
TrPM: A Linguistic Petri Nets module to describe
the trends of a time series

Juan Moreno-Garcia
Universidad de Castilla-La Mancha

Escuela de Ingenierı́a Industrial y Aeronáutica
Toledo, Spain

juan.moreno@uclm.es

Ester del Castillo
Universidad de Castilla-La Mancha

Escuela Superior de Informática
Ciudad Real, Spain

Ester.Castillo@uclm.es

Luis Rodriguez-Benitez
Universidad de Castilla-La Mancha

Escuela Superior de Informática
Ciudad Real, Spain

luis.rodriguez@uclm.es

Abstract—Linguistic Petri Net (LPN) is a method to generate
linguistic descriptions, which maintains the way that Petri Nets
(PNs) work along with the mechanisms necessary to generate
linguistic descriptions of systems. This paper presents a new LPN
module, called the Trends Processing Module (TrPM), to generate
linguistic descriptions of trends in a time series. This takes the
series as an input and returns a sequence of places that represent
in detail each one of the trends of the series, which allows us
to generate the description. A public dataset has been used to
test the presented module. The designed module can be used to
design another more complex LPNs that need an approximate
model of the trends of a time series.

Index Terms—Natural language description, linguistics Petri
Nets, fuzzy logic, time series analysis

I. INTRODUCTION

Brief summaries in natural language can often be more
effective than traditional presentations of numerical data [1].
This has led to the growth of a relatively modern area
within the field of Natural Language Generation, which is the
automatic generation of linguistic descriptions of quantitative
data [2]. These kinds of summaries are used, for instance, in
virtual assistants such as Alexa, Google Home or SIRI.

The generation of linguistic descriptions of time series (TS)
that has been acquired by all kind of sensors, technologies and
observations over a time period (i.e. a TS), is called GLiDTS,
which differs radically from classical techniques studying TS
based on segmentation, forecasting and, pattern recognition
and extraction. Marı́n and Sánchez [3] review the state of
the literature with respect to GLiDTS and they show the
relevance of the Fuzzy Sets of Zadeh, their protoforms and
computation with words [4], [5]. Kacprzyk distinguishes three
different generations of systems, according to the complexity
and the use of Fuzzy Sets of Zadeh [6]. They highlight a
third generation, which is fully linked to natural language tech-
nologies and to the concept of summaries of data collections
introduced by Yager [7]. Examples of descriptions based on
segmentation of series such as Kacprzyk [8], [9], J. Moreno-
Garcia et al. [10] and another approach with more complex
summary schemes such as Conde-Clemente sample in [11].

This work was funded by the project TIN2015-64776-C3-3-R of the Science
and Innovation Ministry of Spain, co-funded by the European Regional
Development Fund (ERDF), and by the Information Systems and Tech-
nologies Department of the University of Castilla-la Mancha.

Meanwhile, Triviño and Sugeno [12] introduced the concept of
Linguistic Granular Model of a Phenomenon (GLMP), where
they combine ideas from two fields namely: the computational
theory of perceptions [13] and systemic functional linguistics
[14]—as a general framework for the automatic generation of
descriptions in natural language, as seen in [15]. Petri Nets
have been widely used to explicitly add the treatment and
identification of temporal components. Moreno-Garcia et al.
[16] proposed a Linguistic extension of Petri Networks, called
Linguistic Petri Nets, to obtain descriptions and linguistic
summaries of systems. This proposal is the backbone of this
paper, where a method to linguistically identify and describe
temporal situations that can be characterised by sequences of
temporal data trends is shown.

It is necessary to consider the events when generating
linguistic descriptions of TS. Events help to detect well-
known situations such as the location of a trend, a trend
change, or when a maximum or minimum is reached, etc.
To deal with all these situations, it is necessary to check
the input flow of TS values. PN are prepared to deal with
all these situations, allowing the detection of events and the
management of the flow, providing the necessary tools to
synchronize and coordinate the system. The module called
Trends Processing Module (TrPM) is proposed in this paper
to generate linguistic descriptions of trends in a time series.
A sequence of places that represents in detail each one of the
trends of the series is obtained using a TS as input. These
places generate the descriptions. A public dataset has been
used to test the presented module. The designed module can
be used to design another more complex LPNs that need an
approximate model of the trends of a time series.

The rest of this paper is organised as follows: Section II
briefly describes the structure and functioning of the LPNs
and in Section III the module for the linguistic description of
trends is defined. Section IV discusses the case of study. Our
conclusions and future works are presented in Section V.

II. LPN REVIEW

This section briefly describes how the LPN operates [16],
showing its structure. Formally, an LPN is a language em-
ployed to generate linguistic descriptions of a system. It is
represented by a tuple {P, T,M}, where:

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

• P is a non-empty set of linguistic places Pi =
{Ei,Wi, Algi}, where

– Ei is an ordered set of sets of linguistic labels Eij . If
Ei contains only one set, then it will be represented
as a single set throughout this paper.

– Wi is a set of sets of membership grades Wij , where
each w ∈ Wij takes values in [0, 1]. Each label e ∈
Eij has a value w ∈Wij .

