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Abstract—Fuzzy relations are compared by membership values
and as a consequence new types of local properties of fuzzy
relations are introduced. In the new properties of fuzzy relations
an arbitrary binary relation is involved. Particularly, a binary
aggregation function may be used to define these properties.
Connections between the new local properties of fuzzy relations
are described. Furthermore, preservation of these properties in
aggregation process is considered. Finally, notes on applications
of the presented local properties in the context of fuzzy multisets
and decision making are provided.

Index Terms—properties of fuzzy relations, aggregation func-
tions, decision making

I. INTRODUCTION

In this paper generalized types of local properties for
fuzzy relations are examined and compared. Local properties
for fuzzy relations were considered in [1] (cf. [2]). These
properties are related to an equivalence relation between fuzzy
relations, which may play an important role in many fields.
Due to the nature of this equivalence, fuzzy relations fulfilling
the considered dependence were called orderly equivalent. The
obtained ordinal equivalence classes allow to classify fuzzy
relations with respect to the properties that they fulfill. For
example, two orderly equivalent fuzzy relations may not be
simultaneously reflexive or simultaneously asymmetric. This
was the motivation to consider diverse classes of weaker
versions of fuzzy relation properties, which are called local
and which are common for all fuzzy relations in the same
equivalence classes. The name is connected with the fact
that in definitions of the local properties the influence of
the neighboring values of a fuzzy relation on the respected
values of this relation are taken into account. This is expressed
by considering the adequate supremum and infimum in the
notions of fuzzy relations. Orderly equivalent fuzzy relations

have the same local properties. Local properties may be useful
in decision making problems to reflect preferences of decision
makers.

In this paper we consider a more general version of local
properties, namely local B-properties, where B may be an
arbitrary binary operation, particularly, aggregation functions,
which proved to be an effective tool in many areas, may be
used [3]. As we have already mentioned, fuzzy relations may
represent the preferences of decision-makers over given set of
alternatives. The local B-properties proposed in this paper are
weaker versions of the properties proposed so far and as a
result they may reflect in a better way preferences of decision
makers. The local B-properties may be better adjusted to the
real-life situations.

The structure of the paper is as follows. Firstly, some
basic definitions connected with functions defined on the unit
interval will be recalled (Section 2). Then, local B-properties
(and local B-properties by row) of fuzzy relations are proposed
(Section 3). Moreover, the study of the preservation of local
properties in aggregation process is considered (Section 4).
Finally, notes on applications of the presented results are
indicated (Section 5).

II. PRELIMINARIES

In this section we gather the basic notions applied in the
paper. These are some of the properties of functions defined
on the unit interval [0, 1]. As a special case we may obtain the
properties of aggregation functions.

Definition 1 (cf. [4]). We say that a function F : [0, 1]n →
[0, 1] is:
• increasing, if

F (x1, . . . , xn) 6 F (y1, . . . , yn)
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for xi, yi ∈ [0, 1], xi 6 yi, i = 1, . . . , n;
• idempotent, if

F (x, . . . , x) = x for x ∈ [0, 1];

• averaging, if

min(x1, . . . , xn) 6 F (x1, . . . , xn) 6 max(x1, . . . , xn)

for x1, . . . , xn ∈ [0, 1].

Proposition 1 (cf. [4]). If F : [0, 1]n → [0, 1] is increasing
and idempotent, then it is averaging.

Proposition 2 ([1]). The unique idempotent function F :
[0, 1]n → [0, 1] that fulfils F 6 min (respectively F > max)
is F = min (respectively F = max).

Definition 2 ([4]). Let n ∈ N. A function F : [0, 1]n →
[0, 1] which is increasing is called an aggregation function if
F (0, . . . , 0) = 0 and F (1, . . . , 1) = 1.

Quasi-linear means are examples of aggregation functions

F (x1, ..., xn) = ϕ−1

(
n∑

k=1

wkϕ(xk)

)
, (1)

where wk > 0,
∑n

k=1 wk = 1, where x1, . . . , xn ∈ [0, 1],
ϕ : [0, 1] → R is a continuous, strictly increasing function,
are examples of averaging aggregation functions.
For ϕ = id we have F = Awmean the weighted arithmetic
mean.
Moreover, we have the following examples of aggregation
functions:
• geometric mean Agmean(x1, ..., xn) = n

√
x1 · ... · xn;

• median Amedian(x1, ..., xn) ={
1
2 (xn

2
+ xn+2

2
), n is even

xn+1
2
, otherwise.

