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Abstract—We present new results in the calculus for fuzzy-
valued functions of a single real variable. We adopt exten-
sively the midpoint-radius representation of intervals in the real
half-plane and show its usefulness in fuzzy calculus. Concepts
related to convergence and limits, continuity, level-wise gH-
differentiability have interesting and useful midpoint expressions.
Partial orders for fuzzy numbers and extremal points (min
and max) for fuzzy functions associated to a partial order are
discussed and analysed in detail. Graphical examples and pictures
accompany the presentation.

I. Fuzzy Intervals Notation

To describe and represent basic concepts and operations for
real intervals, the well-known midpoint-radius representation
(midpoint for short) is very useful (see [6]): for a given interval
A =

[
a−, a+

]
, the midpoint â and the radius ã are, respectively,

â =
a+ + a−

2
and ã =

a+ − a−

2
,

so that a− = â − ã and a+ = â + ã. We denote an interval by
A = [a−, a+] or, in midpoint notation, by A = (̂a; ã); so, the
family of all compact intervals in R is denoted by

KC =
{
(̂a; ã) | â, ã ∈ R and ã ≥ 0

}
.

Given A = [a−, a+], B = [b−, b+] ∈ KC and τ ∈ R, we
have the following classical (Minkowski-type) addition, scalar
multiplication and difference (see [1], [2], [8], [9], [10]):
• A ⊕M B = [a− + b−, a+ + b+],

• τA = {τa : a ∈ A} =

{
[τa−, τa+], if τ ≥ 0,
[τa+, τa−], if τ ≤ 0 ,

• −A = (−1)A = [−a+,−a−],
• A 	M B = A ⊕M (−1)B = [a− − b+, a+ − b−].
Using midpoint notation, the previous operations, for A =

(̂a; ã), B = (̂b; b̃) and τ ∈ R are:
• A ⊕M B = (̂a + b̂; ã + b̃),
• τA = (τ̂a; |τ|̃a),
• −A = (−̂a; ã),

• A 	M B = (̂a − b̂; ã + b̃).
Generally, the subscript (·)M in the notation of Minkowski-

type operations will be removed, and classical addition and
subtraction will be denoted by ⊕ and 	, respectively.

The gH-difference of two intervals always exists (see [7],
[11], [12], [14]) and, in midpoint notation, is equal to

A 	gH B = (̂a − b̂; |̃a − b̃|) ⊆ A 	M B.

The Minkowski addition ⊕ is associative and commutative
and with neutral element {0}; hereafter 0 will also denote the
singleton {0}. In general, additive simplification is not valid,
i.e., (A ⊕ B) 	 B , A. Instead, we always have A 	gH A = 0
and (A ⊕ B) 	gH B = A, ∀A, B ∈ KC (and other properties that
will be given in the following, when needed).

If A ∈ KC , we will denote by len(A) = a+ − a− = 2̂a the
length of interval A. Remark that αA ⊕ βA = (α + β)A only
if αβ ≥ 0 (except for trivial cases) and that A 	gH B = A 	 B
only if A and/or B are singletons.

The introduction of the addition ⊕ and two differences
	, 	gH for intervals is not motivated here as an attempt to
define some ”true” arithmetic in KC; these operations are
each-other strongly related and their properties motivate their
(appropriate) use in the context of interval and fuzzy analysis
and calculus (see [3], [4], [17], [18]).

For two intervals A, B ∈ KC the Pompeiu–Hausdorff dis-
tance dH : KC × KC → R+ ∪ {0} is defined by

dH(A, B) = max
{
max
a∈A

d(a, B),max
b∈B

d(b, A)
}

with d(a, B) = minb∈B |a−b|. The following properties are well
known (see [3], [16]):

dH(τA, τB) = |τ|dH(A, B),∀τ ∈ R,
dH(A ⊕C, B ⊕C) = dH(A, B),
dH(A ⊕ B,C ⊕ D) ≤ dH(A,C) + dH(B,D).
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It is known (see [12], [15], [16]) that dH(A, B) =∥∥∥A 	gH B
∥∥∥ where for C ∈ KC , the quantity

‖C‖ = max{|c| ; c ∈ C} = dH(C, {0}) is called the magnitude
of C and an immediate property of the gH-difference for
A, B ∈ KC is

dH(A, B) = 0 ⇐⇒ A 	gH B = 0 ⇐⇒ A = B. (1)

It is also well known that (KC , dH) is a complete metric
space (see [3]). The concepts of a convergent sequence of
intervals (An)n∈N, An ∈ KC is considered in the metric space
KC , endowed with the dH distance (as in [2], [7], [10]):

Definition 1: We say that limn→∞ An = A if and only if for
any real ε > 0 there exists an nε ∈ N such that dH(An, A) < ε
for all n > nε.

The following equivalence is always true, as it is a trivial
application of (1):

lim
n→∞

An = A if and only if lim
n→∞

(
An 	gH A

)
= 0. (2)

A fuzzy set on Rn is a mapping ( [3]) u : Rn → [0, 1]; we
denote its α-level set as [u]α = {x ∈ Rn : u(x) ≥ α} for any
α ∈ [0, 1]. The support of u is supp(u) = {x ∈ Rn|u(x) > 0}. 0-
level of u is defined by [u]0 = cl(supp(u)) where cl(M) means
the closure of subset M ⊂ Rn.