– Algi = {Tpti, Vi} is an algorithm that generates
as output a linguistic description using the template
Tpti based on Ei, Wi, and Vi, where Vi is a set of
variables that contains the relevant information taken
during the evolution of the LPN.

• T is a non-empty set of processing transitions Ti =
{Ii, Oi, li, ci}, where:

– Ii is the set of input places for the transition Ti;
– Oi is the set of output places for Ti;
– li is the logical function that checks if the transition

must be fired and when this happens, Oi is computed
using the function ci.

– ci is the function needed to compute Oi when the
transition is fired.

• M is a state vector, which indicates what the marking
is at this instant. The initial marking in the net will be
denoted by M0 = [m1,m2, . . . ,m|P |] to distinguish it
from the rest.

LPNs have places and transitions, like PNs. The transitions
are equipped with the ability to fill their output places using the
input places. A transition operates similarly to PN transitions:
when every input place has the necessary number of marks
(i.e. the transition is enabled), the logical function l is checked,
and the transition is fired if that function evaluates to true. The
function c then computes the components of the output places,
and the state vector M is updated.

Lo
w

M
e

d
iu

m
 lo

w
M

e
d

iu
m

H

ig
h

H
ig

h

Fig. 1. Example of how the module forms groups generating the sequence
of the module output places (grey rectangles). x and y axes are the time an
the TS values respectively.

In this paper the module called Time Series Processing
Module (TSPM) is used, which was first introduced in [16].

Inside LPNs, the modules can be understood as a black box
that before an inlet flow offers a sequence of outlets that
describe what they were designed for. The TSPM obtains
as an output a place (Px) that groups a set of consecutive
samples of the TS that have their maximum membership in the
same linguistic label. Figure 1 shows an example of how the
module forms groups, generating the sequence of the module
output places (grey rectangles). In this case TSPM produces
a sequence of 14 output places. This generates descriptions
similar to “The value Low holds from the instant 0 to the
instant 1.6”, where Low is a linguistic label and 0 and 1.6 are
the temporal instants delimiting the interval.

Pdes
X TSPM Description

Y TSPM

Px

P y
tnbors

Fig. 2. Example of a LPN.

Figure 2 shows an example of a LPN that generates
a linguistic description reporting the number of times that
neighboring labels have been detected. It takes TS X =
{x1, . . . , x|X|} and Y = {y1, . . . , y|Y |} as an input, where
each xi and yi is the sample of the TS corresponding to
the instant i. Both TSPM take the TS as an input and
generate the places Px and Py with the structure shown
in Table I. Px and Py use the set Ei = {e1i . . . e5i } =
{very low, low, middle, high, very high} and the com-
ponent Algi is empty. Pdes (Table I) is the place that gen-
erates the description, which details the location area of the
labels using the set of labels Edes and the number of times
when neighbours labels have been detected using the variable
V N
des ∈ Vdes.
The transition tnbors is designed to store the number

of times when two inputs take their neighbour’s values.
The transition tnbors is formally represented by tnbors =
{Inbors, Onbors, lnbors, cnbors}, where Inbors = {Px, Py},
Onbors = {Pdes} and lnbors is the logical function that checks
whether tnbors must be fired. It is fired when the distance
between the position of the Maximum Degree Validity Label
(MDV L) of Ex and Ey is equal to 1 (Equation 1). MDV L
will be used during this document.

lnbors =

{
True |px − py| = 1
False in other case

(1)

where px =MDV L(Px) = argmaxj∈|Wx|wxj
and

py =MDV L(Py) = argmaxj∈|Wy|wyj
.

cnbors gives values to the components of Pdes that must be
reassigned. These components take the following values:
• Edes = {e1i . . . e1|Ei|} = {left, central, right}.
• Wdes = {wdes1 , wdes2 , wdes3} where every wdesi is

computed using Equation 2.

TABLE I
MAIN COMPONENTS OF THE PLACES.

Pi = {Ei,Wi, Algi} taken i values x and y

Comp. Value Comments
Ei {e1i . . . e5i } =

{V L,L,M,H, V L}
Each eji is a linguistic label

Wi {wi1 . . . , wi5} Calculated using the inputs
X and Y (Figure 2)

Algi <> No template or variables
were needed in this place

Pdes = {Edes,Wdes, Algdes}
Comp. Value Comments
Edes {e1des . . . e

3
des} =

{left, central, right}
Each eides is a linguistic la-
bel

Wdes {wdes1 , wdes2 , wdes3} Calculated using the function
cnbors

Algdes {Tptdes, Vdes} The algorithm and its vari-
ables

Tptdes The two system inputs are
very close in the ei ∈ Edes

area. This closeness has been
detected V N

des times.

The used template

Vdes {V N
des} V N

des contains the number
of times that neighbours has
been detected

wdesi = µedesi
(defuzzification(epx

x ∪ epy
y)) (2)

where i ∈ [1..|Edes|], px = MDV L(Px) and py =
MDV L(Py).

• V N
des = V N

des +1 because a new case of neighbour values
has been detected.

