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Abstract—Fairness, Accountability, Transparency and Explain-
ability have become strong requirements in most practical appli-
cations of Artificial Intelligence (AI). Fuzzy sets and systems are
recognized world-wide because of their outstanding contribution
to model AI systems with a good interpretability-accuracy trade-
off. Accordingly, fuzzy sets and systems are at the core of the so-
called Explainable AI. ExpliClas is a software as a service which
paves the way for interpretable and self-explainable intelligent
systems. Namely, this software provides users with both graphical
visualizations and textual explanations associated with intelligent
classifiers automatically learned from data. This paper presents
the new functionality of ExpliClas regarding the generation,
evaluation and explanation of fuzzy decision trees along with
fuzzy inference-grams. This new functionality is validated with
two well-known classification datasets (i.e., Wine and Pima), but
also with a real-world beer-style classifier.

Index Terms—Fuzzy Systems Software, Open Source Software,
Software as a Service, Fuzzy Rule-based Systems, Explainable AI

I. INTRODUCTION

The European Commission (EC) [1] has deemed Artificial
Intelligence (AI) as the most strategic technology of XXI
century. In addition, the EC states that AI must be carefully
developed and applied in agreement with the European values
and fundamental rights as well as ethical principles such as ac-
countability and transparency. Accordingly, the EC highlights
the need to increase resources and to speed up research on
Explainable AI (XAI).

Nowadays, learning interpretable AI-based systems from
data is one of the major challenges of XAI [2]. Actually, given
the world-wide popularity of deep learning methods, more and
more black-box models are learned from data and they are
able to solve many varied and complex problems. However,
all these models lack explanation ability when interacting
with humans. This is the reason why many researchers focus
on how to open black-box models [3], while others opt for
designing and using interpretable models instead [4].

It is worthy to note that researchers in the field of fuzzy sets
and systems have addressed the problem of carefully designing
interpretable fuzzy systems for years [5], [6]. In addition, a
recent survey [7] shows how about 30% of publications in XAI
prior to 2018 came from authors well recognized in the field of

fuzzy logic. This is mainly due to the fact that interpretability
is deeply rooted in the fundamentals of fuzzy sets and systems
since the seminal ideas of Prof. Zadeh [8]. Moreover, since
interpretability and accuracy are usually conflicting goals by
nature, many researchers have applied multi-objective evolu-
tionary algorithms with the aim of designing fuzzy systems
with a good interpretability-accuracy balance [9].

Other social and cognitive aspects (e.g., comprehensibility
or human-machine interaction) pay also an important role in
XAI [10]. Effective explanations are expected to be multi-
modal (i.e., a mixture of texts with graphs and/or sounds ready
to be conveyed to users through alternative channels), but also
natural (i.e., similar to those provided by humans) and easy to
understand, no matter the user’s background.

Unfortunately, there is a lack of software for generation
and evaluation of XAI explanations. Even though there is
general purpose data mining software (e.g., Weka [11], R
packages [12] or Python libraries [13]), only a few programs
(e.g., LIME [14] or LORE [15]) are released as open source
software for XAI. In the case of fuzzy systems software [16],
there are tools for designing interpretable fuzzy models (e.g.,
FisPro [17] or GUAJE [18]).

ExpliClas is a web service for generation and evaluation
of multi-modal XAI explanations related to Weka classifiers
and it was introduced in [19]. ExpliClas provides users with
global and local explanations. The global view of the classifier
refers to quality indicators (e.g., classification ratio) as well
as to structural properties (e.g., number of features, tree size,
rule length, etc.). In addition, the local view pays attention to
the classification of single data instances. The first version of
ExpliClas included four algorithms implemented in Weka [11]:
three decision tree algorithms [20] (J48, REPTree, and Ran-
domTree) and one fuzzy algorithm (FURIA [21]).

In this paper, we present the new version of ExpliClas which
includes the implementation of the Fuzzy Hoeffding Decision
Tree (FHDT) [22], which is a fuzzy extension of the original
Hoeffding Decision Tree (HDT) [23]. In addition, we have
enhanced the graphical user interface with the aim of becom-
ing even more user friendly, by also redesigning the panel
for visualization of fuzzy rules. Moreover, we have added a
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new software module for the generation and visualization of
fuzzy inference-grams (FINGRAMs) [24]. This is aimed at
visualizing rule interaction at inference level. To do so, fuzzy
rule-based systems (FRBSs) are displayed in the form of social
networks, where nodes correspond to rules and edge values are
rule co-firing degrees.

The rest of the manuscript is organized as follows. Section II
introduces some preliminary concepts sketching briefly the
FHDT algorithm and revisiting the concept of FINGRAM.
Section III presents implementation details. Section IV goes
with the experimental evaluation of the proposal and provides
illustrative examples. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Fuzzy Hoeffding Decision Trees

A Fuzzy Hoeffding Decision Tree (FHDT) is a multi-way
decision tree, i.e., unlike binary trees, more than two decision
branches are allowed at each node. Indeed, its structure
resembles, as all decision trees, a directed acyclic graph,
with internal nodes representing a test on a feature, branches
denoting the outcome of the test, and terminal nodes (leaves)
containing instances belonging to one or more class labels.
Namely, each splitting node has Tf exiting branches, equal to
the number of fuzzy sets (i.e., linguistic terms) for each input
variable Xf . In a general scenario, class Ck ∈ Γ of each leaf
Lh is associated with a weight wh,k, which determines the
strength of class Ck in the leaf node. In FHDT, the weight is
the Fuzzy Cardinality (FC), which is calculated as follows:

wh,k =
∑Nh,k

i=1 µBh
(xh,k), (1)

where Nh,k is the number of instances in Lh and µBh
(xh,k) is

the membership degree of each instance xh to decision fuzzy
set Bh on the branch leading to Lh.

