
An Incremental Algorithm for Granular Counting
with Possibility Theory

Corrado Mencar
Department of Informatics, University of Bari “Aldo Moro”, 70125 Bari, Italy

Email: corrado.mencar@uniba.it

Abstract—Data counting is non-trivial when data are uncer-
tain. In the case of uncertainty due to incompleteness, possibility
theory can be used to define a granular counting model. Two
algorithms were proposed in literature to compute granular
counting: exact granular counting, with quadratic time com-
plexity, and approximate granular counting, with linear time
complexity. However, both algorithms require that all data are
available before counting. This paper presents an incremental
granular counting algorithm which provides an efficient and
exact computation of the granular count without the need of
having all data available, thus opening the door to applications
involving data streams.

Index Terms—Possibility Theory, Fuzzy Arithmetic, Uncertain
Data

I. INTRODUCTION

Data counting is the process of finding the number of data
samples having a specific value, hence it is often a preliminary
step for several types of analysis, such as descriptive statistics,
comparative analysis, etc. It is quite a simple operation when
data are precise, but it becomes non-trivial when data are
uncertain. In fact, uncertainty in data should propagate in
counting, so that results are granular rather than precise.

There are at least four strategies to deal with uncertain data:
understand, minimize, exploit and ignore uncertainty [1]. Most
often than not, uncertainty is ignored in order to simplify the
subsequent processes, by assigning a value to an uncertain
data sample according to some arbitrary criteria. However
ignoring uncertainty may introduce bias in the subsequent
processing stages, which is hard to recognize. On the other
hand, uncertainty can be exploited by propagating it through
information processing: in this way, the results of data analysis
show their uncertainty, which can be assessed in order to judge
their final utility. But, in order to be exploited, uncertainty must
be understood and modeled by a proper theoretical framework.

In fact, several frameworks are available to deal with
uncertainty, first of all probabilistic [2], which is however a
particular case falling in the Granular Computing paradigm
that also includes classical sets [3], rough sets [4], evidence
theory [5] and possibility theory [6]. In particular, possibility
theory deals with uncertainty due to incomplete information,
e.g. when the value of an observation cannot be precisely
determined: in this case we speak of uncertain data. (This
approach contrasts with a probabilistic framework, where
precise data are collected from a random phenomenon.) We
adopt the possibilistic framework in this paper.

Mencar & Pedrycz proposed a definition of granular count
through possibility theory [7]. It was shown that the resulting
counts are fuzzy intervals in the domain of natural numbers.
Based on this result, two algorithms for granular counting were
defined: an exact granular counting algorithm with quadratic-
time complexity and an approximate counting algorithm with
linear-time complexity. Approximate granular counting is ap-
pealing in applications dealing with large amounts of data due
to its low complexity, but a compromise must be accepted in
terms of accuracy of the resulting fuzzy interval. Furthermore,
both algorithms require all data to be available before count-
ing, which is ineffective in data stream applications where data
(usually in large amounts) are collected progressively.

To overcome such limitation, a different approach is under-
taken in this paper to count data, which is based on fuzzy
arithmetic. The result is a new algorithm which carries out
exact counting but more efficiently than the original exact
counting algorithm. Most importantly, the new algorithm is
capable of computing granular count in an incremental fashion,
thus opening the door to applications involving data streams.

The concept of granular count and related algorithms are
briefly described in Sec. II, while the proposal of incremental
granular count is introduced in Sec. III. Sec. IV reports
some numerical experiments to assess the efficiency of the
proposed algorithm, as well as the outline of an application in
Bioinformatics.

II. GRANULAR COUNT

A brief summary of Granular Counting is reported in this
Section. Further details can be found in the original papers
[7], [8].

We assume that data are manifested through observations,
which refer to some objects or referents. The relation between
observations and referents—which is called reference—is bi-
nary (an observation either refers or not to a reference) but may
be uncertain in the sense that an unequivocal reference of the
observation to one of the referents is not possible. For example,
a RNA fragment can be considered as an observation that may
refer to a gene; the fragment has been generated by one gene
only but its observation may not allow to identify the gene with
certainty. We model such uncertainty with possibility theory
[6] as we assume that uncertainty is due to the imprecision of
the observation, i.e. the observation is not complete enough to
make reference unequivocal.