The state vector is M = [mx,my,mdes] where mi is the
number of marks in Pi.

VL L M H VH

0.05 0.35 0.55 0.65 0.850.0 0.15 0.45 0.95 1.0

left central right

0.6 0.80.0 0.2 0.4 1.0

a)

b)

Fig. 3. a) Sets of labels used by Ex and Ey , b) Sets of labels used by Edes.

The operation of this net will now be described in detail
to clarify the evolution of the marking. tnbors will be enabled
when every input place has at least one mark. Then, it will be
fired if the function lnbors evaluates to true. When Px and Py

are marked (M = [1, 1, 0]), tnbors is enabled because its two
input places are marked. To explain the operation of this net,
two examples are now introduced.

Example 1: Let us assume V N
ab = 2, Px = {Ex,Wx, Algx}

= { {V L,L,M,H, V H}, {0, 0, 0.8, 0.2, 0}, <>} and

Py = {Ey,Wy, Algy} = { {V L,L,M,H, V H}, {{0, 0,
0, 0.7, 0.3}, <>}. Transition tnbors is fired because px =
MDV L(Px) = 3 and py = MDV L(Py) = 4 and it is
satisfied lnbors = |px − py| = |3 − 4| = 1 (Equation 1).
cnbors assigns the values of Pdes as follows:
• Edes = {left, central, right}.
• Wdes = {0, 0.75, 0.25} because epx

x = e3x = M and
e
py
x = e4y = H , then defuzzification(M ∪ H) =
defuzzification([M,H]) = 0.65 (Figure 3, the Mean
of Maxima Method (MOM) method [17] has been used)
and then µleft(0.65) = 0.0, µcentral(0.65) = 0.75 and
µright(0.65) = 0.25. The label central is selected to
localize the area since it has the maximum membership
grade.

• Algdes uses the template shown in Table I and V N
des =

V N
des + 1 = 2 + 1 = 3.

The following description is then generated: “The two
system inputs are very close in the central area. This closeness
has been detected 3 times.”

Example 2: Let us assume Px = {Ex,Wx, Algx} = {
{V L,L,M,H, V H}, {0, 0.8, 0.2, 0, 0}, <>} and
Py = {Ey,Wy, Algy} = {{V L,L,M,H, V H}, {0, 0, 0,
0.7, 0.3}, <>}. Transition tnbors is not fired because px = 2
and py = 4, and then ldes = |px − py| = |2 − 4| = 2 6= 1
(Equation 1). As in PN, the designed LPN must contain
another transition that in these situations must be fired,
allowing the net to evolve.

Once briefly explained, the concept and operation of LPN
next section introduces the new module related to trends in
TS.

Lo
w

M
e

d
iu

m
 lo

w
M

e
d

iu
m

H

ig
h

H
ig

h

Fig. 4. An example of how the Trend Processing Module groups consecutive
output places to create trends. Each parallelogram represents a trend.

III. TRENDS PROCESSING MODULE

The study of trends in TS usually classifies them into flat,
increasing and decreasing. Moreno et. al [16] introduced a
LPN to detect increasing and decreasing trends. This section
presents a new module to detect these three types. This module

t
f

t
f

t
des

t
agg

t
out

Px f̄

Pagg f̄

Px

P flat

Pagg

Pdes

xi TSPM
Description

Fig. 5. Trend Processing Module (TrPM).

takes as an input the TS, generating a place that models every
detected trend. The information on the module’s output place
is considerably more detailed, allowing much more complete
descriptions to be generated. Figure 4 shows an example of
how TrPM groups consecutive output places to create trends.
In this case the module generates four trends (parallelogram).
Figure 5 shows the design of the TrPM where the TSPM is
included. The TrPM will now be formally detailed, which is
composed of six places and five transitions. The unique input
to the network is the TS X = {x1, x2, . . . , x|X|} where each
xi corresponds to the place of the TS in the instant i, whilst
|X| is the number of elements of X . Every xi is processed by
the module TSPM [16] and the place Px is obtained. Px and
Pagg are the inputs to tf and tf . They detect whether or not a
flat trend is present. These transitions are mutually exclusive,
so only one of them can be fired; that is, the control flow only
continues through one of them. When a flat trend is detected,
tf must be fired to generate the two linguistics descriptions
of the previous trend (Pagg) and the own flat trend (Px). With
this aim, tf copies Pagg to Pdes (it generates the description)
and Pflat is created. Finally, tout will copy Pflat to Pdes to
generate the description of the flat trend.

If no flat trend is detected, then tf is fired copying Px and
Pagg to Pxf

and Paggf
, respectively. Basically, the process

consists of an aggregation in Pagg of all the consecutive places
of the same trend until a change is detected. Both situations
are managed by means of tagg and tdes (mutually exclusive).
Each of them are responsible of:
• tagg is fired if the same trend continues, generating a new
Pagg from Paggf

and Pxf
.

• tdes is fired if a change in the trend is detected and copies
Paggf

to Pdes generating its description. Furthermore, it
creates a new Pagg from Paggf

and Pxf
.

This module offers a set of consecutive places as an output,
each representing a trend.