Triangular norms and conorms are well-known examples of
aggregation functions, respectively.

Definition 3 (cf. [5]). A triangular norm (t-norm) T on
[0, 1] is an increasing, commutative, associative operation
T : [0, 1]2 → [0, 1] with a neutral element 1.
A triangular conorm (t-conorm) S on [0, 1] is an increasing,
commutative, associative operation S : [0, 1]2 → [0, 1] with a
neutral element 0.

Triangular norms are examples of conjunctions and tri-
angular conorms are examples of disjunctions (cf. [5]). An
operation C : [0, 1]2 → [0, 1] is called a fuzzy conjunction
(respectively disjunction) if it is increasing and C(1, 1) =
1, C(0, 0) = C(0, 1) = C(1, 0) = 0 (respectively C(0, 0) =
0, C(1, 1) = C(0, 1) = C(1, 0) = 1).

Example 1. The following are the most frequently used
examples of t-norms and t-conorms:

TM (x, y) = min(x, y), SM (x, y) = max(x, y),
TP (x, y) = xy, SP (x, y) = x+ y − xy,
TL(x, y) = max(0, x+ y − 1), SL(x, y) = min(1, x+ y),

TD(x, y) =


x, y = 1

y, x = 1

0, otherwise

,

SD(x, y) =


x, y = 0

y, x = 0

1, otherwise

for x, y ∈ [0, 1].

In the sequel we will also use notations: min = ∧ and
max = ∨.

Definition 4 (cf. [6]). Let m, n ∈ N. A function F :
[0, 1]m → [0, 1] commutes with a function G : [0, 1]n → [0, 1]
(or F and G are commuting), if for all aik ∈ [0, 1], with
i ∈ {1, ...,m} and k ∈ {1, ..., n} we have

F (G(a11, . . . , a1n), . . . , G(am1, . . . , amn)) = (2)

G(F (a11, . . . , am1), . . . , F (a1n, . . . , amn)).

If in (2) F = G, then we get the bisymmetry property.

Example 2. Weighted geometric means (which are special

cases of quasi-linear means) F (t1, . . . , tn) =
n∏

i=1

twi
i , where

wk > 0, commute with the product TP .

Other examples and many interesting results concerning
commuting operations can be found in [6]. Important prop-
erties in the next considerations are the following.

Definition 5 ([7]). Let J 6= ∅. We say that a binary function
F : [0, 1]2 → [0, 1] is:
• infinitely left distributive with respect to ∨ (left ∨-

preserving), if

F (
∨
j∈J

xj , y) =
∨
j∈J

F (xj , y), for xj , y ∈ [0, 1], j ∈ J ;

• infinitely right distributive with respect to ∨ (right ∨-
preserving), if

F (y,
∨
j∈J

xj) =
∨
j∈J

F (y, xj), for xj , y ∈ [0, 1], j ∈ J ;

• infinitely left distributive with respect to ∧ (left ∧-
preserving), if

F (
∧
j∈J

xj , y) =
∧
j∈J

F (xj , y), for xj , y ∈ [0, 1], j ∈ J ;

• infinitely right distributive with respect to ∧ (right ∧-
preserving), if

F (y,
∧
j∈J

xj) =
∧
j∈J

F (y, xj), for xj , y ∈ [0, 1], j ∈ J.

A binary function F : [0, 1]2 → [0, 1] is ∨-preserving,
(respectively ∧-preserving) if it is left and right ∨-preserving
(respectively ∧-preserving).



Example 3 (cf. [8]). One of the first known examples of a ∨-
preserving t-norms (which is equivalent to the left-continuity),
is nilpotent minimum denoted by TnM and defined by

TnM (x, y) =

{
0, if x+ y 6 1,

min(x, y), otherwise.