The features, over which the tests are performed in each
internal node, can repeat or not; moreover, they can be ranked
and selected according to the Fuzzy Information Gain (FIG)
as discussed in [25].

In classical decision trees, each node mirrors a single
crisp set and each leaf owns only one class label; thus, a
certain unlabeled instance x̂ activates only one path and is
assigned to only one class. In the case of FHDT, each node
is represented by a fuzzy set. As a consequence, x̂ can be
assigned to various classes Ck ∈ Γ by following different
activation paths, made of nodes from the root to possibly many
leaves with different strengths of activation, called matching
degrees. Then, the chosen output class label is obtained by
means of the weighted vote approach, by maximizing the total
strength of vote. This vote is obtained by summing up all
the association degrees of the instance with each class in the
reached leaves. The association degree is computed as the
product of the aforementioned weight wh,k per class and the
above-mentioned matching degree.

As described in [22], the FHDT is built by means of an
iterative learning procedure composed of two main steps:
• The update of the statistics in the nodes and leaves.

Starting from the root, the learning procedure determines

the leaves reached by the current data instance and its
statistics for the calculation of the fuzzy information gain
are updated. As mentioned previously, a data instance
can activate more than one branch, given that it has
different membership degrees for each fuzzy set in the
fuzzy partition built over the feature in the considered
node. While traversing the nodes in a path, the FCs of
all classes in the leaf node are updated, according to the
matching degree of the instance at that node.

• The growth of the tree. A set of conditions are checked
to determine whether to split or not a current leaf (CL).
First, the FCs per class are summed up to compute the
total fuzzy number of instances in CL, denoted as Total
Fuzzy Cardinality (TFCCL). If this is lower than the
Grace Period (GP ), the splitting is not permitted. Other-
wise, features are ranked according to the FIG, computed
for each feature Xf . Then, the Fuzzy Hoeffding Bound
for the current leaf (FHBCL) is computed as follows:

FHBCL =

√
R2 ln(1/δ)

2TFCCL
, (2)

where R is the log2 of the number of classes contained
in CL, and δ is the Split Confidence. If the difference
between the fuzzy information gains of the first two
attributes in the ranking is higher than FHBCL or
FHBCL is lower than a Tie Threshold (TT ), then the
splitting of CL is allowed by employing the attribute with
the highest FIG. Indeed, the splitting is only done if a
further check is passed, i.e., the percentage of instances
in each post-split branch is higher than the Minimum
Fraction of Weight along two branches (MFW ). For
details on the calculation of FC and TFC go to [25].

It is worth noting that the incremental learning procedure
depends on a set of parameters (GP , δ, TT , and MFW ),
which we have summarized above.

B. Fuzzy Inference-grams

A Fuzzy Inference-gram (FINGRAM) is a graphical rep-
resentation of an FRBS at inference level and it was first
introduced in [24] and later enhanced in [26]. The term
FINGRAM was coined by analogy with the term scientogram
previously defined by Vargas-Quesada and Moya-Anegón for
visualizing the structure of science [27].

In practice, a fuzzy rule base (RB) can be seen as a popula-
tion made up of a set of individual rules which are competing
and collaborating among them with the aim of yielding good
generality-specificity and interpretability-accuracy tradeoffs.
Therefore, a FINGRAM can be depicted as a social network
where nodes (individuals of the population, i.e., single fuzzy
rules) interact at inference level. Moreover, the edges, which
graphically connect nodes in the network, actually represent
the rule co-firing degree (i.e., the degree of activation of two
rules simultaneously fired by a given data instance) among the
involved fuzzy rules.



The procedure for generation and visualization of FIN-
GRAMs comprises three main steps:
• Network Generation. Given an FRBS containing N rules

and a dataset, first we compute the adjacency matrix
M of the graph to represent the network. M is an
N × N matrix with mij ∈ [0, 1] being the rule co-
firing degree of all pairs of rules (Ri and Rj) averaged
for all data instances. We can choose among different
co-firing metrics depending on the nature of the rules
(e.g., classification, regression or association rules). For
example, the most basic co-firing metric for fuzzy rule-
based classifiers is adapted from the co-citation metric
defined by Salton and Bergmark for scientograms [27].
It is computed as follows [26]:

mij =

{ |Di∩Dj |√
|Di|·|Dj |

, i 6= j

0 , i = j
(3)

where |Di| counts the number of data instances which
are covered by rule Ri (i.e., the rule firing degree of Ri

for a given data instance is greater or equal than a given
threshold), while |Di ∩ Dj | counts the number of data
instances which are covered simultaneously by both Ri

and Rj .
• Network Scaling. Due to the nature of fuzzy rules, i.e.,

several rules are likely to simultaneously fire with differ-
ent activation degrees for a given data instance, the graph
associated to matrix M is likely to be dense and difficult
to analyze. Fortunately, we can choose among several
scaling algorithms (e.g., thresholding or Pathfinder) with
the aim of filtering out some of the less relevant edges
in the graph before printing and exploring the generated
FINGRAM. In short, these algorithms consider different
metrics of similarity, correlation or distance in order to
prune a given graph. In particular, we recommend to use
the Pathfinder algorithm [28], which is able to efficiently
scale FINGRAMs while preserving the most important
edges, and makes easier to visualize the underlying
structure of interactions among rules.