Of all the places in the network, the most outstanding are
Px and Pagg because the others are copies of them. Copies are
identified using the sub-index of the transition that completes
such copy. For instance, Pxf

is a replica of Px completed by
tf , and Paggf

is the copy of Pagg carried out by tf . Pdes is
the place that generates the description and it is a copy of

TABLE II
MAIN COMPONENTS OF Px AND Pagg .

Px = {Ex,Wx, Algx}
Comp. Value
Ex {e1x, . . . , e

|Ex|
x }

Wx {wx1 , wx2 , . . . , wx|Ex|
}

Algx {Tptx, Vx}
Tptx <>

Vx {V ini
x , V fin

x }
Pagg = {Eagg ,Wagg , Algagg}

Comp. Value

Eagg {−e|Eagg|
agg , . . . ,−e1agg , e1agg , . . . , e

|Eagg|
agg }

Wagg {wagg−|Eagg|
, . . . , wagg−1 , wagg1 , . . . , wagg|Eagg|

} where
Wagg is governed by Equation 3 and it is assigned by tf or tf .

waggi =


1 ((pagg ≥ 1) ∧ (pagg ≤ i ≤ px))

∨ ((pagg ≤ −1) ∧ (pagg ≤ i ≤ −px))
0 in other case

(3)
where pagg = {j | (waggj = 1) and (∀k <
j) (waggk < 1)} and px = MDV L(Px).

Algagg {Tptagg , Vagg}
Tptagg There is a V type

agg trend from V
Lini
agg to V

Lfin
agg during the interval

V ini
agg to V fin

agg

Vagg {V ini
agg , V

fin
agg , V

Lini
agg , V

Lfin
agg , V type

agg , V list
agg =

{vlist1agg , . . . , vlist
|V list

agg |
agg }} where vlist

i

agg =

[labellist
i

agg , inilist
i

agg , finlisti
agg] being i ∈ [1, .., |V list

agg |]

Paggf
when tdes is fired, or the replica of Pagg or Pflat if tf

or tout are fired, respectively.
Table II summarises the most relevant elements of Px y

Pagg:

• Px: These components are returned by the TSPM [16].
Algx does not use the template but their variables Vx =
{V ini

x , V fin
x } to indicate the initial and final instants of

the represented trend.
• Pagg: Their components are:

– Eagg = {−e|Eagg|
agg , . . . ,−e1agg, e1agg, . . . , e

|Eagg|
agg }:

this is its set of labels and Ex is needed to ob-
tain it. First, Ėx is used because it contains the
“reverse label” for each label Ei

x ∈ Ex. The “re-
verse label” of eix = {a, b, c, d} (trapezoidal) is
e−ix = {−d,−c,−b,−a}. Then, for instance if eix =
{0.5, 2, 4, 4.5} then e−ix = {−4.5,−4,−2,−0.5}.
Ėx is needed to represent decreasing trends. Eagg is
the result of the union of Ėx and Ex (Eagg = Ėx ∪
Ex); that is, Eagg = {e−nx , . . . , e−1x , e1x, . . . , e

n
x}.

The order criterion for the indexes is −n < · · · <
−1 < 1 < · · · < n.

– Wagg = {wx−n
, . . . , wx−1

, wx1
, . . . , wxn

}: Each
wxi

with i ∈ [−|Eagg|, . . . ,−1, 1, . . . , |Eagg|] in-
dicates when eix is part of the trend (Equation 3).
With this aim, all of the membership values of the
labels that are part of the trend modelled by Pagg

TABLE III
VALUES TAKEN BY tf AND tout .

tf = {If , Of , lf , cf}
Comp. Value
If {Px, Pagg}
Of {Pdes, Pflat}
lf

lf =

{
True |V fin

x − V ini
x + 1| > timemin

f

False in other case
(4)

cf copies Pagg to Pdes and calculates Pflat

tout = {Iout, Oout, lout, cout}
Comp. Value
Iout {Pflat}
Oout {Pdes}
lout no condition
cout copies Pflat to Pdes and generates Pagg using Pflat

take the value 1.
– Algagg = {Tptagg, Vagg}: The template is “There

is a V type
agg trend from V Lini

agg to V
Lfin
agg during

the interval V ini
agg to V fin

agg .”. This is why Vagg

contains {V ini
agg , V

fin
agg , V

Lini
agg , V

Lfin
agg , V type

agg , V list
agg }

where V ini
agg and V fin

agg are the initial and final in-
stants that represents the trend; V Lini

agg and V
Lfin
agg

are the first and last labels of the trend; V type
agg

indicates the kind of trend: increasing, decreasing
or flat; and finally, V list

agg is a list of tuples vlist
i

agg =

[labellist
i

agg , ini
listi

agg , fin
listi

agg] with i ∈ [1, .., |V list
agg |].

Each element labellist
i

agg contains the label, and the
initial and final instants of each place Px added to
Pagg . An example of how this template can be used
is: “There is a decreasing trend from high to low
during the interval 0.23 to 0.62”.