Definition 2: A fuzzy set u on R is a fuzzy number if:
(i) u is normal, i.e., there exists x0 ∈ R such that u(x0) = 1,

(ii) u is a convex fuzzy set (i.e. u(tx + (1 − t)y) ≥

min{u(x), u(y)}, ∀t ∈ [0, 1], x, y ∈ R),
(iii) u is upper semi-continuous on R,
(iv) cl{x ∈ R|u(x) > 0} is compact, where cl denotes the

closure of a subset.
Let RF denote the family of fuzzy numbers. For any u ∈ RF

we have [u]α ∈ KC for all α ∈ [0, 1] and thus the α-levels of a
fuzzy number are given by [u]α = [u−α , u

+
α], u−α , u

+
α ∈ R for all

α ∈ [0, 1]; in midpoint notation, we will write [u]α = (̂uα; ũα)
so that u−α = ûα−ũα and u+

α = ũα+ûα. If [u]1 is a singleton then
we say that u is a fuzzy number. Triangular fuzzy numbers are
determined by three real numbers a ≤ b ≤ c and denoted by
u =< a, b, c >, with α-levels

[u]α = [a + (b − a)α, c − (c − b)α],

for all α ∈ [0, 1].
Addition u + v and scalar multiplication λu are defined level-
wise, in terms of all the α-cuts of u, v: for every α ∈ [0, 1]
[u + v]α = [u]α + [v]α = [u−α + v−α , u

+
α + v+

α] = (̂uα + v̂α; ũα + ṽα)
and [λu]α =

[
min{λu−α , λu+

α},max{λu−α , λu+
α}

]
= (λ̂uα; |λ|̃uα).

A notion of fuzzy difference that is somewhat more general
than the gH-difference, which we denotes as LgH-difference,
is the following:

Definition 3: (see [4], [15]) For given two fuzzy numbers
u, v, the level-wise generalized Hukuhara difference (LgH-
difference, for short) is defined as the set of interval-valued
gH-differences

u 	LgH v =
{
wα | wα = [u]α 	gH [v]α, α ∈ [0, 1]

}
,

that is, for each α ∈ [0, 1], either [u]α = [v]α + wα or [v]α =

[u]α − wα.
In relation with the defined difference, we consider the

concept of LgH-differentiability (see [4])
Definition 4: Let x0 ∈]a, b[ and h be such that x0 +h ∈]a, b[,

then the level-wise gH-derivative (LgH-derivative for short)
of a function F :]a, b[→ RF at x0 is defined as the set of
interval-valued gH-derivatives, if they exist for all α ∈ [0, 1],

F′LgH(x0)α = lim
h→0

1
h

(
[F(x0 + h)]α 	gH [F(x0)]α

)
; (3)

more precisely, if F′LgH(x0)α is a compact interval for all
α ∈ [0, 1], we say that F is level-wise generalized Hukuhara
differentiable (LgH-differentiable for short) at x0 and the
family of intervals

{
F′LgH(x0)α | α ∈ [0, 1]

}
is the LgH-

derivative of F at x0, denoted by F′LgH(x0).

Also one-side derivatives can be considered; the
right LgH-derivative of F at x0 is F′(r)LgH(x0) =

lim
h↘0

1
h

(
[F(x0 + h)]α 	LgH [F(x0)]α

)
while, to the left, it is

defined as F′(l)LgH(x0) = lim
h↗0

1
h

(
[F(x0 + h)]α 	gH [F(x0)]α

)
.

The LgH-derivative exists at x0 if and only if the left and
right derivatives at x0 exist and are the same interval.

In terms of midpoint representation [F(x)]α =
(

f̂α(x); f̃α(x)
)
,

for all α ∈ [0, 1], we can write

[F(x + h)]α 	gH [F(x)]α
h

=
(
∆̂gH Fα(x, h); ∆̃gH Fα(x, h)

)
where ∆̂gH Fα(x, h) =

f̂α(x + h) − f̂α(x)
h

,

and ∆̃gH Fα(x, h) =

∣∣∣∣∣∣ f̃α(x + h) − f̃α(x)
h

∣∣∣∣∣∣ .
Taking the limit for h −→ 0, we obtain the LgH-derivative of

Fα, if and only if the limits lim
h−→0

f̂α(x+h)− f̂α(x)
h , lim

h−→0+

∣∣∣∣ f̃α(x+h)− f̃α(x)
h

∣∣∣∣
and lim

h−→0−

∣∣∣∣ f̃α(x+h)− f̃α(x)
h

∣∣∣∣ exist in R and the last two have the

same absolute value; remark that the midpoint function f̂α is
required to admit the ordinary derivative at x. With respect to
the left and right limits above, the existence of the left and
right derivatives f̃ ′l−α(x) and f̃ ′r−α(x) is required with

∣∣∣∣ f̃ ′l−α(x)
∣∣∣∣ =∣∣∣∣ f̃ ′r−α(x)

∣∣∣∣ = w̃α(x) ≥ 0 (in particular w̃α(x) =
∣∣∣∣ f̃α′(x)

∣∣∣∣ if f̃α
′
(x)

exists) so that we have

F′LgH(x)α =
(

f̂α
′
(x); w̃α(x)

)
(4)

or, in the standard interval notation,

F′LgH(x)α =
[
f̂α
′
(x) − w̃α(x), f̂α

′
(x) + w̃α(x)

]
. (5)

II. Orders for Fuzzy Numbers

The LU-fuzzy partial order is well known in the literature
and frequently considered to be the standard order for fuzzy
numbers (see, e.g., [5] and [13] for an account of its relations
with LgH-difference and LgH-derivative).