• Network Drawing. Depending on the selected co-firing
metric mij , the network may be drawn in the form of
a directed or undirected graph. We can choose among
several algorithms [27] for drawing pleasant graphs in
accordance with aesthetic criteria (e.g., maximizing the
use of the available space or minimizing the number
of crossed edges). In particular, we recommend the use
of the Kamada–Kawai algorithm [29] for drawing FIN-
GRAMs of fuzzy rule-based classifiers.

FINGRAMs can be generated and visualized with the stand-
alone FingramsGenerator software [30]. In addition, other
tools (e.g., KEEL [31] or GUAJE [18]) include specific
modules for dealing with FINGRAMs.

III. EXPLICLAS SOFTWARE

The architecture of ExpliClas was introduced in [19] and
comprises two main parts, namely the API and the Web Client:

• The API REST1 offers the following services:
– Session manages the access of users to the rest of

services. Users do not need to sign up but they are
automatically assigned a token for each new session.

– Dataset manages all operations related to datasets.
For the sake of simplicity, several datasets are pre-
loaded and split into training and test sets. Anyway,
users are allowed to upload other datasets. Notice
that we adopt the Weka arff dataset format [11].

– Builder is in charge of learning classification models
from the datasets previously loaded. Five classifi-
cation algorithms are already available (J48 [20],
RandomTree [20], REPTree [20], FURIA [21] and
FHDT [32]). All of them are implemented for
Weka [11]. The ExpliClas Builder service acts as
a wrapper of Weka and facilitates the generation
of classifiers even by non-expert users. Of course,
advanced users may modify the given parameters
(see Fig. 1). For example, the field “fuzzySets” lets
users to set the number of fuzzy sets for the fuzzy
partition of each feature in the dataset. It is also
possible to provide “Centroids” as a list of values
associated to each fuzzy set (except for the first and
last fuzzy sets in the partition which are anchored
to zero and one, respectively). It is worth noting
that ExpliClas validates the provided parameters and
assists the user to set valid values if needed.

Fig. 1. ExpliClas screenshot for building FHDT

– Classifier manages the inference process associated
to the classifiers previously generated. Given a data
instance, crisp trees are traversed from root to leaves
with the aim to identify the output class. In the

1ExpliClas API: https://demos.citius.usc.es/ExpliClasAPI/



case of FURIA and FHDT, a fuzzy inference engine
computes the output class in terms of the rules that
are fired by the given data instance.

– Explainer generates global and local multi-modal
(i.e., graphical + textual) explanations. Users are
provided with graphical representations associated
with decision trees and fuzzy rules on top of the
screen. Moreover, textual explanations are given at
the bottom to facilitate the understanding of the re-
lated graphics. On the one hand, global explanations
pay attention to the structure and quality, in terms of
confusion matrix, of the model. On the other hand,
local explanations pay attention to the classification
of single data instances.

– Fingrams deal with the graphical representation of
fuzzy rule-based classifiers (i.e., FURIA and FHDT)
at inference level. This service wraps the Fingrams-
Generator [30] software to make transparent to users
the generation, scaling and drawing of FINGRAMs.
The generated svg files are visualized through the
Web Client. The visual analysis of FINGRAMS
facilitates the identification of the most relevant rules
as well as of potential redundancies and/or incon-
sistencies that may be fixed in order to improve the
interpretability-accuracy tradeoff of fuzzy classifiers,
automatically learned from data.

• The Web Client2 is actually a user-friendly dynamic
dashboard for XAI. It permits users to load datasets,
generate classifiers from data, and analyze the behavior of
the generated classifiers. In addition, users can download
log txt files as well as configuration json files with
details about the Strong Fuzzy Partitions (SFPs) used for
linguistic approximations of numerical intervals, decision
trees, fuzzy rule-based classifiers, and so on.

ExpliClas assists the users along the whole pipeline from
row data to explanations in natural language. It is worthy to
note that crisp decision trees (J48, RandomTree and REPTree),
likewise FURIA, manage local semantics. This means that
each splitting condition in a node of a tree, or each fuzzy set in
a FURIA rule, are generated with the focus only on accuracy,
while disregarding the interpretability of the whole model.
As a result, they lack linguistic interpretability. To overcome
this drawback, ExpliClas creates a linguistic layer which is
endowed with global semantics on top of these models. More
precisely, for each feature in the given dataset, ExpliClas
creates a SFP. By default, a SFP is made up of three linguistic
terms (Low, Medium, and High) but it is editable by the user.
SFPs were first introduced by Ruspini [33] and they satisfy
all mathematical properties (e.g., coverage, distinguishability,
etc.) required for designing interpretable fuzzy partitions [34].
They are formally defined as follows:

∀x ∈ U :
∑
L∈T

µL (x) = 1 (4)

2ExpliClas Web Client: https://demos.citius.usc.es/ExpliClas/

where L represents each of the T linguistic terms associated
with a linguistic variable X with a fuzzy partition defined in
the universe of discourse U ; and µL(x) is the membership
degree of value x in relation with the fuzzy set which
characterizes L.