The transitions will now be detailed. First, the part respon-
sible of detecting a trend of type flat (tf) is studied, and then
the rest of the cases are studied (tf). To detect and process a
flat trend, tf and tout are used (Table III). tf transfers Pagg

to Pdes computing Pflat by means of Pagg and Px. Pflat has
a similar structure than Pagg (Table II):

• Eflat is copied from Pagg .
• Wflat is filled by tf using Equation 3 (Table II).
• Algflat: Tptflat is similar to Tptagg . Vflat has the

same set of variables than Vagg , formally Vflat =

{V ini
flat, V

fin
flat, V

Lini

flat , V
Lfin

flat , V
type
flat , V

list
flat} being V ini

flat =

V ini
x , V fin

flat = V fin
x , V Lini

flat = epx
x and V

Lfin

flat =

epx
x where px = MDV L(Px) and V

Ltype

flat = flat.
V list
flat is equal to [[label, ini, fin]], label = epx

agg with
px = MDV L(Px), ini = V ini

x and fin = V fin
x . All

variables take their corresponding values from Px with
the exception of V Ltype

flat , which is assigned to flat.

tf is activated once lf is satisfied; that is, when the duration

TABLE IV
VALUES TAKEN BY tf , tagg AND tdes .

tf = {If , Of , lf , cf}
Comp. Value
If {Px, Pagg}
Of {Px

f
, Pagg

f
}

lf not lf

cf copies Px and Pagg to Px
f

and Pagg , respectively.

tagg = {Iagg , Oagg , lagg , cagg}
Comp. Value
Iagg {Px

f
, Pagg

f
}

Oagg {Pagg}
lagg

lagg =


True ((pagg ≥ 1) ∧ (pagg < px)) ∨

((pagg ≤ −1) ∧ (|pagg | > px))

False in other case
(5)

where pagg = {j | (waggj = 1) and (∀i >
j) (waggi < 1)} and px = MDV L(Px).

cagg It creates a new Pagg from Px
f

to Pagg
f

.

tdes = {Ides, Odes, ldes, cdes}
Comp. Value
Ides {Px

f
, Pagg

f
}

Odes {Pdes, Pagg}
ldes not lagg

cdes It copies Pagg
f

to Pdes and creates Pagg from Px
f

and
Pagg

f
.

TABLE V
EXAMPLES OF HOW TO DETECT IF A TREND REMAINS, WITH

Ex = {V L,L,M,H, V H} AND
Eagg = {−V H,−H,−M,−L,−V L, V L,L,M,H, V H}.

Values Explanation
Wagg =
{0, 0, 0, 0, 0, 0, 0, 1, 1, 0}:
increasing trend from M to
H
Wx = {0, 0, 0.0, 0.25, 0.75}
(label V L)

pagg = 4 and px = 5, then
Equation 5 yields that (pagg ≥ 1)
and (pagg < px) = (4 < 5), then
lagg returns true and tagg is fired.
The aggregation of Pagg and Px is
M,H, V H .

Wagg =
{0, 1, 1, 0, 0, 0, 0, 0, 0, 0}:
decreasing trend from H to
M
Wx = {0.6, 0.4, 0, 0, 0} (label
V L)

pagg = −4 and px = 1, then
Equation 5 (Table IV) yields that
(pagg ≤ −1) and (|pagg | >
px) = (4 > 1), then lagg re-
turns true and tagg is fired. The
aggregation of Pagg and Px is
H,M,L, V L.

of Px is greater than the threshold value (timemin
f). This value

is established during the creation of the network (Equation 4
in Table III).

Then, it is activated tout and transfers Pflat to Pdes, and it
generates Pagg from Pflat take the next values:

• Eagg is copied from Pflat.
• Wagg is obtained from Eflat.
• Algagg: Tptagg is equal to Tptflat and Vagg =

{V ini
agg , V

fin
agg , V

Lini
agg , V

Lfin
agg , V type

agg , V list
agg } being V ini

agg =

V fin
flat, V

fin
agg = V fin

flat, V
Lini
agg = epflat and V

Lfin
agg = epflat

where p = MDV L(Pflat) and V
Ltype

flat = flat. V list
agg is

equal to [[label, ini, fin]], label = epagg , ini = V fin
flat and

fin = V fin
flat.

For those situations where no flat trend is detected, the
transitions shown in Table IV are needed. Transition tf is
fired when Px does not represent a flat trend, transferring Px

and Pagg to Pxf
and Paggf

, inputs of tagg and tdes. Then, the
flow control of the network is passed to one of the mutually
exclusive transitions tagg and tdes. Formally, the components
of tagg are:
• Iagg = {Paggf

, Pxf
}.

• Oagg = {Pagg}.
• lagg: Equation 5 from Table IV detects when an increas-

ing trend, pagg ≥ 1, or a decreasing trend (pagg ≤ −1)
remains. Table V shows an example for each one of these
possible situations.

• cagg: creates the new Pagg from the two inputs of tagg
taking their components next values:

– Eagg is a copy of Eaggf
.

– Wagg is governed by the Equation 3 (Table II). An
example of how it works is shown in Table VI.