Drastic product TD is ∧-preserving (which is equivalent to the
right-continuity). Let us notice that none of the functions are
continuous functions are not continuous. Other basic t-norms
presented in Example 1 are continuous, i.e. left and right-
continuous so they are also ∨-preserving and ∧-preserving.

Results for triangular conorms may be obtained dually, i.e.
S(x, y) = 1 − T (1 − x, 1 − y) for any x, y ∈ [0, 1]. A t-
norm T is left-continuous if and only if its dual t-conorm is
right-continuous, and vice versa.

III. FUZZY RELATIONS AND THEIR GENERALIZED
PROPERTIES

A notion of a fuzzy relation is a particular case of a fuzzy
set (cf. [9]). We consider fuzzy relations in a set X 6= ∅.

Definition 6 (cf. [10]). A fuzzy relation in X is an arbitrary
function R : X×X → [0, 1]. The family of all fuzzy relations
in X is denoted by FR(X). The converse to R ∈ FR(X) is
the relation R−1 ∈ FR(X),

R−1(x, y) = R(y, x), x, y ∈ X.

Let us recall some facts connected with the family FR(X):
• (FR(X),6) is a partially ordered set, where for R,S ∈
FR(X)

R 6 S ⇔ ∀
x,y∈X

R(x, y) 6 S(x, y).

• (FR(X),∨,∧) is a lattice, where for R,S ∈ FR(X) and
x, y ∈ X

(R ∨ S)(x, y) = max(R(x, y), S(x, y)),

(R ∧ S)(x, y) = min(R(x, y), S(x, y)).

• Let card X = n. Relation R ∈ FR(X) may be represented
by a matrix R = [rij ], R(xi, xj) = rij , i, j = 1, ..., n.

There are many particular properties of fuzzy relations.
In [1] the basic ones (cf. [11], [9]) and the connections
of these properties with the considered ordinal equivalence
relation were presented. As a consequence the families of local
properties, namely the properties more compatible with the
ordinal equivalence relation were introduced. Moreover, fuzzy
relation properties were often defined with the use of max or
min operations and later they were generalized to t-norm or t-
conorm based properties [11]. In [12], [13] even more general
notions were used, namely arbitrary binary operation in the
unit interval was applied to define fuzzy relation properties.
The mentioned B-properties are listed below.

Definition 7 ([12]). Let B,B1, B2 : [0, 1]2 → [0, 1] be binary
operations. We say that the relation R ∈ FR(X) is:
• reflexive, if ∀

x∈X
R(x, x) = 1,

• irreflexive, if ∀
x∈X

R(x, x) = 0,
• totally B-connected, if
∀

x,y∈X
B(R(x, y), R(y, x)) = 1,

• B-connected, if
∀

x,y∈X,x 6=y
B(R(x, y), R(y, x)) = 1,

• B-asymmetric, if
∀

x,y∈X
B(R(x, y), R(y, x)) = 0,

• B-antisymmetric, if
∀

x,y∈X,x 6=y
B(R(x, y), R(y, x)) = 0,

• B-transitive, if
∀

x,y,z∈X
B(R(x, y), R(y, z)) 6 R(x, z),

• negatively B-transitive, if
∀

x,y,z∈X
B(R(x, y), R(y, z)) > R(x, z),

• B1-B2-Ferrers, if
∀

x,y,z,w∈X
B1(R(x, y), R(z, w)) 6 B2(R(x,w), R(z, y)),

• B1-B2-semitransitive, if
∀

x,y,z,w∈X
B1(R(x,w), R(w, y)) 6 B2(R(x, z), R(z, y)).

In the next section we consider different classes of proper-
ties with a binary operation B involved.

IV. LOCAL B-PROPERTIES OF FUZZY RELATIONS

We will consider asymmetry and connectedness properties
in the weaker versions, namely using operation B instead of
∨ and ∧ (cf. [1]). In this way we obtain the so called local
B-properties. Our approach follows from practical point of
view. For example, in the area of multicriteria decision sup-
port, different approaches to determine relation of preferences
between variants are known (compare for example methods
from the Electre family [14], [15]). If the preferences between
the variants are described by a fuzzy relation, for example
the requirement of antisymmetry of such relation (according
to the pattern given in Definition 7) is too restrictive. Instead
of completely abandoning this property, a suitable option may
be to weaken the property considering local B-antisymmetry
(defined in Definition 8).