Definition 5: [13] Given u,v ∈ RF and given α ∈ [0, 1], we
say that



(i) u vα−LU v if and only if uα vLU vα, that is, u−α ≤ v−α and
u+
α ≤ v+

α ,
(ii) u �α−LU v if and only if uα �LU vα,

(iii) u ≺α−LU v if and only if uα ≺LU vα.
Correspondingly, the analogous LU-fuzzy orders can be

obtained by
(a) u vLU v if and only if u vα−LU v for all α ∈ [0, 1],
(b) u �LU v if and only if u �α−LU v for all α ∈ [0, 1],
(c) u ≺LU v if and only if u ≺α−LU v for all α ∈ [0, 1].
The reverse orders are, respectively, u wLU v ⇐⇒ v vLU u,

u �LU v ⇐⇒ v �LU u and u �LU v ⇐⇒ v ≺LU u.
Using midpoint notation for α-levels, i.e., uα = (̂uα; ũα),

vα = (̂vα; ṽα) for all α ∈ [0, 1], the partial orders (i) and (iii)
above can be expressed for all α ∈ [0, 1] as

(i)


ûα ≤ v̂α

ṽα ≤ ũα + (̂vα − ûα)
ṽα ≥ ũα − (̂vα − ûα)

and

(iii)


ûα < v̂α

ṽα < ũα + (̂vα − ûα)
ṽα > ũα − (̂vα − ûα)

;

while (ii) can be expressed in terms of (i) with the additional
requirement that at least one of the inequalities is strict.

In the sequel, the results are expressed without proof be-
cause they are similar to the ones in [17] and [18].

Proposition 6: Let u, v ∈ RF with uα = (̂uα; ũα), vα = (̂vα; ṽα)
for all α ∈ [0, 1]. We have
(i.a) u vLU v if and only if v̂α−ûα ≥ |̃vα − ũα| for all α ∈ [0, 1];

(ii,a) u �LU v if and only if ûα < v̂α and v̂α − ûα ≥ |̃vα − ũα|
for all α ∈ [0, 1];

(iii,a) u ≺LU v if and only if v̂α−ûα > |̃vα − ũα| for all α ∈ [0, 1];
(i,b) u wLU v if and only if ûα−̂vα ≥ |̃vα − ũα| for all α ∈ [0, 1];

(ii,b) u �LU v if and only if ûα > v̂α and ûα − v̂α ≥ |̃vα − ũα|
for all α ∈ [0, 1];

(iii,b) u �LU v if and only if ûα−̂vα > |̃vα − ũα| for all α ∈ [0, 1].
Proposition 7: Let u, v ∈ RF with uα = (̂uα; ũα), vα =

(̂vα; ṽα) for all α ∈ [0, 1]. We have
(i.a) u vLU v if and only if u 	LgH v vLU 0;

(ii.a) u �LU v if and only if u 	LgH v �LU 0;
(iii.a) u ≺LU v if and only if u 	LgH v ≺LU 0;

(i.b) u wLU v if and only if u 	LgH v wLU 0;
(ii.b) u �LU v if and only if u 	LgH v �LU 0;

(iii.b) u �LU v if and only if u 	LgH v �LU 0;
(iv) u ≺LU v =⇒ u �LU v =⇒ u vLU v;
(v) u �LU v =⇒ u �LU v =⇒ u wLU v.
Remark 8: Considering the distinction between type (i) and

type (ii) of LgH-difference, several other implications can be
established. For example in type (i), for all α ∈ [0, 1], it is
ũα ≥ ṽα and we have

- u 	LgH v vLU 0 if and only if(̂
uα ≤ v̂α and ṽα ≥ ũα + (̂uα − v̂α)

)
, for all α ∈ [0, 1],

- u 	LgH v wLU 0 if and only if(̂
uα ≥ v̂α and ṽα ≥ ũα + (̂vα − ûα)

)
, for all α ∈ [0, 1].

Definition 9: Given u, v ∈ RF, we say that u and v are LU-
incomparable if neither u vLU v nor u wLU v and u and v are
α-LU-incomparable if neither u vα−LU v nor u wα−LU v.

Proposition 10: Let u, v ∈ RF with uα = (̂uα; ũα), vα =

(̂vα; ṽα) for all α ∈ [0, 1]. The following are equivalent:
(i) u and v are α-LU-incomparable;

(ii) uα 	gH vα is not a singleton and 0 ∈ int(uα 	gH vα);
(iii)

∣∣∣̂uα − v̂α
∣∣∣ < |̃vα − ũα| for α ∈ [0, 1];

(iv) uα ⊂ int(vα) or vα ⊂ int(uα).
It is possible to see that Proposition 10 is not always valid

in the case of fuzzy LU-incomparability.
Proposition 11: If u, v, w ∈ RF , then
(i) u vLU v if and only if u + w vLU v + w;

(ii) if u + v vLU w then u vLU w 	LgH v;
(iii) if u + v wLU w then u wLU w 	LgH v;
(iv) u vLU v if and only if (−v) vLU (−u).

Definition 12: given u ∈ RF with uα = (̂uα; ũα), for all
α ∈ [0, 1] we define the following sets of fuzzy numbers y
which are

(a) (vLU)-dominated by u:

D<(u; LU) = {y ∈ RF |u vLU y}, (6)

(b) (vLU)-dominating u:

D>(u; LU) = {y ∈ RF |y vLU u}, (7)

(c) (vLU)-incomparable with u:

I(u; LU) = {y ∈ RF |y < D<(u; LU), y < D>(u; LU)}. (8)

Proposition 13: For any fuzzy numbers u, v ∈ RF , we have
a. u vLU v if and only if D<(v; LU) ⊆ D<(u; LU);
b. u = v if and only if D<(u; LU) = D<(v; LU);
c. ∅ = D<(u; LU)

⋂
I(u; LU) = D>(u; LU)

⋂
I(u; LU);

d. {u} = D<(u; LU)
⋂
D>(u; LU);

e. RF = I(u; LU)
⋃
D<(u; LU)

⋃
D>(u; LU).