– Algagg: Tptagg is equal to Tptaggf and the compo-
nents of Vagg take the next values V ini

agg = V ini
aggf

,

V fin
agg = V fin

xf
, V Lini

agg = V Lini
aggf

and V
Lfin
agg = epx

agg

with px = MDV L(Pxf
) and V

Ltype
agg is assigned

according to Equation 6.

V Ltype
agg =

{
increasing |V ini

xagg
| < |V fin

xf
|

decreasing in other case
(6)

V list
agg is equal to append(V list

aggf
, v) being v =

[label, ini, fin], label = epx
agg , ini = V ini

xf
and

fin = V fin
xf

.
Formally, tdes = {Ides, Odes, ldes, cdes} where:
• Ides = {Paggf

, Pxf
}.

• Odes = {Pagg, Pdes}.
• ldes is the negation of lagg (Equation 5).
• cdes transfers Paggagg

to Pdes. Furthermore, cdes creates
Pagg from Paggagg and Pxf

being their components:
– Eagg is copied from Eaggagg

.
– Wagg is filled using the last label from Eaggf

and
the unique label from Pxf

. For instance, let Waggf
=

{0, 0, 0, 0, 0, 1, 1, 1, 1, 0} (increasing trend from V L
to H) and Wxf

= {0, 0, 1, 0, 0} (representing label
M), which is detected the end of the trend in Paggf
and the new decreasing trend is [H,M]; that is,
Wagg = {0, 1, 1, 0, 0, 0, 0, 0, 0, 0}. For example, let
Waggf

= {0, 0, 1, 1, 1, 0, 0, 0, 0, 0} ([M,L, V L]) and
Wxf

= {0, 1, 0, 0, 0} (L), then the new trend is
[V L,L]; that is, Wagg = {0, 0, 0, 0, 0, 0, 1, 1, 0, 0}.
Equation 7 governs how Wagg is assigned. The first
case processes the change from an increasing trend

TABLE VI
EXAMPLES OF HOW cagg CALCULATES THE NEW Wagg .

Values Explanation
Wagg = {0, 0, 0, 0, 0, 0, 0, 1, 1, 0}:
increasing trend from M to H
Wx = {0, 0, 0.0, 0.25, 0.75} (label
V H)

pagg = 3 and px = 5, then
the first case of Equation
3 is used since pagg ≥ 1.
The aggregation is done
assigning the new Wagg =
{0, 0, 0, 0, 0, 0, 0, 1, 1, 1}; that
is, wxi is assigned to 1 if
(pagg ≤ i ≤ px), in this case,
(3 ≤ i ≤ 5), and the new trend
is M,H, V H .

Values Explanation
Wagg = {0, 1, 1, 0, 0, 0, 0, 0, 0, 0}:
decreasing trend from M to H
Wx = {0.6, 0.4, 0, 0, 0} (label V L)

pagg = −4 and px = 1 the
second case of Equation 3 is
used since (pagg ≤ −1); that is,
(−4 ≤ −1). The aggregation is
done assigning the new Wagg =
{0, 1, 1, 1, 1, 0, 0, 0, 0, 0}; that
is, wxi is assigned to 1 if
(pagg ≤ i ≤ −px), in this case,
(−4 ≤ i ≤ −1), and the new
trend is H,M,L, V L.

TABLE VII
EVOLUTION OF Vagg WHEN A SEQUENCE OF Vx

f
APPEARS.

Vx
f

Vagg
f
= {V ini

agg , V
fin
agg , V

Lini
agg , V

Lfin
agg , V type

agg , V list
agg }

{7.0, 8.0, V H,H, decreasing,

{{V H, 7.0, 7.0}, {H, 7.0, 8.0}}}
{M, 8.0, 9.0} {7.0, 9.0, V H,M, decreasing,

{{V H, 7.0, 7.0}, {H, 7.0, 8.0}, {M, 8.0, 9.0}}}
{L, 9.0, 10.0} {7.0, 10.0, V H,L, decreasing,

{{V H, 7.0, 7.0}, {H, 7.0, 8.0}, {M, 8.0, 9.0},
{L, 9.0, 10.0}}}

(paggf ≥ 0) to a decreasing trend, and the second
the opposite trend (paggf < 0).

waggi =


1 (paggf ≥ 0) and (−paggf ≤ i ≤ −px)
1 (paggf < 0) and (|paggf | ≤ i ≤ px)
0 in other case

(7)
where paggf = {j | (wj

aggf
= 1) and (∀k >

j) (wk
aggf

< 1)} and px =MDV L(Pxf
).

– Vagg takes the values: V ini
agg = V fin

aggf
y V fin

agg = V fin
xf

,

V Lini
agg = V fin

aggf
and V

Lfin
agg = V ini

xf
and V

Ltype
agg is

assigned according to Equation 8.

waggi =

{
increasing isDecreasing(V

Ltype
aggf)

decreasing in other case
(8)

V list
agg is equal to append(V list

aggf
, v) being v =

[label, ini, fin], label = epx
agg with px =

MDV L(Pxf
), ini = V ini

xf
and fin = V fin

xf
.