Definition 8. Let B : [0, 1]2 → [0, 1]. A fuzzy relation R ∈
FR(X) is called:
• locally B-asymmetric, if for Q = B(R,R−1)

∀
x,y∈X

(Q(x, y) =
∧
z∈X

Q(x, z) and Q(x, y) =
∧
z∈X

Q(z, y)),

(3)
• locally B-antisymmetric, if for Q = B(R,R−1)

∀
x,y∈X,x 6=y

(Q(x, y) =
∧

z∈X,z 6=x

Q(x, z) and (4)

Q(x, y) =
∧

z∈X,z 6=y

Q(z, y)),

• locally totally B-connected, if for V = B(R,R−1)

∀
x,y∈X

(V (x, y) =
∨
z∈X

V (x, z) and V (x, y) =
∨
z∈X

V (z, y)),

(5)



• locally B-connected, if for V = B(R,R−1)

∀
x,y∈X,x 6=y

(V (x, y) =
∨

z∈X,z 6=x

V (x, z) and (6)

V (x, y) =
∨

z∈X,z 6=y

V (z, y)).

Example 4. Let card X = 3, R, S ∈ FR(X) be presented by
matrices:

R =

 0.5 0.625 0.3125
0.4 0.5 0.5
0.8 0.5 0.5

 ,

S =

 0.5 0.375 0.6
0.6 0.5 0.5
0.375 0.5 0.5

 .

R is locally B-asymmetric (locally B-antisymmetric) but it is
not locally irreflexive. S is locally totally B-connected (locally
B-connected) and it is not locally reflexive, where

Q = B(R,R−1) =

 0.25 0.25 0.25
0.25 0.25 0.25
0.25 0.25 0.25

 ,

V = B(S, S−1) =

 0.75 0.75 0.75
0.75 0.75 0.75
0.75 0.75 0.75

 .

Q fulfils (3) with B = TP and V fulfils (5) with B = SP .

Local properties (cf. [1]) are special cases of local B-
properties.

Proposition 3. If B = min in (3) (respectively in (4)),
then R ∈ FR(X) is locally asymmetric (respectively locally
antisymmetric). If B = max in (5) (respectively in (6)), then
R ∈ FR(X) is locally totally connected (respectively locally
connected).

The following statement is immediate by Definition 8.

Proposition 4. We have the following dependencies:
• local B-asymmetry implies local B-antisymmetry;
• local total B-connectedness implies local B-

connectedness.

Proposition 5. Let B : [0, 1]2 → [0, 1] be idempotent:
• local B-asymmetry implies local irreflexivity;
• local total B-connectedness implies local reflexivity.

Proof. Let R ∈ FR(X), x, y ∈ X and B be idempotent. If R
is locally B-asymmetric and Q = B(R,R−1), then Q(x, x) =
B(R(x, x), R(x, x)) = R(x, x), so

R(x, x) =
∧
z∈X

R(x, z) ∧
∧
z∈X

R(z, x).

This implies that

R(x, x) =
∧
z∈X

R(x, z) and R(x, x) =
∧
z∈X

R(z, x),

which proves local irreflexivity of R. The second property may
be proven similarly.

Remark 1. Although we consider given local B-properties in
the most general versions, i.e. with operations B : [0, 1]2 →
[0, 1], it may be a natural generalization to use fuzzy conjunc-
tion B in local B-asymmetry (local B-antisymmetry) property,
fuzzy disjunction B in local B-connectedness properties. This
approach enables us to keep the meaning of properties which
follows both from the crisp cases and standard versions of
properties. However, we do not only restrict ourselves to such
examples.

Let us notice that if we would like to consider fuzzy
relations having properties listed in Proposition 5 (B
idempotent) and conjunctions or disjunctions B with neutral
element, i.e. B 6 min or respectively B = max (cf.
Remark 1), then only B = min or B = max may fulfil such
combination of conditions on B (cf. Proposition 2).

We may characterize fuzzy relations which are locally
totally B-connected (locally B-connected) or locally B-
asymmetric (locally B-antisymmetric). Firstly, we will pay
attention to the local total B-connectedness.

