κ ∈ Z+,

where the control bounds ūl > 0, for ∀l ∈ Inu , are given. The
system disturbance w in (11) is bounded in amplitude as

W∞φ =
{
w : R+ → Rnw , w(κ)>w(κ) ≤ φ, κ ∈ Z+

}
,

with a positive scalar φ > 0.
We consider the following non-PDC control law incorpo-

rating the road curvature information as a feedforward action
to improve the path following performance [9]:

u(κ) = FhG
−1
h y(κ) +Khw(κ), (13)

where the MF-dependent matrices Fh, Gh and Kh of ap-
propriate dimensions are to be determined. Let us define
ψ(u(κ)) = u(κ)− sat(u(κ)). From (11) and (13), the closed-
loop fuzzy system can be expressed as follows:

x(κ+ 1) = Acl(h)x(κ) + Ecl(h)w(κ)− B̂hψ(u(κ))

z(κ) = Dhx(κ), y(κ) = Cx(κ), (14)

with Acl(h) = Âh + B̂hFhG
−1
h C, Ecl(h) = Eh + B̂hKh. For

the control design, we consider the following MF-dependent
Lyapunov candidate function:

V (x) = x>Q−1
h x, Qi � 0, ∀i ∈ IN .

We define the level set associated with V (x) as

LV = {x ∈ Rnx : V (x) ≤ 1, for ∀h ∈ Ω} . (15)

The set LV is said to be robustly invariant w.r.t. the closed-
loop system (14) if there exist positive scalars α, τ such that

∆V + α(V (x(κ))− 1) + τ(φ− w(κ)>w(κ)) < 0, (16)

where ∆V = V (x(κ+ 1))−V (x(κ)), for ∀κ ∈ Z+, ∀x(κ) ∈
LV \{0}, ∀w(κ) ∈ W∞φ . Note that condition (16) guarantees
that any closed-loop trajectory of (14) initialized in LV will
remain within this set for ∀w(κ) ∈ W∞φ and ∀κ ∈ Z+. More
details on the set invariance property can be found in [35].

We consider the following control problem.

Problem 1. Determine the MF-dependent matrices Fh, Gh
and Kh of the non-PDC SOF controller (13) such that the set
LV defined in (15) is robustly invariant w.r.t. the TS fuzzy
system (14). Moreover, the L∞−norm of the controlled output
z is bounded as z>z ≤ γ, for γ > 0.

Remark that minimizing the L∞−norm upper bound γ
leads to a better control performance. The following technical
lemma [36], extended from the result on modified sector
condition in [37], is useful for theoretical developments.

Lemma 1. Consider a matrix Mh and the following set:

Su =
{
x ∈ Rnx :

∣∣MhQ
−1
h x

∣∣ � ū} .
If x ∈ Su ⊂ Rnx , then

SC = ψ(u)>S−1
h

[
u− ψ(u) +MhQ

−1
h x

]
≥ 0, (17)

where Sh � 0 is any diagonal MF-dependent matrix.

B. LMI-Based Non-PDC Output Feedback Control Design

The following theorem provides sufficient conditions to
design a SOF controller (13) that can solve Problem 1.

Theorem 1. Consider the TS fuzzy system (11). If there exist
positive definite matrices Qi ∈ Rnx×nx , diagonal positive
definite matrices Si ∈ Rnu×nu , matrices Mi ∈ Rnu×nx ,
Fi ∈ Rnu×ny , Gi ∈ Rny×ny , Ki ∈ Rnu×nw , for i ∈ IN ,
and positive scalars ε, γ, α, τ , ρ such that the following
optimization problem (18) is feasible:

min
φi, i∈IN

γ (18)

subject to (19), (20), (21) and (22)

where φi = (ε, γ, α, τ, ρ,Qi, Si,Mi, Fi, Gi,Ki) and

α− τφ > 0 (19)[
Qi ?
Mi(l) ū2

l

]
� 0, ∀l ∈ Inu

, ∀i ∈ IN (20)[
Qj ?
DiQj γI

]
� 0, ∀i ∈ IN , ∀j ∈ IN (21)