Table VII shows the evolution of Pagg , while a trend is
aggregated when a sequence of consecutive Pxf

appears. The
steps to follow are:

TABLE VIII
OUTPUT PLACES SEQUENCE OF THE TSPM MODULE WHEN THE SHUTTLE

DATASET IS USED AS INPUT. EACH PLACE Pxi = {Labeli, Ti1 , Ti2}
CONTAINS THE OUTPUT LABEL NAME (Labeli) AND THE INITIAL AND

FINAL INSTANTS (Ti1 AND Ti2). THE LABELS V ery Low, Low,
Medium, High AND V ery high ARE AS V L, L, M , H AND V H

RESPECTIVELY.

Px1 = {H, 0, 41} Px10 = {M, 552, 566}
Px2 = {M, 41, 56} Px11 = {L, 566, 702}
Px3 = {H, 56, 183} Px12 = {V L, 702, 711}

Px4 = {V H, 183, 273} Px13 = {L, 711, 718}
Px5 = {H, 273, 410} Px14 = {M, 718, 810}
Px6 = {V H, 410, 486} Px15 = {H, 810, 813}
Px7 = {H, 486, 528} Px16 = {M, 813, 828}
Px8 = {M, 528, 534} Px17 = {L, 828, 999}
Px9 = {L, 534, 552}

1) Let the first Vagg =
{7.0, 8.0, V H,H, decreasing, {{V H, 7.0, 7.0}, {H,
7.0, 8.0}}} as consequence of the detection of a trend
change by tdes.

2) Let the next place generated Vxf
= {M, 8.0, 9.0}, then

Vagg takes the value shown in the second column of
the third row in Table VII. As can be observed, V fin

agg

and V Lfin
agg are assigned to V fin

xf
and V fin

xf
respectively,

V type
agg is updated and Px is concatenated to V list

agg .
3) Next, let us suppose Vxf

= {L, 9.0, 10.0}, and the same
process as the one indicated in the previous step is
completed.

4) This process finishes when tdes is fired. This means that
a trend change has been detected, transferring Paggf

to
Pdes to generate its description.

As can be seen, Pdes can generate a detailed description
because it contains all of the trend information, both general
trend information and information on the different components
of the trend, stored in V list

agg . The template introduced in Table
II can be modified to contain much more detail.

IV. A CASE OF STUDY

An example of the method operation in a time series called
“shuttle” is shown. This public dataset was used in [18]. The
parameters of TSPM and TrPM have been set to α = 1

3 (this
parameter indicates the weight that is given to the new values
that enter in the TSPM with respect to those that are already
represented), and the minimum length of the flat segments has
been determined at 12% of the total length of the shuttle time
series. In addition, the set of linguistic labels shown in Figure
3.a has been used in the test.

The designed module makes use of the TSPM module.
Table 6 shows the sequence of output places obtained for
this module. It can be seen how this sequence represents
the temporality of the input series using consecutive labels
between the different consecutive output places. In the same
way the time is represented by consecutive time intervals for
consecutive places. Figure 6 shows the label and its time
interval used to represent each zone of the time series.

V
L

L
M

H
V
H

Fig. 6. Example of how TSPN forms groups using Shuttle dataset.

TABLE IX
SEQUENCE OF TRPM OUTPUT PLACES.

Pdes1 = {0, 56, {H,M}, DEC}
Pdes2 = {56, 183, {H}, FLAT}

Pdes3 = {183, 273, {H,V H}, INC}
Pdes4 = {273, 410, {H}, FLAT}

Pdes5 = {410, 486, {H,V H}, INC}
Pdes6 = {410, 552, {V H,H,M,L, }, DEC}

Pdes7 = {534, 566, {L,M}, INC}
Pdes8 = {566, 702, {L}, FLAT}

Pdes9 = {702, 711, {L, V L}, DEC}
Pdes10 = {702, 813, {V L,L,M,H}, INC}

Pdes11 = {813, 828, {H,M, }, DEC}
Pdes12 = {828, 999, {L}, FLAT}

The TrPM module generates its sequence of output places
using as input the TSPM output places. Table IX shows the
sequence of TrPM output places. This table shows how the
consecutive labels that represent a trend are grouped. Figure
7 shows the output of this module. It can be seen how the
location area of the trends is motivated by the design of the
set of labels. For example, the second trend flat is due to the
broad support of the high label, and the last detected peak
could has been represented as a flat label, but the design of
the labels causes the detection of a peak.

Finally, the descriptions obtained by the three first places
generated by the TrPM module are shown:

1) There is a decreasing trend from High to Medium during
the interval from 0 to 56.

2) There is a flat trend from High to High during the
interval from 56 to 183.

3) There is a increasing trend from High to Very High
during the interval from 183 to 273.

It can be seen, the linguistic descriptions offer information
about the trends, more concretely, their time interval, their
location area and their type.

V
L

L
M

H
V
H

Fig. 7. Example of how TrPM form the trends using Shuttle dataset. The
colors red, green and grey are used to represent the decremental, incremental
and flat trends.