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

Given a set R of referents and an observation o in a set O(m)

of m observations,1 a possibility distribution is a mapping

πo : R 7→ [0, 1]

such that ∃r ∈ R : πo (r) = 1. The value πo (r) = 0 means
that it is impossible that the referent r is referred by the
observation, while πo (r) = 1 means that the referent r is
absolutely possible (though not certain). Intermediate values
of πo (r) stand for gradual values of possibility, which are
related to the completeness of information resulting from an
observation. The possibility distributions of all observations
can be arranged in a possibilistic assignment table, as exem-
plified in Table I. In the each row of the table, the possibility
distribution that an observation o ∈ O(m) refers to each
considered reference r ∈ R is reported.

TABLE I
EXAMPLE OF POSSIBILISTIC ASSIGNMENT TABLE. EACH ROW IS A

POSSIBILITY DISTRIBUTION πoj .

r1 r2 r3

o1 1 0.3 0.54
o2 0.8 1 0.6
o3 1 0 0
o4 0.864 0.91 1
o5 1 0 0
o6 0.5 1 0.64
o7 1 0.8 1
o8 0.2 0.5 1
o9 1 0 0
o10 0.6 1 0.78

A. Definition of granular count
By using the operators of possibility theory, as well as the

assumption that observations are non-interactive (i.e. they do
not influence each other), the possibility degree that a subset
Ox ⊆ O(m) of x ∈ N observations is exactly2 the set of
observations referring to an reference ri ∈ R, is defined as:

πOx (ri) = min

{
min
o∈Ox

πo (ri) , min
o/∈Ox

max
r 6=ri

πo (r)

}
(1)

with the convention that min ∅ = 1. Informally speaking, Eq.
(1) defines the possibility degree that Ox is the subset of
all and only the observations referring to ri by computing
the least possibility degree of two simultaneous events: (i)
all observations of Ox refer to ri, and (ii) all the other
observations refer to a different referent.

In order to compute the possibility degree that the number
of observations referring to a referent ri is N(m), we are not
interested in a specific set Ox, but in any set of x elements.
We can therefore define the possibility value that the number
of observations for a referent ri is x as:

N(m) (x) = max
Ox⊆O(m)

πOx (ri) (2)

1Since in our analysis we will deal with a varying number of observations,
their number m is highlighted in the notation.

2In the sense that any observation non belonging to Ox does not refer to
r.

for x ≤ m and N(m) (x) = 0 for x > m. Eq. (2) provides
a granular definition of count. Counting is imprecise because
observations are uncertain.

It is possible to prove that a granular count as in Eq.
(2) is a fuzzy interval in the domain of natural numbers.
A fuzzy interval is a convex and normal fuzzy set on a
numerical domain (in our case, it is the set of natural numbers,
N). Convexity of a fuzzy set can be established by proving
that all α-cuts are intervals, while normality of the granular
count is guaranteed because of the normality of the possibility
distributions πo for all o ∈ O(m). Fig. 1 depicts an example
of possibility distribution representing the granular count of
referent r1 in Table I.

Fig. 1. Exact granular count of referent r1 as in Table I

B. Algorithms for granular counting

The direct application of Eq. (2) leads to an intractable
counting procedure as all possible subsets of O(m) must be
considered. On the other hand, a polynomial-time algorithm
can be devised by making profit of the representation of a
granular count as a fuzzy interval. In particular, a granular
counting algorithm builds the fuzzy interval by considering the
α-cut representation of fuzzy sets. On such basis, two variants
of granular counting algorithms can be devised:
• Exact granular counting uses all the values of α that

correspond to some possibility degree in the possibilistic
assignment table;

• Approximate granular counting uses the values of α taken
from a finite set of evenly spaced numbers over]0, 1].
The number of such values depend on a user-defined
parameter nα.

The approximate granular counting is more efficient than
the exact version because it does not require to scan the
possibilistic assignment table, though at the price of a new
required parameter.

Exact granular counting (Algorithm 1) and approximate
granular counting (Algorithm 2) share the same core algorithm
(Algorithm 3) and only differ by how the set of α-values
are computed. In essence, the core algorithm computes the

Algorithm 1: EXACTGRANULARCOUNT

Data: R, i
/* R: possibil. assignment table */
/* i: index of referent to count */
Result: N ∈ [0, 1]

m

1 A← {α ∈ R : α 6= 0};
2 return GRANULARCOUNT(R, i, A);

Algorithm 2: APPROXIMATEGRANULARCOUNT

Data: R, i, nα
/* R: possibil. assignment table */
/* i: index of referent to count */
/* nα: number of α-levels */
Result: N ∈ [0, 1]

m

1 ε← 10−12;
2 A← {ε+ k · 1−ε

nα−1 : k = 0, 1, . . . , nα − 1};
3 return GRANULARCOUNT(R, i, A);

granular count by reckoning the α-cuts of the fuzzy interval
for each α value provided in input.