In practice, the goodness and expressiveness of textual
explanations, associated with models with local semantics, rely
on the goodness of the associated linguistic approximations.
No matter if we consider a branch of a crisp tree or a FURIA
rule, it can be translated into a conjunction of constraints
(A1 . . . AZ) that a given data instance should satisfy to be
classified as belonging to class Ck (i.e., the leaf of the branch
or the conclusion of the fuzzy rule):

IF A1 AND . . . AND AZ THEN Ck (5)

where Ai = [ai1,ai2], with i ∈ [1, Z] and Z ∈ [1,F ] being F
the number of features in the dataset, is a numerical interval
which turns out of one or more in-equations in a tree (e.g.,
ai1 ≤ a and a ≤ ai2 with a ∈ Ui that is the universe of
discourse of feature i); or it corresponds to the 0.5 − cut
in a FURIA fuzzy set. For example, given three features
(Color ∈ [0, 45], Bitterness ∈ [8, 250], and Strength ∈
[0.039, 0.136]) the following decision tree (printed in Weka
format) is translated into the 4 rules listed below:
Color <= 6
| Bitterness <= 26: 1 (50.0)
| Bitterness > 26: 3 (49.0)
Color > 6
| Strength <= 0.057: 2 (50.0/1.0)
| Strength > 0.057: 4 (2.0)

IF Color is in A1=[0,6] AND Bitterness is in A2=[8,26] THEN C1

IF Color is in A1=[0,6] AND Bitterness is in A2=[26,250] THEN C3

IF Color is in A1=[6,45] AND Strength is in A3=[0.039,0.057] THEN C2

IF Color is in A1=[6,45] AND Strength is in A3=[0.057,0.136] THEN C4

ExpliClas approximates each Ai by the closest linguistic
term L in T (i.e., by the linguistic term associated with the
fuzzy set with the most similar 0.5− cut interval in the given
SFP for feature i). The similarity S(A,L) between the two
numerical intervals A and L is computed as follows:

∀L ∈ T : S(A,L) =
A ∩ L
A ∪ L

∈ [0, 1], (6)

being 1 in case A perfectly matches L, and 0 if both intervals
are disjoint. In case that given an interval A, two different
but consecutive linguistic terms Ll and Ll+1 yielded the same
similarity value (i.e., S(A,Ll) = S(A,Ll+1) = 0.5) then the
linguistic approximation of A would be “Ll or Ll+1” (e.g.,
“Low or Medium”). Following with the previous illustrative
example, if Color were defined by a uniform SFP with two
terms (Low and High), defined by two triangular fuzzy sets,
then the two numerical intervals defined by the 0.5 − cut
would be Low = [0, 22.5] and High = [22.5, 45]. Then,
S(A1, Low) = 6/22.5 = 0.266 and S(A1, High) = 0, with
A1 = [0, 6]. So, Low would be selected as the linguistic
approximation of A1.

It is worthy to note that this linguistic approximation is not
needed in the case of FHDT which is endowed with global
semantics (i.e., ∀A ∃L ∈ T : S(A,L) = 1) which favors the



semantic interpretability and explainability of the generated
models. All the related documentation and source code are
available at:

https://gitlab.citius.usc.es/jose.alonso/xai

IV. EXPERIMENTS

The aim of this section is to show the new functionality
implemented in ExpliClas. Firstly, in Subsection IV-A, we
present the experimental setting. Secondly, in Subsection IV-B,
we delve into the advantages and drawbacks of applying
the linguistic approximation approach to build natural ex-
planations associated to models characterized by local se-
mantics, i.e., crisp decision trees and FURIA. Thirdly, in
Subsection IV-C, we pay attention to different configurations
associated with the FHDT and how they impact in getting a
good interpretability-accuracy tradeoff. In addition, we show
the naturalness and expressiveness of explanations supported
by global semantics embedded into FHDT models. Finally,
we illustrate how FINGRAMs are helpful to analyze FHDT
models at inference level.

A. Experimental setting

In the experimental analysis, we have considered two well-
known datasets (WINE and PIMA) which are taken from the
UCI machine learning repository [35]. On the one hand, WINE
contains 178 data instances. They represent the results of a
chemical analysis of wines from grapes grown in the same
Italian region but derived from three different cultivars. The
classification task consists in identifying one out of 3 types
of wines in terms of 13 features extracted from the previous
chemical analysis. On the other hand, PIMA contains 768 data
instances associated with subjects with Pima Indian heritage.
In this case, the classification task is binary. It consists in
detecting whether the subject shows sign of diabetes according
to 8 features defined by the World Health Organization.