III. Fuzzy-Valued Functions and midpoint representation
In midpoint representation, we write [F(x)]α =

(
f̂α(x); f̃α(x)

)
where f̂α(x) ∈ R is the midpoint value of interval [F(x)]α and
f̃α(x) ∈ R+ ∪ {0} is the non-negative half-length of Fα(x):

f̂α(x) =
f +
α (x) + f −α (x)

2
and

f̃α(x) =
f +
α (x) − f −α (x)

2
≥ 0

so that

f −α (x) = f̂α(x) − f̃α(x) and f +
α (x) = f̂α(x) + f̃α(x).

Proposition 14: Let F : T −→ RF be a fuzzy-valued
function and x0 ∈ T ⊆ R be an accumulation point of T .
If lim

x→x0
F(x) = L with Lα = [l−α , l

+
α], then lim

x→x0
[F(x)]α = [l−α , l

+
α]

for all α and, for all α ∈ [0, 1], the limits and continuity can
be expressed, respectively, as

lim
x→x0

[F(x)]α = Lα ⇐⇒

 lim
x→x0

f̂α(x) = l̂α

lim
x→x0

f̃α(x) = l̃α
(9)



Fig. 1. Level-wise endpoint graphical representation of the fuzzy-valued
function with α-cuts [F(x)]α =

(
f̂α(x); f̃α(x)

)
where f̂α(x) = 2sin (−3x + π/3)

and f̃α(x) = (1 + cos (9x/4) (1 − 0.6
√
α) for x ∈ [0, 1.25π]. The core,

intercepted by the black-coloured curves, is the interval-valued function
x −→ [F(x)]1 = [ f −1 (x), f +

1 (x)]. The other α-cuts are represented by red-
coloured curves for the left extreme functions f −α (x) and blue-coloured curves
for the right extreme functions f +

α (x).

and

lim
x→x0

[F(x)]α = [F(x0)]α ⇐⇒

 lim
x→x0

f̂α(x) = f̂α(x0)

lim
x→x0

f̃α(x) = f̃α(x0).
(10)

The following proposition connects limits to the vLU partial
order of fuzzy numbers; analogous results can be obtained for
the reverse partial order wLU .

Proposition 15: Let F,G,H : T −→ RF be fuzzy-valued
functions and x0 an accumulation point for T .

(i) If F(x) vLU G(x) for all x ∈ T in a neighbourhood of
x0 and limx→x0 F(x) = L ∈ RF, limx→x0 G(x) = M ∈ RF,
then L vLU M;

(ii) If F(x) vLU G(x) vLU H(x) for all x ∈ T in a neighbour-
hood of x0 and limx→x0 F(x) = limx→x0 H(x) = L ∈ RF,
then limx→x0 G(x) = L.

Similar results as in Propositions 14 and 15 are valid for the
left limit with x −→ x0, x < x0 (x↗ x0 for short) and for the
right limit x −→ x0, x > x0 (x ↘ x0 for short); the condition
that lim

x→x0
F(x) = L if and only if lim

x↗x0
F(x) = L = lim

x↘x0
F(x) is

obvious.

Example Consider the fuzzy-valued function F(x) having

α-cuts f̂α(x) = 2sin
(
−3x +

π

3

)
and f̃α(x) = (1 + cos

(
9x
4

)
(1 −

0.6
√
α) for x ∈ [0, 1.25π]; remark that f̂α(x) does not depend

on α. Two alternative graphical representations of F are
possible in terms either of the standard plot (see Figure 1),
by picturing the level curves y = f −α (x) and y = f +

α (x) in the
plane (x, y), or, using midpoint representation in the half-plane
(̂z; z̃), by plotting the parametric curves ẑ = f̂α(x) and z̃ = f̃α(x)
as in Figure 2; Figure 3 reproduces the membership functions
(left pictures) and the midpoint α-cuts (right pictures) of the
fuzzy values F(1) (top) and F(3.5) (bottom) of function F.

Fig. 2. Level-wise midpoint graphical representation in the half plane (̂z; z̃)
with z̃ ≥ 0 as vertical axis, of the fuzzy-valued function F(x), x ∈ [0, 1.25π],
described in Figure 1. In this representation, each curve corresponds to a single
α-cut (only n = 11 curves are pictured with uniform α = 0, 0.1, ..., 1; the core
corresponds to the black-coloured curve, the support to the red-coloured one.
The arrows give the direction of x from initial 0 to final 1.25π.

Fig. 3. Membership function and level-wise midpoint representations of
two values F(1) and F(3.5) of the fuzzy-valued function F(x) described in
Figure 1. In the midpoint representation, a vertical curve corresponds to the
displacement of the n = 11 computed α-cuts; the red lines on the right pictures
reconstruct the α-cuts. Remark that y and ẑ represent the same domain and
that a linear vertical segment in the midpoint representation corresponds to a
symmetric membership function having the same value of f̂α(x) for all α.