In brief, the core algorithm works as follows. Given the
possibilistic assignment table R, the index i of the referent
and the set A of α-cuts, the array r represents the possibility
degrees that an observation refers to ri, i.e. rj = πoj (ri)
(line 1), while r̄ represents the possibility degrees that an
observation refers to any other referent different from ri (line
2). N is the array representing the granular count (line 3). The
main cycle (lines 4–17) loops over each α ∈ A and computes
the bounds x and x̄ of the corresponding α-cut (line 5). These
bounds are calculated by looping over all observations (lines
6–13), so that x̄ is incremented if the possibility degree that
the current observation refers to ri is greater than or equal to α
(lines 7–8), while x further requires that the possibility degree
that the observation refers to any other referent is less than α
(lines 9–10). When both x and x̄ are computed, the degrees
of membership of the granular count are updated accordingly
(lines 14–16).

For a fixed referent, the time-complexity of exact granular
count is O

(
nm2

)
(being n the number of referents and m

the number of observations), while the time-complexity of
approximate granular count drops to O (m (n+ nα)). In con-
sideration that, in typical scenarios, the number of observations
is very large (i.e., m� n), especially in comparison with the
number of referents, it is deduced that approximate granular
count is the preferred choice in the case of very large amounts
of uncertain data.

III. INCREMENTAL GRANULAR COUNT

A. α-cut computation

Algorithm 3 computes the granular count for the i-th
referent given a possibilistic assignment table R and a set
A of α-values. The main cycle within the algorithm computes
the α-cut of the granular count, which is represented by the

Algorithm 3: GRANULARCOUNT

Data: R, i, A
Result: N ∈ [0, 1]

m

/* m is the number of observations */
1 r← [Rji] for j = 1, 2, . . . ,m;
2 r̄← [maxk 6=i Rjk] for j = 1, 2, . . . ,m;
3 N ← [0, 0, . . . , 0] (m+ 1 times);
4 for α ∈ A do
5 x← 0; x← 0;

/* Compute α-cut */
6 for k = 1, 2, . . . ,m do
7 if Rki ≥ α then
8 x← x+ 1;
9 if r̄ki < α then

10 x← x+ 1;
11 end
12 end
13 end

/* Update granular count */
14 for x ∈ x, . . . , x do
15 N [x]← max{N [x], α} ;
16 end
17 end
18 return N

array N and corresponds to the possibility distribution N(m)

defined in (2). For a given value of α, the variable x counts
the number of observations that refer to ri with a possibility
degree ≥ α; on the other hand, the variable x counts the
number of observations that refer to ri with a possibility
degree ≥ α and refer to any other referent with possibility
degree < α. As a consequence, x ≤ x. For the sake of our
analysis, since we will consider different values of m, we shall
denote the two variables as x(m) and x(m) respectively.

By construction, the value x(m) corresponds to the cardi-
nality of the set

O(m) =
{
o ∈ O(m)|πo (ri) ≥ α

}
(3)

while the value x(m) is the cardinality of the set

O(m) =

{
o ∈ O(m)|πo (ri) ≥ α ∧max

r 6=ri
πo (r) < α

}
(4)

with the obvious relation that O(m) ⊆ O(m). In summary, the
α-cut of the granular count N(m) is

[
N(m)

]
α

=
[
x(m), x(m)

]

B. Fuzzy increment

For an observation oj ∈ O(m), we define a fuzzy increment
as the discrete fuzzy set over {0, 1} such that3

Ij =

{
β0
0

+
β1
1

}
=

{
maxr 6=ri πoj (r)

0
+
πoj (ri)

1

}
(5)

A fuzzy increment represents the possibility that a count is
incremented by 0 (i.e. not incremented) or 1 when observation
oj is considered. The possibility that the increment is 0 is given
by the possibility that the observation does not refer to the
referent under consideration, while the increment is non-null if
it is possible that the observation refer to the referent. Because
of the normality of the possibility distribution, max {β0, β1} =
1; therefore, Ij is a fuzzy number.