Proposition 6. Let B : [0, 1]2 → [0, 1]. R ∈ FR(X) is locally
totally B-connected if and only if B(R(x, y), R(y, x)) = a for
any x, y ∈ X, a ∈ [0, 1].

Proof. Let R ∈ FR(X).
Sufficiency. If R and B fulfil the given assumptions, then for
V = B(R,R−1) we get V (x, y) = a for any x, y ∈ X so
conditions in (5) are fulfilled.
Necessity. Suppose that R is locally totally connected
and there exists (x, y) ∈ X × X such that
B(R(x, y), R(y, x)) 6= a. As a result we have the following
cases:
(1) B(R(x, y), R(y, x)) > a,
(2) B(R(x, y), R(y, x)) < a.
Then in the first case we get
V (x, y) = V (y, x) = B(R(x, y), R(y, x)) > a and

∃
(u,v) 6=(x,y)∈X

(V (u, v) <
∨
z∈X

V (u, z) or V (u, v) <

∨
z∈X

V (z, v)).

In the second case we have
V (x, y) = V (y, x) = B(R(x, y), R(y, x)) < a
and we see that

V (x, y) <
∨
z∈X

V (x, z) or V (x, y) <
∨
z∈X

V (z, y).

This contradicts with assumption that R is locally totally B-
connected and finishes the proof.

Analogously, we obtain the following



Proposition 7. Let B : [0, 1]2 → [0, 1]. Relation R ∈ FR(X)
is locally B-connected if and only if B(R(x, y), R(y, x)) = a
for any x, y ∈ X,x 6= y, where a ∈ [0, 1].

Dually, we get characterization for local B-asymmetry and
local B-antisymmetry.

Proposition 8. Let B : [0, 1]2 → [0, 1]. Relation R ∈ FR(X)
is locally B-asymmetric if and only if B(R(x, y), R(y, x)) = a
for any x, y ∈ X, a ∈ [0, 1].

Proposition 9. Let B : [0, 1]2 → [0, 1]. Relation
R ∈ FR(X) is locally B-antisymmetric if and only if
B(R(x, y), R(y, x)) = a for any x, y ∈ X , x 6= y, where
a ∈ [0, 1].

Let us notice that if we consider local B-properties with
no additional assumptions we get the same conditions for
characterizations of local total B-connectedness and local B-
asymmetry (respectively, local B-connectedness and local B-
antisymmetry).

V. PRESERVATION OF LOCAL B-PROPERTIES IN
AGGREGATION PROCESS AND NOTES ON APPLICATIONS

Now we will examine preservation of local B-properties in
aggregation process which may be useful in decision making
problems. As we have already mentioned, fuzzy relations may
represent the preferences of decision-makers over given set of
alternatives. The local B-properties proposed in this paper are
more general versions of usually considered properties and as
a result they may reflect in a better way preferences of decision
makers. In multicriteria decision making a decision maker
has to choose among the alternatives with respect to a set of
criteria K = {k1, . . . , kn}. Let R1, . . . , Rn be fuzzy relations
corresponding to each criterion represented by matrices, where
Rk : X×X → [0, 1], k = 1, . . . , n, n ∈ N, Rk(xi, xj) = rkij ,
1 6 i, j 6 m and X = {x1, . . . , xm} be a set of alternatives
for m ∈ N. With the use of a function F : [0, 1]n → [0, 1]
(usually an aggregation function, i.e. an increasing function
such that F (0, ..., 0) = 0 and F (1, ..., 1) = 1, cf. [3], [4]), we
aggregate given fuzzy relations R1, . . . , Rn ∈ FR(X), where
n ∈ N. We obtain an aggregated fuzzy relation RF ∈ FR(X)
(cf. [11], [16], [17], [18], [19]) which helps to find the solution
alternative from the set X , where

RF (x, y) = F (R1(x, y), . . . , Rn(x, y)), x, y ∈ X (7)

and

(RF )
−1(x, y) = F (R−11 (x, y), ..., R−1n (x, y)), x, y ∈ X.

In the context of preference relations the value R(x, y) may
represent the intensity of preference x over y. We consider in
this context the introduced in this paper local B-properties.