IV. Extrema of Fuzzy Valued Functions

The three types of partial orders defined above, vLU (sim-
ple), �LU (strict) and ≺LU (strong), lead to different concepts
of extrema. We will adopt the following terminology:

Definition 16: If F(x0) vLU F(x), we say that F(x0)
dominates F(x) with respect to the simple partial order vLU

(for short, F(x0) (vLU)-dominated F(x)), or equivalently that
F(x) is (vLU)-dominated by F(x0). We say that F(x) and F(x0)
are incomparable with respect to vLU if both F(x0) vLU F(x)
and F(x) vLU F(x0) are not valid. Analogous domination rules
are defined in terms of the strict and strong order relations �LU

and ≺LU , respectively.
The corresponding important concepts of order-based mini-

mum and maximum points for a fuzzy valued function are the
following.

Definition 17: Let F : [a, b] → RF be a fuzzy-valued
function and x0 ∈ [a, b]. We say that, with respect to vLU ,
(a) x0 is a local lattice-minimum point of F (min-point for



short) if there exists δ > 0 such that F(x0) vLU F(x) for all
x ∈]x0 − δ, x0 + δ[∩[a, b], i.e., if all F(x) around x0 are (vLU)-
dominated by F(x0);
(b) x0 is a local lattice-maximum point of F (max-point
for short) if there exists δ > 0 such that F(x) vLU F(x0) for
all x ∈]x0 − δ, x0 + δ[∩[a, b], i.e., if all F(x) around x0 (vLU)-
dominate F(x0).

Conditions (a) or (b) in the definition above imply that
if there exists x′ ∈ [a, b] such that f̂α(x′) = f̂α(x0) and
f̃α(x′) , f̃α(x0) for all α ∈ [0, 1], then it is impossible to
have F(x0) vLU F(x′) nor F(x′) vLU F(x0), except for trivial
cases, in particular, if f̂α(x′) = f̂α(x0) for all α ∈ [0, 1], then
F(x′) and F(x0) are (vLU)-incomparable or coincident.

It will be useful to explicitly write the conditions for (vLU)-
dominance of a general fuzzy function F(x), with respect
to fuzzy functions F(xm) and F(xM), that characterize the
minimality of a point xm and the maximality of a point xM .
Without explicit distinction between strict or strong domi-
nance, we have, for all α ∈ [0, 1]:

F(x) wLU F(xm) ⇐⇒


f̂α(x) ≥ f̂α(xm)

f̃α(x) ≤ f̃α(xm) +
(

f̂α(x) − f̂α(xm)
)

f̃α(x) ≥ f̃α(xm) −
(

f̂α(x) − f̂α(xm)
)

,
(11)

and

F(x) vLU F(xM) ⇐⇒


f̂α(x) ≤ f̂α(xM

f̃α(x) ≥ f̃α(xM) +
(

f̂α(x) − f̂α(xM)
)

f̃ (x) ≤ f̃α(xM) −
(

f̂α(x) − f̂α(xM)
)

.
(12)

The following proposition shows that lattice-type minimality
and maximality, with respect to the partial order vLU can be
recognized exactly in terms of functions f −α and f +

α , for all
α ∈ [0, 1], as follows.

Proposition 18: Let F : [a, b] → RF be a fuzzy-valued
function, where [F(x)]α = [ f −α (x), f +

α (x)] for all α ∈ [0, 1].
Then
(a) xm ∈ [a, b] is a min-point of F if and only if it is a
minimum of functions f −α and f +

α for all α ∈ [0, 1];
(b) xM ∈ [a, b] is a max-point of F if and only if it is a
maximum of functions f −α and f +

α for all α ∈ [0, 1].

The discussion above highlights the restricting notion of a
lattice-extreme point, as it is not frequent that simultaneous
extrema occur for the two functions f −α and f +

α . The following
definition is more general, as it considers the possibility
that fuzzy function values F(x) for different x are locally
incomparable with respect to the actual order relation.

Consider again the function F(x) of the Example presented
in section III; the midpoint function f̂α(x) (independent on α)
has two minimal points x′m = 0.87266461, x′′m = 2.96705971
and a maximum at xM = 1.91986219 (see Figure 4); x′m and
x′′m are not lattice-type minima and xM is not a lattice-type
maximum. These points are candidate to be best-type extrema
of F(x), according to the following definition.

Definition 19: Let F : [a, b] → RF be a fuzzy-valued
function and xm, xM ∈ [a, b]. We say that, with respect to the

Fig. 4. Graphical representation of the fuzzy-valued function F(x) in Example,
evaluated at points x(1)

m = 0.87266, x(2)
m = 2.96706 and xM = 1.91986. The

black line corresponds to function f̂ (x), the core midpoint function, for which
the three points are two minima and a maximum.

strict order �LU ,
(c) xm is a local best-minimum point of F (best-min for
short) if:
(c.1) it is a local minimum for the midpoint function f̂α
for all α ∈ [0, 1], and
(c.2) there exists δ > 0 and no point x ∈]xm − δ, xm +

δ[∩[a, b] with F(x) , F(xm) such that F(x) vLU F(xm);
(d) xM is a local best-maximum point of F (best-max for
short) if:
(d.1) it is a local maximum for the midpoint function f̂α
for all α ∈ [0, 1], and
(d.2) there exists δ > 0 and no point x ∈]xM − δ, xM +

δ[∩[a, b] with F(x) , F(xM) such that F(xM) vLU F(x).
Remark 20: The definitions above are clearly valid also for

points x0 ∈ [a, b] coincident with one of the end points a or
b. It is also evident that a lattice-type extremum is also a
best-type extremum.