V. CONCLUSIONS AND FUTURE WORKS

A new method for generating linguistic descriptions of the
trends of a TS has been presented in this document. This
method makes use of the LPN. More specifically a new LPN
module, called Trends Processing Module, has been designed
to obtain in detail each one of the trends of the series, allowing
us to generate the descriptions of the same one. A public
dataset has been used to test the presented module. This
module can be used to design another LPN.

As future work we want to design a LPN to process the TS
of the electricity consumption of some buildings of University
of Castilla-La Mancha to detect the relevant states of the daily
cycle of the electrical consumption using the sequence of
TrPM output places. Also we plan to design new LPN that
make use of this module to analyze the trends in economic
time series, sport, health sciences, and so on. In addition, and
depending on these applications, the linguistic descriptions to
be generated may have a higher level of complexity, so it will
be necessary to study their impact on the module presented
here.

REFERENCES

[1] L. Ferres, A. Parush, S. Roberts, G. Lindgaard, “Helping people with
visualimpairments gain access to graphical information through natural
language: The igraph system”, in: International Conference on Comput-
ers for Handicapped Persons, Springer, pp. 1122–1130, 2006.

[2] N. Marı́n, D. Sánchez, “Fuzzy sets and systems + natural language
generation: A step forward in the linguistic description of time series”,
Fuzzy Sets and Systems, vol. 285, pp. 1–5, 2016.

[3] N. Marı́n, D. Sánchez, “On generating linguistic descriptions of time
series”, Fuzzy Sets and Systems, vol. 285, pp. 6–30, 2016.

[4] L. A. Zadeh, “A prototype-centered approach to adding deduction
capability to search engines-the concept of protoform”, in: 2002 Annual
Meeting of the North American Fuzzy Information Processing Society
Proceedings, IEEE, 2002, pp. 523–525, 2002.

[5] J. Kacprzyk, S. Zadrożny, “Linguistic database summaries and their
protoforms: towards natural language based knowledge discovery tools”,
Information Sciences 173 (4) (2005) 281–304, 2005.

[6] J. Kacprzyk, R. R. Yager, J. M. Merigó, “Towards human-centric
aggregation via ordered weighted aggregation operators and linguistic
data summaries: A new perspective on zadeh’s inspirations”, IEEE
Comp. Int. Mag., vol. 14 (1), 16–30, 2019.

[7] R. R. Yager, “A new approach to the summarization of data”, Informa-
tion Sciences, vol. 28 (1), pp. 69–86 (1982).

[8] J. Kacprzyk, A. Wilbik, S. Zadrożny, “Linguistic summarization of time
series using a fuzzy quantifier driven aggregation”, Fuzzy Sets and
Systems, vol. 159 (12), pp. 1485–1499, 2008.

[9] J. Kacprzyk, S. Zadrozny, “Fuzzy logic-based linguistic summaries of
time series: a powerful tool for discovering knowledge on time varying
processes and systems under imprecision”, Wiley Interdiscip. Rev. Data
Min. Knowl. Discov., vol. 6 (1), pp. 37–46, 2016.

[10] J. Moreno-Garcia, L. Rodriguez-Benitez, J. Giralt, E. Del Castillo, “The
generation of qualitative descriptions of multivariate time series using
fuzzy logic”, Applied Soft Computing, vol. 23, pp. 546–555, 2014.

[11] P. Conde-Clemente, J. M. Alonso, G. Triviño, “Toward automatic
generation of linguistic advice for saving energy at home”, Soft Comput.
, vol. 22 (2), pp. 345–359, 2018.

[12] G. Trivino, M. Sugeno, “Towards linguistic descriptions of phenomena”,
International Journal of Approximate Reasoning, vol. 54 (1), pp. 22–34,
2013.

[13] L. A. Zadeh, “From computing with numbers to computing with words.
from manipulation of measurements to manipulation of perceptions”,
IEEE Transactions on circuits and systems I: fundamental theory and
applications, vol. 46 (1), pp. 105–119, 1999.

[14] M. A. K. Halliday, C. Matthiessen, M. Halliday, An introduction to
functional grammar, Routledge, 2014.

[15] P. Conde-Clemente, G. Trivino, J. M. Alonso, “Generating automatic
linguistic descriptions with big data”, Information Sciences, vol. 380,
pp. 12–30, 2017.

[16] J. Moreno-Garcia, L. Rodriguez-Benitez, L. Jimenez-Linares, G. Triv-
ino, “A linguistic extension of petri nets for the description of systems:
An application to time series”, IEEE Transactions on Fuzzy Systems,
vol. 27(9), pp. 1818 - 1832, 2019.

[17] W. V. Leekwijck, E. E. Kerre, “Defuzzification: criteria and classifica-
tion”, Fuzzy Sets and Systems, vol. 108 (2), pp. 159 – 178, 1999.

[18] E. Fuchs, T. Gruber, J. Nitschke, and B. Sick, “Online Segmentation
of Time Series Based on Polynomial Least-Squares Approximations”,
IEEE Pattern Analysis and Machine Intelligence, vol. 32(12), pp. 2232–
2245, 2010.