Intuitively, a granular count can be identified with the
accumulation of fuzzy increments for all observations. Indeed,
the intuition is true as proved by the following theorem.

Theorem 1. For any assignment table of m observations:

N(m) =

m∑
j=1

Ij

Proof: We prove the theorem by induction on m.
a) Base case m = 1: In this case, the set of observations

is a singleton, i.e. O(1) = {o1}, therefore, by definition:

N(1) (0) = π∅ (ri) = max
r 6=ri

πo1 (r) = β0

and
N(1) (1) = πO(1)

(ri) = πo1 (ri) = β1

therefore, N(1) = I1.
b) Case m > 1: By inductive hypothesis, if we assume

the theorem valid for m, we must show that:

N(m+1) =

m+1∑
j=1

Ij

that is, we must prove the relation

N(m+1) = N(m) + Im+1

To this end, we will prove that every α-cut of N(m+1)

coincides with the α-cut of N(m) + Im+1.
Let α ∈]0, 1]. By the extension principle, the fuzzy set

N(m) + Im+1 has the following membership function:[
N(m) + Im+1

]
(x) = max

a,b:a+b=x
min

{
N(m) (a) , Im+1 (b)

}
(6)

Since b ∈ {0, 1}, eq. (6) can be simplified as:[
N(m) + Im+1

]
(x) = max {

min
{
N(m) (x) , β0

}
, (7)

min
{
N(m) (x− 1) , β1

}}
3Zadeh’s notation for fuzzy sets is used, i.e. a fuzzy set A defined on

the universe of discourse U = {x1, . . . , xn} is represented as A ={
µA(x1)
x1

+ · · ·+ µA(xn)
xn

}
. In particular, fuzzy set Ij is defined on {0, 1}.

where

Im+1 =

{
β0
0

+
β1
1

}
defined as in (5).

Let x ∈ N. Then

x ∈
[
N(m) + Im+1

]
α
⇔min

{
N(m) (x) , β0

}
≥ α

or

min
{
N(m) (x− 1) , β1

}
≥ α

or, equivalently, x ∈
[
N(m) + Im+1

]
α

if and only if:

x ∈
[
N(m)

]
α
∧ α ≤ β0 (8)

∨
x− 1 ∈

[
N(m)

]
α
∧ α ≤ β1 (9)

where
[
N(m)

]
α

=
[
x(m), x(m)

]
. Three cases can be consid-

ered.
• α ≤ β1 and α > β0: in this case, only condition (9)

applies, therefore:[
N(m) + Im+1

]
α

=
[
x(m) + 1, x(m) + 1

]
(10)

i.e., the α cut of the sum N(m) + Im+1 coincides with
the α-cut of N(m) shifted by 1.

• α ≤ β1 and α ≤ β0: in this case both conditions (8) and
(9) apply, therefore:[

N(m) + Im+1

]
α

=
[
x(m) + 1, x(m) + 1

]
(11)

∪
[
x(m), x(m)

]
=
[
x(m), x(m) + 1

]
i.e., the α cut of the sum N(m)+Im+1 expands the α-cut
of N(m) by 1 on the right.

• α > β1 and α ≤ β0: in this case, only condition (8)
applies, therefore:[

N(m) + Im+1

]
α

=
[
x(m), x(m)

]
(12)

i.e. the α cut of the sum N(m) + Im+1 coincides exactly
with the α-cut of N(m).

Notice that the fourth case, i.e. α > β1 and α > β0 is
impossible since we would have α > max {β0, β1} = 1.

We now turn our attention to N(m+1). By definition, each
α-cut is an interval[

N(m+1)

]
α

=
[
x(m+1), x(m+1)

]
where x(m+1) and and x(m+1) are the cardinalities of sets
O(m+1) and O(m+1) as defined in (3) and (4). Both sets are
subsets of O(m+1) = O(m) ∪ {om+1}, being om+1 /∈ O(m)

where πom+1
(ri) = β0 and maxr 6=ri πom+1

(r) = β1.
Again, three cases can be analyzed:
• α ≤ β1 and α > β0: in this case, by definition both

O(m+1) = O(m) ∪ {om+1}

and
O(m+1) = O(m) ∪ {om+1}

therefore x(m+1) = x(m)+1 and x(m+1) = x(m)+1. The
α-cut of N(m+1) coincides with the α-cut of N(m)+Im+1

as in (10).
• α ≤ β1 and α ≤ β0: in this case, om+1 /∈ O(m+1) but
om+1 ∈ O(m+1), therefore x(m+1) = x(m) and x(m+1) =
x(m) +1. In this case too, the α-cut of N(m+1) coincides
with the α-cut of N(m) + Im+1 as in (11).