Definitions of strict and strong (local) extremal points can
be given by considering the strict �LU or the strong ≺LU orders
associated to the lattice order vLU .

Definition 21: Let F : [a, b] → RF be an fuzzy-valued
function. With respect to an order vLU and the associated
strict order �LU or strong order ≺LU , we say that
- a best-min point xm is a strict (respectively strong) best-
minimum point if there exists δ > 0 and no point x ∈
]xm−δ, xm+δ[∩[a, b] with F(x) �LU F(xm) (or F(x) ≺LU F(xm),
respectively);
- a best-max point xM is a strict (respectively strong)
best-maximum point if there exists δ > 0 and no point
x ∈]xM−δ, xM +δ[∩[a, b] with F(xM) �LU F(x) (or F(xM) ≺LU

F(x), respectively).
Remark 22: It is clear that the definitions of lattice-type

and best-type extremality do not require any assumptions on
continuity of the fuzzy-valued function F on [a, b]; in the case
of continuity (or left/right continuity) the existence of extreme
points is also related to the local left and/or right monotonicity
of F (with respect to the same partial order vLU).

If xm ∈ [a, b] is a lattice-minimum point, i.e., there ex-



ists a neighbourhood of xm such that all F(x) satisfy (11),
then no such F(x) is incomparable with F(xm); analogously,
if xM ∈ [a, b] is a lattice-maximum point, i.e., there exists
a neighbourhood of xM such that all F(x) satisfy (12), then
no such F(x) is incomparable with F(xM). We can express
this fact by saying that the (local) min-efficient frontier for
the min-point xm is concentrated at the fuzzy value F(xm);
analogously, the (local) max-efficient frontier for the max-
point xM is concentrated at the fuzzy value F(xM).

When xm and xM are best-type extrema and not lattice-
type, then it is important to identify the fuzzy values F(x),
in particular with x in a neighbourhood of xm or xM , that
are not min-dominated by F(xm) (or not max-dominated by
F(xM)); clearly, these F(x) are necessarily (vLU)-incomparable
with F(xm) (or with F(xM), respectively).

Corresponding to a minimum and to a maximum point of
F, we are then interested to identify the locally (min/max)-
efficient fuzzy values F(x) and the local min or max efficient
frontier for F(xm) and F(xM) around points xm and xM ,
respectively.
The first step in finding the efficient frontier for a strict
minimum and a strict maximum is the following:

Proposition 23: Let F : [a, b] → RF be a fuzzy-valued
function. Let xm, xM ∈ [a, b] be local strict best-min and local
strict best-max points of F. Then, there exist xL

m ≤ xm, xR
m ≥

xm, xL
M ≤ xM and xR

M ≥ xM (all belonging to [a, b]) such that,
respectively,
1. F(x) is incomparable with F(xm), for all x ∈ [xL

m, x
R
m],

x , xm;
2. F(x) is incomparable with F(xM), for all x ∈ [xL

M , x
R
M],

x , xM .
A first consequence of Proposition 23 is a sufficient condi-

tion for a lattice type external point.
Proposition 24: Let F : [a, b] → RF ; if xm (respectively,

xM) is a minimum point (a maximum point) of function f̂α(x)
for all α ∈ [0, 1] and xL

m = xm = xR
m (or xL

M = xM = xR
M) then xm

is a lattice min-point (respectively xM is a lattice max-point)
of F(x) and vice versa.

A second consequence of the last proposition is that the
efficient function F(x), relative to the best-min point xm or to
the best-max point xM , in the case where they are not lattice
extrema, are to be searched among the points x ∈ [xL

m, x
R
m] and

x ∈ [xL
M , x

R
M], respectively.

The next step is to characterize the points of [xL
m, x

R
m] and

[xL
M , x

R
M] that contain, respectively, xm, xM and are such that

all the corresponding F(x) define the local efficient frontier of
F around F(xm) and F(xM), respectively.

We start with a formal definition of the min/max efficient
frontier:

Definition 25: Let F : [a, b] → RF be a fuzzy-valued
function and let xm, xM ∈ [a, b] be local strict best-min and
local strict best-max points of F with respect to the partial
order vLU .
(a) The (local) min-efficient frontier of function F associ-
ated to the best-min point xm (or to the best-min fuzzy-value
F(xm)) is the set Emin(F, xm) of fuzzy-values F(x) such that:

(a.1) F(xm) ∈ Emin(F, xm),
(a.2) if x′, x′′ ∈ [a, b] and F(x′), F(x′′) ∈ Emin(F, xm) then
F(x′) and F(x′′) are (vLU)-incomparable,
(a.3) no other set E′ containing Emin(F, xm) has property
(a.2).
(b) The (local) max-efficient frontier of function F associ-
ated to the best-max point xM (or to the best-max fuzzy-value
F(xM)) is the set Emax(F, xM) of fuzzy-values F(x) such that:
(b.1) F(xM) ∈ Emax(F, xM),
(b.2) if x′, x′′ ∈ [a, b] and F(x′), F(x′′) ∈ Emax(F, xM) then
F(x′) and F(x′′) are (vLU)-incomparable,
(b.3) no other set E′ containing Emax(F, xm) has property
(b.2).
The set of points x ∈ [xL

m, x
R
m] such that F(x) ∈ Emin(F, xm)

are the local min-efficient points corresponding to xm and is
denoted by Effmin(F; xm)
The set of points x ∈ [xL

M , x
R
M] such that F(x) ∈ Emax(F, xM)

are the local max-efficient points corresponding to xM and is
denoted by Effmax(F; xM).