Ψiik ≺ 0, Ψijk + Ψjik ≺ 0, ∀i, j, k ∈ IN , i < j (22)

Then, the non-PDC controller (13) guarantees the closed-loop
properties in Problem 1. Moreover, the L∞−norm of the
output z is minimized. The term Ψijk in (22) is given by

Ψijk =

Υijk ? ?
ρH>i −ρI ?
Lij 0 −ρI

 ,
with

Hi =

0 0 0 H>i 0
0 0 0 H>i 0
0 0 0 εH>i 0

> ,
Lij =

 LiQj 0 0 0 0
NiFjC −NiSj NiKj 0 0

0 0 0 0 NiFj

 ,

Υijk =


Υ11
j ? ? ? ?

Υ21
j −2Sj ? ? ?
0 0 −τI ? ?

Υ41
ij −BiSj Υ43

ij −Qk ?
Υ51
j εF>j 0 εF>j B

>
i Υ55

j

 ,
and

Υ11
j = (α− 1)Qj , Υ21

j = FjC +Mj ,

Υ41
ij = AiQj +BiFjC, Υ43

ij = Ei +BiKj ,

Υ51
j = CQj −GjC, Υ55

j = −ε(Gj +G>j ).

Proof. Only a sketch of proof is given here due to the lack
of space. Based on the convexity property of the membership
functions, it follows from (22) thatΥhhh ? ?

ρH>h −ρI ?
Lhh 0 −ρI

 ≺ 0, (23)



Note that inequality (23) implies Gh + G>h � 0. This
guarantees that Gh is nonsingular, thus the validity of the
control expression (13). Applying Schur complement lemma
[29], we can prove that (23) is equivalent to

Υhhh + ρHhH>h + ρ−1L>hhLhh ≺ 0. (24)

Let us denote ∆(κ) = diag(∆(κ),∆(κ),∆(κ)). Since
∆(κ)>∆(κ) � I , using the following matrix fact:

X >Y + Y >X � ρX >X + ρ−1Y >Y ,

with X = H>h and Y = ∆(κ) · Lhh, it follows from (24)
that

Υhhh +Hh∆(κ)Lhh + L>hh∆(κ)>H>h ≺ 0. (25)

Inequality (25) can be rewritten as
(α− 1)Qh ? ? ? ?

Υ21
h −2Sh ? ? ?
0 0 −τI ? ?

Υ̂41 Υ̂42 Υ̂43 −Q(h+) ?

Υ51
h εF>h 0 Υ̂54 Υ55

h

 ≺ 0, (26)

where Υ̂41 = ÂhQh + B̂hFhC, Υ̂42 = −B̂hSh, Υ̂43 = Eh +
B̂hKh, Υ̂54 = εF>h B̂

>
h and Q(h+) =

∑r
k=1 hk(θ(κ+1))Qk.

Multiplying inequality (26) by
I 0 0 0 0
0 I 0 0 FhG

−1
h

0 0 I 0 0

0 0 0 I B̂hFhG
−1
h

 ,
on the left and its transpose on the right leads to

(α− 1)Qh ? ? ?
X −2Sh ? ?
0 0 −τI ?

Y Υ̂42 Υ̂43 −Q(h+)

 ≺ 0, (27)

with
X = FhG

−1
h CQh +Mh,

Y = ÂhQh + B̂hFhG
−1
h CQh.

Applying a congruence transformation to (27), followed by
the use of Schur complement lemma, we can prove that (27)
is equivalent to

Ξ>Q(h+)−1Ξ−

(1− α)Q−1
h ? ?

Z 2S−1
h ?

0 0 τI

 ≺ 0, (28)

with
Ξ =

[
Acl(h) −B̂(h) Ecl(h)

]
,

Z = S−1
h

(
FhG

−1
h C +MhQ

−1
h

)
.