Theorem 1. Let R,S ∈ FR(X), operations F,B : [0, 1]2 →
[0, 1] be commuting and F be ∨-preserving. If R,S are locally
totally B-connected (locally B-connected), then F preserves
local total B-connectedness (local B-connectedness).

Proof. Let R,S be locally totally connected, x, y ∈ X . We
will show that under given assumptions RF = F (R,S) also
is locally totally connected.

B(F (R(x, y), S(x, y)), F (R−1(x, y), S−1(x, y))) =

F (B(R(x, y), R−1(x, y)), B(S(x, y), S−1(x, y))) =

F (
∨
z∈X

B(R(x, z), R−1(x, z)),
∨
t∈X

B(S(x, t), S−1(x, t))) =

∨
z∈X

∨
t∈X

F (B(R(x, z), R−1(x, z)), B(S(x, t), S−1(x, t))) >

∨
z∈X

F (B(R(x, z), R−1(x, z)), B(S(x, t), S−1(x, t))) =

∨
z∈X

B(F (R(x, z), S(x, t)), F (R−1(x, z), S−1(x, t))) >

B(F (R(x, y), S(x, y)), F (R−1(x, y), S−1(x, y))).

The second condition in (5) may be proven similarly. Thus F
preserves local total B-connectedness. Analogously we may
consider local B-connectedness property.

Dually we may prove the result for local asymmetry.

Theorem 2. Let R,S ∈ FR(X), operations F,B : [0, 1]2 →
[0, 1] be commuting and F be ∧-preserving. If R,S are locally
B-asymmetric (locally B-antisymmetric), then F preserves
locally asymmetry (local antisymmetry).

Remark 2. If in Theorems 1 and 2 we have F = B, the
assumption of commuting property may be replaced with the
assumption of bisymmetry.

Now, there will be given examples of functions F preserving
local properties.

Example 5. All continuous aggregation functions, for exam-
ple quasi-linear means, preserve local reflexivity and local
irreflexivity. This is justified by the fact that continuity in-
volves ∨-preserving property and ∧-preserving property (cf.
Example 3).

Example 6. Each t-norm and each t-conorm is symmetric
and associative, so it is bisymmetric (cf. Remark 2). As a
result, using the dependencies given in Example 3 we see that
for B ∈ {TM , SM , TP , SP , TL, SL}, B preserves both local
total B-connectedness (local B-connectedness) and local B-
asymmetry (local B-antisymmetry). Nilpotent minimum TnM

is ∨-preserving, so it preserves local total TnM -connectedness
and local TnM -connectedness, while the drastic product is ∧-
preserving, so it preserves local TD-asymmetry and local TD-
antisymmetry.

Example 7. Weighted geometric means preserve both local
total TP -connectedness (local TP -connectedness) and local
TP -asymmetry (local TP -antisymmetry). This is justified by
the fact that weighted geometric means commute with TP

(cf. Example 2) and they are continuous, which involves
∨-preserving property and ∧-preserving property (cf. Exam-
ple 3).



VI. AN ALGORITHM FOR DECISION MAKING

We first introduce some theoretical notions in order to fix
the notation for this section. Let On be the set of n-elements on
[0, 1], namely, the set On = {x = (x(1), ..., x(n)) ∈ [0, 1]n}.
We recall that there is a natural partial order ≤ on On ⊆ Rn

given by

(x(1), ..., x(n)) ≤ (y(1), ..., y(n)) if and only if x(i) ≤ y(i),

1 ≤ i ≤ n.
In this way, (On,≤) is a complete lattice and (0, ..., 0) and
(1, ..., 1) are the bottom and top elements of the partial order,
respectively.

Fuzzy multisets are generalizations of fuzzy sets which were
defined in [20] by Yager. Like many other generalizations, the
aim of these sets lies on the formalization of a representation to
deal with imprecision, inexactness, ambiguity, or uncertainty
intrinsic to many problems. In particular, in the case of
fuzzy multisets, a fixed number n of membership values is
assigned to each element. Taking into account that in a group
decision making problem we have as many evaluations as
decision makers, fuzzy multisets are suitable models for these
problems.