Clearly, the efficient frontiers Effmin(F; xm) or Effmax(F; xM)
are subsets of the interval in Proposition 23; but their char-
acterization is not easy, as we can imagine in cases where
the function F(x) has possible inflexion or angular points, or
complex patterns.

For a fixed α ∈ [0, 1], let CFα
be the curve, in the half-

plane (̂z; z̃) with parametric equations ẑ = f̂α(x), z̃ = f̃α(x) and
parameter x ∈ [a, b] and assume that the curve is simple (no
multiple points) and differentiable (i.e., both f̂α(x) and f̃α(x)
are differentiable at internal points); one says that the curve
CFα

has the convexity property if each of its points is such
that the curve lies on one side of the tangent line to this point.
In our setting, the convexity of CFα

is required only locally,
by considering the restriction of F(x) to points around xm (or
xM). More precisely, let’s fix the notion of local convexity of
CFα

by distinguishing the case of a minimum to the case of a
maximum point.

Assumption 1: For a minimum point xm (not a lattice min)
we will assume that there exist δ

′

m, δ
′′

m ≥ 0 (not both equal to
zero) such that the curve corresponding to the restriction of
F(x) to the interval

[
xm − δ

′

m, xm + δ
′′

m

]
is simple and convex;

this happens if the portion of plane on right of the curve, i.e.,
for each α, the set

Pmin(xm) =
⋃

x∈[xm−δ
′

m,xm+δ
′′

m]

{(̂
z; f̃α(x)

)
|̂z ≥ f̂α(x)

}
, (13)

is convex; in this case, the following portion of the half plane
is convex and bounded

Smin(xm) = Pmin(xm)
⋂{(̂

z; z̃
)
|̂zmin ≤ ẑ ≤ ẑmax, z̃min ≤ z̃ ≤ z̃max

}
(14)

where ẑmin = min
{
f̂α(x)|x ∈

[
xm − δ

′

m, xm + δ
′′

m

]}
,

ẑmax = max
{
f̂α(x)|x ∈

[
xm − δ

′

m, xm + δ
′′

m

]}
,

z̃min = min
{
f̃α(x)|x ∈

[
xm − δ

′

m, xm + δ
′′

m

]}
and

z̃max = max
{
f̃α(x)|x ∈

[
xm − δ

′

m, xm + δ
′′

m

]}
.

Assumption 2: For a maximum point xM (not a lattice max),
assuming the existence of δ

′

M , δ
′′

M ≥ 0 such that the curve



F(x) on interval
[
xM − δ

′

M , xM + δ
′′

M

]
is simple and convex, we

obtain that the portion of plane on left of the curve, i.e., for
all α,

Pmax(xM) =
⋃

x∈[xM−δ
′

M ,xM+δ
′′

M]

{(̂
z; f̃α(x)

)
|̂z ≤ f̂α(x)

}
, (15)

is convex; in this case, the following set is convex and bounded

Smax(xM) = Pmax(xM)
⋂{(̂

z; z̃
)
|̂zmin ≤ ẑ ≤ ẑmax, z̃min ≤ z̃ ≤ z̃max

}
(16)

where, this time, ẑmin = min
{
f̂α(x)|x ∈

[
xM − δ

′

M , xM + δ
′′

M

]}
,

ẑmax = max
{
f̂α(x)|x ∈

[
xM − δ

′

M , xM + δ
′′

M

]}
, and similarly for

z̃min and z̃max in terms of f̃α(x).
Under Assumptions 1 or 2 (using the same notation) we can

prove the following results:
Proposition 26: Let vLU be a partial order on RF and let

F : [a, b] → RF be a fuzzy-valued function with [F(x)]α =

[ f −α (x), f +
α (x)] for all α ∈ [0, 1] such that xm ∈]a, b[ is a local

min point of f̂α(x) for all α ∈ [0, 1] and Assumption (1) is
satisfied. Then there exist two points x′m, x

′′
m ∈ [xL

m, x
R
m] with

x′m ≤ xm ≤ x′′m and such that, for x ∈
[
xm − δ

′

m, xm + δ
′′

m

]
,

(1) either x′m maximizes f̃α(x) − f̂α(x) or x′′m minimizes
f̃α(x) + f̂α(x) for all α ∈ [0, 1],
(2) or x′m minimizes f̃α(x) + f̂α(x) and x′′m maximizes f̃α(x)−
f̂α(x) for all α ∈ [0, 1],
equivalently,
(i) either x′m minimizes f −α (x) or x′′m minimizes f +

α (x) for all
α ∈ [0, 1],
(ii) or x′m maximizes f +

α (x) and x′′m minimizes f −α (x) for all
α ∈ [0, 1].
Furthermore, interval [x′m, x

′′
m] is the local efficient frontier

Effmin(F; xm) of Definition 25.
In particular, if x′m and x′′m are internal to the local convexity

region and f̂α(x), f̃α(x) are differentiable at x for all α ∈ [0, 1],
then f̃α

′
(x′m) = f̂α

′
(x′m)

f̃α
′
(x′′m) = − f̂α

′
(x′′m)

or

 f̃α
′
(x′′m) = f̂α

′
(x′′m)

f̃α
′
(x′m) = − f̂α

′
(x′m)

. (17)

Proposition 27: Let vLU be a partial order on RF and let
F : [a, b] → RF be fuzzy-valued function with [F(x)]α =

[ f −α (x), f +
α (x)] for all α ∈ [0, 1] such that xM ∈]a, b[ is a local

max point of f̂α(x) for all α ∈ [0, 1] and Assumption (2) is
satisfied. Then there exist two points x′M , x