Pre- and postmultiplying (28) by
[
x> ψ(u)> w>

]
and its

transpose, we obtain

∆V + 2SC + αV (x)− τw>w < 0. (29)

By Lemma 1 with property (17), it follows from (29) that

∆V + αV (x)− τw>w < 0, ∀x ∈ LV \{0}. (30)

Note that inequality (16) follows from (19) and (30). More-
over, by a congruence transformation, followed by the use of
Schur complement lemma [29], it follows from (21) that

z>z = x>D>hDhx ≤ γx>Q−1
h x ≤ γ, ∀x ∈ LV .

Hence, the L∞−norm of the output z is bounded by γ. Fol-
lowing a similar procedure, we can prove that condition (20)
guarantees LV ⊆ Su. The proof can be now concluded.

Remark 1. The design conditions in Theorem 1 are reformu-
lated as an optimization problem under LMI constraints with
a line search over the scalar ε. The control gains Fi, Gi and
Ki, for ∀i ∈ IN , can be effectively computed using Matlab
software with Yalmip toolbox and SDPT3 solver [38].

IV. ILLUSTRATIVE RESULTS AND DISCUSSIONS

This section demonstrates the effectiveness of the proposed
fuzzy SOF controller with the high-fidelity CarSim vehicle
simulator. The parameters of the CarSim vehicle model con-
sidered are M = 1653 [kg], Cf = 95000 [N/rad], Cr = 85500
[N/rad], lf = 1.4 [m], lr = 1.646 [m], and Iz = 2765
[kgm2]. The steer ratio between the driver wheel and the front
road steer angle is Rs = 17.5. The look-ahead distance to
compute the tracking errors is ls = 5 [m]. We assume that
the parametric uncertainties in the front and rear tire stiffness
coefficients are of 15 %, which represents a highly nonlinear
behavior of the lateral tire forces.

Note that the vehicle dynamics (8)–(9) depend on the speed
terms vx, 1

vx
and 1

v2x
with

vmin ≤ vx ≤ vmax, vmin = 5 [m/s], vmax = 30 [m/s].

If vx, 1
vx

and 1
v2x

are separately considered as premise vari-
ables, then the sector nonlinearity approach [15] leads to a T-S
fuzzy model with 23 = 8 fuzzy rules. To reduce the numerical
complexity, a new premise variable θ is introduced to represent
vx, 1

vx
and 1

v2x
as follows [3]:

1

vx
=

1

v0
+

θ

v1
, vx ' v0 −

v2
0θ

v1
,

1

v2
x

' 1

v2
0

+
2θ

v0v1
, (31)

where

v0 =
2vminvmax

vmin + vmax
, v1 =

2vminvmax

vmin − vmax
.

Substituting (31) into (8)–(9), then applying the sector nonlin-
earity approach, we can obtain a TS fuzzy model of the form
(11) with two fuzzy rules to represent the vehicle uncertain
dynamics. The details are not given here for brevity. Solving
the optimization problem (18) in Theorem 1 with the corre-
sponding vehicle TS fuzzy model, we obtain a path following
controller with α = 0.01 and ε = 0.278. The detail on the
obtained control solution is not shown here for brevity. The
control performance is now evaluated with a dynamic driving
scenario on a race track under highly variable curvatures, road
friction and speed conditions.