Definition 9 ([20]). Let U be a nonempty set usually called a
universe. A fuzzy multiset A over U is given by A : U → On,
where A(u) denotes the membership degree of the element
u ∈ U to A.

To order the fuzzy multisets we propose the following
method inspired on [21].

Algorithm. Selection of Multisets.

Let F = (F1, ...Fn) be a sequence of n-aggregation func-
tions, Fi : [0, 1]

n → [0, 1].
For x1, ...xk ∈ On we calculate for each 1 ≤ i, j ≤ k the
measure of connectivity for pairs of values xi and xj , i 6= j,
CON : On ×On → R

CON(xi, xj) =
∑

1≤l≤n

(Fl(xi(t))− Fl(xj(t))), 1 ≤ t ≤ n.

Then
Step Selection. For each 1 ≤ i, j ≤ k we find

max
1≤i,j≤k

CON(xi, xj) = CON(xz, xw), 1 ≤ z, w ≤ k;

The element xz is the best.
We repeat Step Selection by omitting the wining values xz in
the next iteration.
If

max
1≤i,j≤k

CON(xi, xj) = CON(xz, xw) = CON(xz′ , xw′),

1 ≤ z, z′, w, w′ ≤ k,
then we find

C1 :=
∑

1≤w≤k

(max(0, CON(xz, xw)))

and
C2 :=

∑
1≤w′≤k

(max((0, CON(xz′ , xw′))),

if C1 > C2, then the element xz is the best, else the element
xz′ is the best, else xz ≡ xz′ .

We obtain the sequence:

xz � ...xz′ � ....

Especially, if we compare only two multisets x, y,
then x � y iff CON(x, y) > CON(y, x), else if
CON(x, y) < CON(y, x), then x � y, else they are
equivalent.

An algorithm for group decision making

We use modification of the method presented in [21], but
we omit the ordering of preference values of experts and we
create locally B-asymmetric versions of preference relations.
As we have already noticed, antisymmetrization is sometimes
a required step in decision making. This is why we include
such step (step 3) in the proposed algorithm. We apply
more general version of this property (local B-asymmetry)
since it is closer to real-life situations. To create local
B-asymmetric relation we may use the characterization given
in Proposition 9.

AlgorithmDM
1) Input data (k matrices R of the size m×n, where k is the

number of an expert, m is the number of an alternative,
n is the number of a criteria);

2) Determination of a preference relation P (m × m)
between alternatives for each criteria c according to an
expert e (we obtain n× k matrices) by the rules:
For 1 ≤ t ≤ k
For 1 ≤ l ≤ n
For 1 ≤ j ≤ m

If Rtl(aj , cl) > Rtl(aj+1, cl), then

Ptl(j, j + 1) = min(1, 0.5 + |aj − aj+1|)

Else
If Rtl(aj , cl) < Rtl(aj+1, cl), then

Ptl(j, j + 1) = max(0, 0.5− |aj − aj+1|)

Else
Ptl(j, j + 1) = 0.5;

3) Conversion of the relations Ptl to locally B-asymmetric
P ∗tl.

4) For the given expert we use aggregation Agg : [0, 1]n →
[0, 1] matrices of the criteria - reduction of the matrix
with respect to the criteria K according to the rule:



For 1 ≤ t ≤ k we calculate
For 1 ≤ i, j ≤ m

P∗t (i, j) = Agg1≤l≤nP
∗
tl(i, j);

We have k matrices adequate to the number of experts.
5) We create matrix with elements as the multisets of each

values created by adequate experts

P′(i, j) = {P∗1(i, j), ....P∗k(i, j)};

6) Application of the weighted arithmetic mean Awmean :
Okm → Ok (we ignore order of experts)
We use w = [0.35, 0.25, 0.4] - coefficient vector of
weights in aggregation process: For 1 ≤ i ≤ m we
calculate

Alternative i → Awmean(P′(i, 1), ...P′(i,m));

7) Selection of the best alternative - Algorithm Selection
of Multisets.

The obtained ranking list contains the expert data in the
decreasing order in terms of quality.