′′
M ∈ [xL

M , x
R
M] with

x′M ≤ xM ≤ x′′M and such that, for x ∈
[
xM − δ

′

M , xM + δ
′′

M

]
,

(1) either x′M minimizes f̃α(x) − f̂α(x) or x′′M maximizes
f̃α(x) + f̂α(x) for all α ∈ [0, 1],
(2) or x′M maximizes f̃α(x)+ f̂α(x) and x′′M minimizes f̃α(x)−
f̂α(x) for all α ∈ [0, 1].
equivalently,
(i) either x′M maximizes f −α (x) or x′′M maximizes f +

α (x), for
all α ∈ [0, 1],
(ii) or x′M maximizes f +

α (x) and x′′M maximizes f +
α (x) for all

α ∈ [0, 1].
Furthermore, interval [x′M , x

′′
M] is the local efficient frontier

Effmax(F; xM) of Definition 25.

Fig. 5. Midpoint representation of the fuzzy-valued function F(x) in Example,
evaluated at the best-minimal points x(1)

m = 0.87266, x(2)
m = 2.96706 (on the

left of picture) and the best-maximal point xM = 1.91986 (on the right of the
picture). The efficient regions are evidenced in green colour.

Fig. 6. Graphical representation of the fuzzy-valued function F(x) in Example,
evaluated at points x(1)

m = 0.87266, x(2)
m = 2.96706 and xM = 1.91986. The

black line corresponds to function f̂ (x). The efficient regions associated to the
best-min and best-max points, in the x-domain, are delimited, for 11 α-cuts,
by vertical lines around the three points.

In particular, if x′M and x′′M are internal to the local convexity
region and f̂α(x), f̃α(x) are differentiable at x for all α ∈ [0, 1],
then f̃α

′
(x′M) = f̂ ′(x′M)

f̃α
′
(x′′M) = − f̂ ′(x′′M)

or

 f̃α
′
(x′′M) = f̂α

′
(x′′M)

f̃α
′
(x′M) = − f̂α

′
(x′M)

. (18)

Returning to the the fuzzy-valued function F(x) of Example,
the efficient regions of the two best-minimal points x(1)

m =

0.87266, x(2)
m = 2.96706 and the best-maximum xM = 1.91986

are obtained according to the propositions above; they are
evidenced with green colour in Figure 5. The reconstruction of
the efficient regions in the x-domain is easily obtained (from
the midpoint representation) and pictured in Figure 6. The
values of the first-order gH-derivatives F′gH(x(1)

m ), F′gH(x(2)
m )

and F′gH(xM) are visualized in Figure 7; we see that in all
cases, they contain the zero value internally to all α-cuts.
Finally, the second-order gH-derivatives F′′gH(x(1)

m ), F′′gH(x(2)
m )

and F′′gH(xM) are visualized in Figure 8 and we see that
F′′gH(x(1)

m ) �LU 0, F′′gH(x(2)
m ) �LU 0 and F′′gH(xM) ≺LU 0. Remark

that these properties are analogous to the well-known sufficient



Fig. 7. Membership (left) and midpoint (right) values of the fuzzy-valued
first-order gH-derivative F′gH(x) in Example at points x(1)

m = 0.87266, x(2)
m =

2.96706 and xM = 1.91986.

Fig. 8. Membership (left) and midpoint (right) values of the fuzzy-valued
seconf-order gH-derivative F′′gH(x) in Example at points x(1)

m = 0.87266, x(2)
m =

2.96706 and xM = 1.91986.

conditions for minima and maxima for ordinary differentiable
real-valued functions.

We conclude this section to see how local extremality of a
point xm (minimum) or xM (maximum) is connected to the left
and/or right LgH-derivatives or to the LgH-derivative F′LgH(x0)
if the two are equal. So, we have the following Fermat-like
property:

Proposition 28: Let F :]a, b[→ RF be LgH-differentiable at
x0 ∈]a, b[ and vLU be a partial order on RF. If x0 is a lattice
extremum for F (a lattice-min or a lattice-max point), then
F′LgH(x0) = 0.

Proposition 29: Let F : [a, b] → RF, x0 ∈ [a, b] and vLU

be a partial order on RF. Suppose that F has left and right
LgH-derivatives at x0 (if x0 = a or x0 = b we consider only
the right or the left LgH-derivatives, respectively)
(1.a) If x0 is a lattice minimum point for F, then
F′(l)LgH(x0) vLU 0 and F′(r)LgH(x0) wLU 0;

(1.b) If x0 is a lattice maximum point for F, then
F′(l)LgH(x0) wLU 0 and F′(r)LgH(x0) vLU 0.

Proposition 30: Let F :]a, b[→ RF be LgH-differentiable at
x0 ∈]a, b[ and consider the partial order vLU (or vα−LU level-
wise) on RF.
(i) If x0 is a best-minimum point for F, then 0 ∈ F′LgH(x0).
(ii) If x0 is a best-maximum point for F, then 0 ∈ F′LgH(x0).

V. Conclusions and FurtherWork
We have developed new results to determine extremal

points (local or global minima and maxima) of fuzzy-valued
functions, in terms of the partial LU-order; the corresponding
efficient regions are obtained (using standard dominance rules)
from the newly introduced midpoint fuzzy representation. In
further work, we will analyse monotonicity and convexity and
we will extend our results to more general partial orders as
suggested in [5], by the use of first-order and second-order
LgH-derivatives.
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