For CarSim/Simulink co-simulations, the path tracking on
a race course track has been conducted with road curvatures
varying in the range ρr ∈ [−0.02, 0.04] and the road friction



of µ = 0.75, i.e., Fyf = 2µCfαf and Fyr = 2µCrαr. The
vehicle traverses the track at dynamic longitudinal speeds in
the range vx ∈ [30, 60] [km/h]. For regulating the longitudinal
speed, the inbuilt PI controller from CarSim has been used.
The speed tracking and the path following for the considered
driving scenario are shown in Fig. 2. Observe in Fig. 2(a)

Fig. 2. Tracking performance. (a) Path tracking with the designed TS fuzzy
SOF controller, (b) speed tracking using PI controller from the CarSim
simulator.

that even without requiring the online measurement of the
sideslip angle, the proposed fuzzy non-PDC controller can
guarantee an efficient path following under the presence of
nonlinear tire forces and uncertainties. Furthermore, the low
speed tracking error as depicted in Fig. 2(b) ensures that
safe speed limits across a curve are maintained. The lane
deviation errors, i.e., lateral error and heading error, are shown
in Fig. 3. Remark that the controlled lane errors are small. For
comparison analysis, the lane tracking errors with the inbuilt
look-ahead preview controller (PC-CSIM) of the CarSim sim-
ulator is also illustrated in Fig. 3. Compared to the proposed
fuzzy SOF controller (TS-SOF), the lane tracking errors are
much larger and cross the lane boundaries, especially at tight
curves. Hence, for the considered road friction conditions, the
proposed fuzzy SOF controller is able to keep the vehicle on
lane which is not the case when using the preview PC-CSIM
controller. Subsequently, the illustrations for the vehicle states
β, r, the designed steering control input δ and the lateral
acceleration are shown in Fig. 4 for both PC-CSIM and fuzzy
SOF controllers. It can be seen that the designed control is
always within the required constraint of 10 [deg] for both
approaches. Further, the sideslip angle does not exceed 0.05
[rad], which ensures that the tire forces are not saturated.
With the maximum yaw rate limited by 0.55 [rad/s], the
vehicle maintains a stable control performance. In comparison
to the PC-CSIM controller, the proposed non-PDC design
provide a smooth steering actions, leading to less oscillatory
behaviors and a more stable performance in maintaining the
state constraints even when the lateral acceleration is high

Fig. 3. Path tracking errors. (a) Lateral error yL, (b) heading error ψL.

under the considered friction level.

Fig. 4. Vehicle closed-loop behaviors. (a) Sideslip angle β, (b) yaw rate r,
(c) designed steering control δ, (d) lateral acceleration ay .

V. CONCLUSIONS

A new LMI-based control solution for autonomous driving
has been proposed. The time-varying vehicle speed and the
uncertain lateral tire forces are effectively handled using TS
fuzzy control. Moreover, the physical limitations on the steer-
ing input is explicitly considered in the control design via the
robust set-invariance concept and Lyapunov stability theorem.
To reduce the design conservatism, fuzzy Lyapunov functions
and a non-PDC control scheme are used for theoretical deriva-
tions. The practical performance of the new fuzzy SOF path
following controller is demonstrated with CarSim/Simulink
co-simulations under dynamic driving conditions.

ACKNOWLEDGEMENT

This work was done within the ELSAT2020 project, sup-
ported by the International Campus on Safety and Inter-
modality in Transportation, the Hauts-de-France Region, the
European Community, the Ministry of Higher Education and
Research, and the National Center for Scientific Research.



REFERENCES

[1] A. Broggi, P. Medici, P. Zani, A. Coati, and M. Panciroli, “Autonomous
vehicles control in the VisLab intercontinental autonomous challenge,”
Annu. Rev. Control, vol. 36, no. 1, pp. 161–171, Apr. 2012.

[2] S. E. Shladover, C. A. Desoer, J. K. Hedrick, M. Tomizuka, J. Walrand,
W. . Zhang, D. H. McMahon, H. Peng, S. Sheikholeslam, and N. McK-
eown, “Automated vehicle control developments in the PATH program,”
IEEE Trans. Veh. Technol., vol. 40, no. 1, pp. 114–130, Feb. 1991.

[3] A.-T. Nguyen, C. Sentouh, and J.-C. Popieul, “Fuzzy steering control
for autonomous vehicles under actuator saturation: Design and experi-
ments,” J. Franklin Inst., vol. 355, no. 18, pp. 9374–9395, Dec. 2018.
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