In addition, we have considered a real-world dataset (BEER)
which was first introduced in [36]. BEER contains 400 data
instances, with 50 instances associated with each one of 8 beer
styles (Blanche, Lager, Pilsner, IPA, Stout, Barleywine, Porter,
and Belgian Strong Ale). The classification task consists in
recognizing one out of the aforementioned 8 beer styles in
terms of 3 features (Color, Bitterness and Strength), carefully
defined by a brewery worker. As described in [36], each feature
is characterized by a SFP with trapezoidal fuzzy sets. Given a
feature X ∈ {Color,Bitterness, Strength}, each linguistic
term Lx associated with X is described by a trapezoidal fuzzy
set in terms of 4 parameters [0/a, 1/b, 1/c, 0/d]. Obviously,
only 3 parameters are required in case of the first and last
fuzzy sets in a SFP, because they have semi-trapezoidal shape.
Notice that for the sake of simplicity, we have represented each
parameter by µ(x)/x, being µ(x) the membership degree of
value x and x ∈ U (U is the universe of discourse of X):

Color ∈ [0, 45]: Pale [1/0, 1/2, 0/4], Straw [0/2, 1/4, 1/7, 0/8], Amber [0/7, 1/8,
1/18, 0/20], Brown [0/18, 1/20, 1/28, 0/30], Black [0/28, 1/30, 1/45].
Bitterness ∈ [8, 250]: Low [1/8, 1/20, 0/22], Low-Medium [0/20, 1/22, 1/30,
0/35], Medium-High [0/30, 1/35, 1/45, 0/50], High [0/45, 1/50, 1/250].

Strength ∈ [0.039, 0.136]: Session [1/0.039, 1/0.05, 0/0.055], Standard [0/0.05,
1/0.055, 1/0.065, 0/0.07], High [0/0.065, 1/0.07, 1/0.085, 0/0.095], Very high
[0/0.085, 1/0.095, 1/0.136].

We have considered all algorithms implemented in Ex-
pliClas: three crisp decision trees (J48, RandomTree, and
REPTree) and two fuzzy rule-based classifiers (FURIA and
FHDT). In addition, just for comparison purposes, we have
also taken into account the Weka implementation of the crisp
Hoeffding decision tree (HDT). Moreover, as baseline from
the point of view of accuracy, we have selected the Random
Forest (RF) [37] algorithm (implemented in Weka as well)
because, as explained in [38], this algorithm is able to get
high accuracy in most classification problems.

We have applied the 10-fold cross-validation provided by
Weka [11] and reported the following quality metrics:
• for Accuracy: the ratio of correctly classified instances

(RCCI), the root mean square error (RMSE), Precision,
Recall, and F-Measure.

• for Interpretability: number of leaves/rules (NR), total
rule length (TRL), number of concepts (NC), linguistic
similarity (LS) between the concepts used in the model
and those managed by human experts.

In case of decision trees, we first translate the tree branches
into IF-THEN rules (see Eq. 5) and then we compute the
interpretability metrics previously enumerated. TRL accounts
for the total number of conditions Ai in all the rules. NC
computes the number of distinct conditions which appears in
the RB, i.e., we assume each condition to represent a concept
and we count the number of different concepts in the RB.

For each single condition in a rule, we compute the LS
with the closest linguistic term in the partition that is taken
as a reference (see Eq. 6). In the case of BEER, we have
considered as a reference both expert partitions and SFPs
uniformly distributed in the universe of discourse associated
with each feature. In the case of WINE and PIMA, since
we don’t have expert partitions, only uniform SFPs are taken
into account. We have experimented with different numbers
of fuzzy sets (2, 3, 5, 7) in the uniform SFPs. Two is chosen
because crisp trees are binary trees, so each condition yields
to two node children or one leaf node. Three, five, and seven
are odd numbers smaller than nine. We have chosen those
numbers because, according to psychologists (see [39], [40]),
human information processing capability is limited to 7 ± 2
distinct concepts for a given feature. For example, LS-2 means
we compute linguistic similarity with respect to linguistic
approximations made of 2 fuzzy sets for each feature in the
dataset. Then, we compute the LS for a given rule as the
average value of the LS computed for all conditions in the rule
premise. At the end, the LS for the whole model is computed
as the average value of the LS computed for all rules.

Tables I and II summarize the results for the three datasets
under study. In the case of the algorithm FHDT, we have
tested the influence of two parameters. Namely, the num-
ber of fuzzy sets per feature and allowing (T=true) or not
(F=false) the repetition of features when growing the tree.
Thus, for example, FHDT-2-T means the algorithm creates



TABLE I
COMPARATIVE ANALYSIS OF INTERPRETABILITY-ACCURACY TRADEOFF FOR THE CONSIDERED ALGORITHMS (WINE AND PIMA DATASETS)

Accuracy Interpretability
Dataset Algorithm RCCI (%) RMSE Precision Recall F-Measure NR TRL NC LS-2 LS-3 LS-5 LS-7

WINE RF 98.315 0.128 0.984 0.983 0.983 - - - - - - -
J48 93.820 0.202 0.938 0.938 0.938 5.2 12.9 8.4 0.604 0.601 0.508 0.373

RandomTree 93.258 0.212 0.933 0.933 0.932 11.2 39.8 39.8 0.645 0.601 0.466 0.354
REPTree 93.258 0.202 0.933 0.933 0.932 4.6 10.4 10.4 0.654 0.626 0.496 0.359