VII. ILLUSTRATIVE EXAMPLE

We generate the decision makers’ evaluations accordingly
to the data in [22] and later examined in [21].

e1|


0.5 0.4 0.2
0.4 0.7 0.6
0.4 0.5 0.6
0.7 0.6 0.3

 , e2|


0.4 0.6 0.1
0.6 0.6 0.7
0.6 0.5 0.5
0.6 0.6 0.4

 ,

e3|


0.3 0.4 0.3
0.7 0.7 0.4
0.3 0.6 0.6
0.8 0.7 0.3

 .

Then according to the point 2 of the AlgorithmDM we obtain
the following preference relations:

e1c1|

 0.5 0.6 0.6 0.3
0.4 0.5 0.5 0.2
0.4 0.5 0.5 0.2
0.7 0.8 0.5 0.5

 , e1c2|

 0.5 0.2 0.4 0.3
0.8 0.5 0.7 0.6
0.6 0.3 0.5 0.4
0.7 0.4 0.6 0.5

 ,

e1c3|

 0.5 0.1 0.1 0.4
0.9 0.5 0.5 0.8
0.9 0.5 0.5 0.8
0.6 0.2 0.2 0.5

 ,

e2c1|

 0.5 0.3 0.3 0.3
0.7 0.5 0.5 0.5
0.7 0.5 0.5 0.5
0.7 0.5 0.5 0.5

 , e2c2|

 0.5 0.5 0.6 0.5
0.5 0.5 0.6 0.5
0.4 0.4 0.5 0.4
0.5 0.5 0.6 0.5

 ,

e2c3|

 0.5 0 0.1 0.2
1 0.5 0.7 0.8
0.9 0.3 0.5 0.6
0.8 0.2 0.4 0.5

 ,

e3c1|

 0.5 0.1 0.5 0
0.9 0.5 0.9 0.4
0.5 0.1 0.5 0
1 0.6 1 0.5

 , e3c2|

 0.5 0.2 0.3 0.2
0.8 0.5 0.6 0.5
0.7 0.4 0.5 0.4
0.8 0.5 0.6 0.5

 ,

e3c3|

 0.5 0.4 0.2 0.5
0.6 0.5 0.3 0.6
0.8 0.7 0.5 0.8
0.5 0.4 0.2 0.5

 .

Then we use the AlgorithmDM (steps one after another). In
the step 3 we use the following conversion of the relations Ptl

to locally B-asymmetric P ∗tl (with B=min) for all 1 ≤ t ≤ k,
1 ≤ l ≤ n.
For each Ptl we determine the minimal element:
a = min1≤i,j≤mPtl(i, j).
For i = 1 do m
For j = 1 do m
If i = j then P ∗tl(i, j) = a else (If Ptl(i, j) ≥ Ptl(j, i), then
P ∗tl(i, j) = Ptl(i, j) else P ∗tl(i, j) = a). Moreover, in the
step 4 we use Agg = TL and finally in the step 7 we use
the following aggregation functions: Amean, Agmean and
Amedian for each Alternative i obtained in the previous step.
Then we get a decreasing sequence:
CON(Alternative 2, Alternative 1) = 2.2575,
CON(Alternative 4, Alternative 1) = 1.5333333333,
CON(Alternative 3, Alternative 1) = 1.1504166667,
CON(Alternative 2, Alternative 3) = 1.1070833333,
CON(Alternative 2, Alternative 4) = 0.7241666667,
CON(Alternative 4, Alternative 3) = 0.3829166667,
....

Thus we obtain the following order of alternatives
Alternative 2 � Alternative 4 � Alternative 3 �
Alternative 1.

As a result we obtained the same order of alternatives
as in [21], but by observing the multisets in the step 5 of
the algorithm, we can infer additional influence of individual
experts on decisions (the experts are not anonymous).

VIII. CONCLUSIONS

The families of local properties of fuzzy relations consid-
ered in this paper do not depend on boundary conditions
with values 0 and 1 and moreover they do not depend on
operations min and max but they are defined with the use
of binary operations B. This approach to properties of fuzzy
relations seems to be adequate in fuzzy environment, since
such versions are more adjusted to real-life situations. This is
why the presented results are promising in considerations of
decision making and preference relations which represent the
uncertainty of data and information. Moreover, we proposed
an algorithm for decision making involving one of the new
notions of local B-properties.
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