HDT 88.202 0.249 0.882 0.882 0.882 5.7 13.9 13.9 0.636 0.589 0.476 0.375
FHDT-2-F 75.281 0.425 0.789 0.753 0.752 2.9 4.7 3.8 1.000 0.667 0.400 0.286
FHDT-2-T 64.607 0.427 0.679 0.646 0.649 5.6 9.8 4.5 0.733 0.489 0.293 0.209
FHDT-3-F 87.640 0.339 0.879 0.876 0.877 7 13.4 9 0.509 1.000 0.600 0.429
FHDT-3-T 87.640 0.3257 0.878 0.876 0.876 9.6 18.6 10.2 0.458 0.905 0.543 0.388
FHDT-5-F 89.326 0.263 0.894 0.893 0.893 11.8 20.4 13.6 0.342 0.483 1.000 0.620
FHDT-5-T 90.960 0.243 0.910 0.910 0.910 14.5 26.5 13.6 0.342 0.482 1.000 0.619
FHDT-7-F 86.441 0.269 0.868 0.864 0.865 18.2 31.4 20.2 0.262 0.372 0.519 1.000
FHDT-7-T 89.830 0.254 0.900 0.898 0.898 20.4 36.2 20.4 0.262 0.367 0.521 1.000

FURIA 94.944 0.182 0.950 0.949 0.950 6.3 12.4 12.4 0.588 0.577 0.521 0.421

PIMA RF 75.781 0.403 0.754 0.758 0.755 - - - - - - -
J48 73.828 0.446 0.735 0.738 0.736 19.2 77 34 0.593 0.535 0.441 0.351

RandomTree 68.099 0.565 0.684 0.681 0.682 135 760.5 235.4 0.517 0.492 0.443 0.401
REPTree 75.260 0.429 0.747 0.753 0.748 14.5 50.9 23.3 0.590 0.541 0.466 0.405

HDT 70.573 0.446 0.700 0.706 0.702 21.2 82.2 38.2 0.538 0.502 0.411 0.363
FHDT-2-F 65.104 0.465 - 0.651 - 4.1 10 6.2 1.000 0.667 0.4 0.286
FHDT-2-T 65.104 0.465 - 0.651 - 20.7 59.3 8.8 0.736 0.491 0.294 0.210
FHDT-3-F 69.922 0.441 0.744 0.699 0.625 6.4 12.3 8.1 0.520 1.000 0.6 0.429
FHDT-3-T 72.266 0.429 0.727 0.723 0.686 34.3 82.8 12.4 0.421 0.844 0.506 0.362
FHDT-5-F 73.890 0.423 0.738 0.739 0.714 19.6 47.9 23.4 0.330 0.505 1.000 0.638
FHDT-5-T 75.785 0.409 0.757 0.758 0.740 54.4 149.6 29.8 0.294 0.442 0,891 0.562
FHDT-7-F 72.881 0.421 0.719 0.729 0.715 32.6 75.2 37.5 0.253 0.370 0.561 1.000
FHDT-7-T 75.984 0.401 0.754 0.760 0.751 77.2 213.8 40.3 0.248 0.365 0.548 0.988

FURIA 74.479 0.473 0.737 0.745 0.734 7.8 17.5 17 0.649 0.583 0.484 0.405

TABLE II
COMPARATIVE ANALYSIS OF INTERPRETABILITY-ACCURACY TRADEOFF FOR THE CONSIDERED ALGORITHMS (BEER DATASET)

Accuracy Interpretability
Algorithm RCCI (%) RMSE Precision Recall F-Measure NR TRL NC LS-2 LS-3 LS-5 LS-7 LS-EXP

RF 96.250 0.087 0.962 0.963 0.962 - - - - - - - -
J48 95.000 0.108 0.950 0.950 0.950 9.8 23.4 15.5 0.526 0.598 0.542 0.473 0.585

RandomTree 94.000 0.123 0.940 0.940 0.940 27.6 75.4 42.9 0.419 0.445 0.439 0.426 0.462
REPTree 95.250 0.107 0.953 0.953 0.952 8 18 12.9 0.580 0.602 0.517 0.459 0.565

HDT 92.000 0.145 0.920 0.920 0.920 10.8 25.1 16.7 0.482 0.549 0.511 0.473 0.526
FHDT-2-F 37.500 0.316 0.450 0.375 0.309 2.6 3.8 3.2 1.000 0.667 0.400 0.286 0.448
FHDT-2-T 36.000 0.317 0.413 0.360 0.332 10.9 16.6 4.7 0.450 0.300 0.180 0.128 0.212
FHDT-3-F 66.000 0.289 0.718 0.660 0.636 6 11.5 7.5 0.542 1.000 0.600 0.429 0.620
FHDT-3-T 72.000 0.273 0.774 0.720 0.705 18.9 37.6 12.2 0.401 0.721 0.433 0.309 0.444
FHDT-5-F 79.950 0.252 0.823 0.799 0.792 10.9 19.1 12.4 0.363 0.471 1.000 0.611 0.791
FHDT-5-T 86.146 0.210 0.870 0.861 0.864 25.6 52.3 15.3 0.331 0.446 0.934 0.575 0.710
FHDT-7-F 87.154 0.225 0.882 0.872 0.873 15.7 26.6 17.7 0.267 0.389 0.522 1.000 0.485
FHDT-7-T 95.214 0.158 0.953 0.952 0.952 35.3 68.8 19.8 0.251 0.361 0.520 0.971 0.482

FHDT-544-F 76.000 0.257 0.802 0.760 0.739 9.2 14.8 10.6 0.401 0.507 0.897 0.593 0.582
FHDT-544-T 83.750 0.224 0.852 0.838 0.840 22.5 44.9 14.1 0.381 0.476 0.745 0.528 0.514
FHDT-EXP-F 89.750 0.228 0.902 0.898 0.898 11 19.4 13 0.417 0.497 0.858 0.586 0.707
FHDT-EXP-T 94.750 0.174 0.949 0.948 0.947 23.7 51.4 13.8 0.427 0.513 0.791 0.584 0.684

FURIA 95.750 0.097 0.957 0.958 0.957 14.6 30.8 29.8 0.483 0.525 0.490 0.488 0.507

SFPs with two fuzzy sets uniformly distributed in the universe
of discourse of each feature. T means repetition of features is
allowed. In the case of BEER, FHDT-544-F means that we
considered different number of fuzzy sets per feature (5 for
Color, 4 for Bitterness and 4 for Strength) in accordance with
the expert partitions taken as reference. F means repetition
of features is not allowed. We used EXP instead of 544 to
identify non-uniform SFPs closer to those defined by the
expert. Notice that even though expert partitions previously
defined manage fuzzy sets with trapezoidal shape the current
implementation of FHDT only manages triangular fuzzy sets.
Therefore, we defined EXP partitions in FHDT-EXP as follows
(with centroids in brackets):

Color (FHDT-EXP): Pale (0), Straw (5.5), Amber (13), Brown (24), Black (45).
Bitterness (FHDT-EXP): Low (8), Low-Medium (26), Medium-High (40), High
(250).
Strength (FHDT-EXP): Session (0.039), Standard (0.06), High (0.0775), Very
high (0.136).

The following sections discuss the main findings derived
from these experiments.

B. Analysis of linguistic explanations associated with models
with local semantics

As it can be appreciated in Tables I and II, the most
accurate models are usually built with RF and FURIA. In ad-
dition, REPTree generates models with a good interpretability-
accuracy tradeoff. They are the most compact models in terms
of NR, TRL and NC among all models with local semantics



(i.e., J48, RandomTree, REPTree, HDT and FURIA), but they
also have an accuracy that is not far from FURIA in all the
three problems under study.

It is worthy to note that the linguistic approximation applied
on top of these models is the only way to verbalize their
behavior in natural language. For example, flavonoids < 1.23
AND color intensity ≥ 3.42 THEN Wine3 is a branch of
a REPTree for the WINE classification problem, and it is
translated into Wine is Wine3 because flavonoids is low and
color intensity is high with LS-2 equals 0.494. In practice, the
reported values for LS are always under 0.7 (they are actually
under 0.5 in many cases) what may jeopardize explainability
and yield to misunderstanding in some cases. Someone may
argue that in case LS is smaller than 0.5 it may be better
just to keep the numbers as part of the explanation (e.g.,
Wine is Wine3 because flavonoids is smaller than 1.23 and
color intensity is greater or equal than 3.42) instead of using
vague linguistic approximations. However, the validation of
this hypothesis remains out of the scope of this work.

C. Analysis of multi-modal explanations associated with mod-
els with global semantics

Models built with FHDT (the only algorithm endowed
with global semantics in our experiments) represent a Pareto
of solutions with different balance between accuracy and
interpretability. The smaller the number of fuzzy sets the better
the interpretability but the worse the accuracy. It seems that at
least 5 fuzzy sets are needed to achieve accuracy comparable
to models with local semantics. In addition, allowing repetition
of features seems to produce more accurate models while they
still exhibit good interpretability in terms of NR, TRL and NC.
Notice that, as expected, FHDT clearly overwhelms the rest
of the algorithms regarding LS. Models built with FHDT and
no repetition of features (F) always produce some LSs equal
to 1. However, models built with FHDT and with repetition
of features produce usually high values of LS as well.

In the case of the BEER classification problem, we can
analyze results in comparison with fuzzy partitions defined
by humans. Contrary to intuition, FHDT-EXP does not pro-
duce the best LS-EXP. Due to the fact that FHDT does
not implement yet fuzzy sets with trapezoidal shape, so the
generated partitions differ from the expert ones. As a result, we
observe that the linguistic approximation (LS-EXP) is better
when considering uniform SFP with 5 fuzzy sets per feature
(FHDT-5) than when approximating the expert partitions with
triangular fuzzy sets (FHDT-544); but at the cost of lower
accuracy. We can conclude that FHDT-EXP-F produces the
best model regarding both accuracy and explainability.

As an illustrative example, Fig. 2 shows the FINGRAM
generated for FHDT-EXP-F and one given data instance. Each
node represents one rule and the colored area corresponds to
the degree of activation for the majority class associated with
such a rule. Only rules fired for the given data instance are
displayed with the aim of facilitating the interpretation of the
fuzzy inference process. We observe that rules R9 and R10
are partially redundant (connected by green edge) since both

vote for Belgian Strong Ale as main class, while they are
in competition with rule R6 (connected by red edge) which
is for Barleywine. It is worthy to remind that FHDT can
assign several classes to the same rule with different weights.
Thus, the final class is chosen after analyzing the interpolation
of weights among all fired rules. In the RB, the average
number of co-fired rules is 2.618 which is small enough to
allow a human-friendly fingram-based analysis. The interested
reader is kindly referred to [26] for further details about how
to generate and interpret FINGRAMS. Moreover, illustrative
examples about how FINGRAMS facilitate understanding of
the FURIA inference process are also provided in [26].

Fig. 2. Instance-based FINGRAM for FHDT-EXP-F

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the new version of Expli-
Clas which is enhanced with the explainable fuzzy decision
trees called FHDTs. They are endowed with global seman-
tics thanks to the use of SFPs. As we have shown in the
experimental section, FHDTs exhibit a good interpretability-
accuracy tradeoff. Moreover, they yield more natural textual
explanations than those based on linguistic approximations of
numerical intervals coming out of transparent models with lo-
cal semantics (but without inherent linguistic interpretability).
In addition, we have added a new service for generation and
visualization of FINGRAMs, i.e., for facilitating the visual
analysis and the comprehension of fuzzy rules at inference
level. As we have shown with an illustrative example, FIN-
GRAMs assist users to identify the most relevant rules but
also to identify potential redundancies and inconsistencies that
should be fixed in order to produce a rule-based classifier with
better interpretability-accuracy tradeoff.

As future work, we plan to add more Weka algorithms
(even black-box algorithms) to ExpliClas. In addition, we will



generate textual explanations associated with FINGRAMs.
Moreover, we will combine numbers and vague linguistic
terms to enhance the explanations currently generated by
ExpliClas. The effectiveness of such explanations will be mea-
sured through intrinsic and extrinsic evaluation with humans.

ACKNOWLEDGMENT

Jose M. Alonso is a Ramón y Cajal Researcher
(RYC-2016-19802). This research is supported by the
Spanish Ministry of Science, Innovation and Universi-
ties (grants RTI2018-099646-B-I00, TIN2017-84796-C2-1-
R, TIN2017-90773-REDT, RED2018-102641-T), the Galician
Ministry of Education, University and Professional Train-
ing (grants ED431F 2018/02, ED431C 2018/29, ED431G/08,
ED431G2019/04), and the Italian Ministry of Education and
Research (MIUR), in the framework of the CrossLab project
(Departments of Excellence) and of the PON R&I 2014-2020
“AIM: Attraction and International Mobility” project. Some
of the previous grants were co-funded by the European Social
and Regional Development Fund.

REFERENCES

[1] European Commission, “Artificial Intelligence for Europe,” Euro-
pean Commission, Brussels, Belgium, Tech. Rep., 2018, Communi-
cation from the Commission to the European Parliament, the Eu-
ropean Council, the Council, the European Economic and Social
Committee and the Committee of the Regions (SWD(2018) 137 fi-
nal), https://ec.europa.eu/digital-single-market/en/news/communication-
artificial-intelligence-europe.

[2] C. Molnar, Interpretable Machine Learning. Leanpub, 2019.
[3] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and

D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Computing Surveys, vol. 51, no. 5, pp. 93:1–93:42, 2019.

[4] C. Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead,” Nature Machine
Intelligence, pp. 206––215, 2019.

[5] J. M. Alonso, C. Castiello, and C. Mencar, “Interpretability of Fuzzy
Systems: Current Research Trends and Prospects,” in Springer Hand-
book of Computational Intelligence, J. Kacprzyk and W. Pedrycz, Eds.
Springer Berlin / Heidelberg, 2015, pp. 219–237.

[6] D. Dubois, “Forty years of fuzzy sets,” Fuzzy Sets and Systems, vol.
156, no. 3, pp. 331–333, 2005.

[7] J. M. Alonso, C. Castiello, and C. Mencar, “A bibliometric analysis
of the explainable artificial intelligence research field,” in International
Conference on Information Processing and Management of Uncertainty
in Knowledge-based Systems (IPMU), 2018, pp. 3–15.

[8] J. M. Alonso, “From Zadeh’s computing with words towards explainable
artificial intelligence,” in International Workshop on Fuzzy Logic and
Applications. Springer, 2018, pp. 244–248.

[9] O. Cordón, “A historical review of evolutionary learning methods for
Mamdani-type fuzzy rule-based systems: Designing interpretable ge-
netic fuzzy systems,” International Journal of Approximate Reasoning,
vol. 52, pp. 894–913, 2011.

[10] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, pp. 1–38, 2019.

[11] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[12] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning: with Applications in R. Springer, 2017.

[13] R. Layton, Learning Data Mining with Python. Packt Publishing, 2015.
[14] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?:

Explaining the predictions of any classifier,” in 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 1135–1144.

[15] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri,
and F. Turini, “Factual and counterfactual explanations for black box
decision making,” IEEE Intelligent Systems, 2019.

[16] J. Alcala-Fdez and J. M. Alonso, “A Survey of Fuzzy Systems Software:
Taxonomy, Current Research Trends, and Prospects,” IEEE Transactions
on Fuzzy Systems, vol. 24, no. 1, pp. 40–56, 2016.

[17] S. Guillaume and B. Charnomordic, “Learning interpretable fuzzy
inference systems with FisPro,” Information Sciences, vol. 181, no. 20,
pp. 4409–4427, 2011.

[18] D. P. Pancho, J. M. Alonso, and L. Magdalena, “Quest for
interpretability-accuracy trade-off supported by fingrams into the fuzzy
modeling tool GUAJE,” International Journal of Computational Intelli-
gence Systems, vol. 6, pp. 46–60, 2013.

[19] J. M. Alonso and A. Bugarı́n, “ExpliClas: Automatic generation of
explanations in natural language for weka classifiers,” in IEEE Inter-
national Conference on Fuzzy Systems (FUZZ-IEEE), 2019, pp. 1–6.

[20] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.
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