• α > β1 and α ≤ β0: in this case, om+1 does not belong
neither to O(m+1) nor to O(m+1), therefore x(m+1) =
x(m) and x(m+1) = x(m). The α-cut of N(m+1) coincides
with the α-cut of N(m) + Im+1 as in (12).

In all cases, for all α ∈]0, 1]:
[
N(m) + Im+1

]
α

=
[
N(m+1)

]
α

,
therefore N(m) + Im+1 = N(m+1).

C. Algorithm
Theorem 1 suggests a new algorithm for incremental granu-

lar count, which is reported in Algorithm 4. Some observations
on the algorithm are noteworthy:

1) The main cycle of the algorithm (lines 4–9) loops over
the index j, which scans all the observations once;
also, the last statement in the loop (line 8) updates
the granular count represented by the array N . In this
way partial counts are always available. This makes the
algorithm applicable in data stream contexts, where data
are only progressively available during processing and
can be processed only once.

2) The granular count is represented by an array N whose
value in index k represents the membership degree
of the fuzzy interval for the number k − 1. Initially,
N represents the number 0 by a singleton array with
membership 1 in correspondence of index 1 (line 3). (It
is assumed that the degree of membership for numbers
not corresponding to any index is 0.)

3) The inner cycle updates the granular count according to
the fuzzy sum (7). The cycle runs on the length of N
which increases by one on each cycle. Notice that more
efficient implementation can avoid to increase the length
of N if no updates are necessary.

The time complexity of INCREMENTALGRANULARCOUNT
is O

(
m2 +mn

)
, being the first addend determined by the

nested cycles and the second addend determined by the
computation of r̄ (line 2). Complexity is therefore lower than
exact granular count, though still super-linear on the number
of observations. In practice, it should be observed that the
update of the granular count is performed about m2

/2 times,
because the size of the array N dynamically increases;4 also,
a more efficient implementation could avoid to increase N
when not necessary. In summary, incremental granular count
is more efficient than exact granular count although being
functionally equivalent. Approximate granular count is more
efficient (being it linear on m) but it is not functionally
equivalent to exact granular count.

4However, this requires some extra memory management.

Algorithm 4: INCREMENTALGRANULARCOUNT

Data: R, i
Result: N ∈ [0, 1]

m

/* m is the number of observations */
1 r← [Rji] for j = 1, 2, . . . ,m;
2 r̄← [maxk 6=i Rjk] for j = 1, 2, . . . ,m;
3 N ← [1];
4 for j ∈ 1, 2, . . . ,m do
5 for k ∈ 1, 2, . . . , j + 1 do
6 N ′k ← max{min{Nk, r̄j},min{Nk−1, rj}};

/* It is assumed N0 = 0 */
7 end
8 N ← N ′;
9 end

10 return N

IV. EXPERIMENTAL RESULTS

A. Efficiency evaluation

The evaluation of efficiency has been performed on syn-
thetically generated data. In particular, a number of random
possibilistic assignment tables have been generated by varying
the number of observations on a geometrical progression with
common ratio 10 but keeping the number of referents fixed to
three.5

For each possibilistic assignment table, both exact and
incremental granular counting algorithms have been applied on
the first referent, and the time required to complete operations
has been recorded.6 Each experiment has been repeated 7 times
and average time has been recorded. For each repetition, the
experiment has been looped for 10 times and the best timing
has been retained. The average execution time is reported in
Table II and depicted in Fig. 2.

TABLE II
AVERAGE EXECUTION TIME ON SYNTHETIC DATA (TIME IN SECS.)

m exact g.c. incremental g.c.

10 206 µs ± 3.26 µs 176 µs ± 6.51 µs

100 12.5 ms ± 995 µs 1.67 ms ± 57 µs

1,000 1.14 s ± 27.6 ms 18.7 ms ± 355 µs

10,000 1min 55s ± 639 ms 364 ms ± 13.9 ms

100,000 3h 22min 18.8 s ± 301 ms

The gain in efficiency of incremental granular count com-
pared to exact granular count is impressive: incremental
granular count is still practically feasible even when the
number of observations scales to 100k. The linear regression

5Each possibilistc assignment table has been generated by taking care that
each row corresponds to a normal possibility distribution.

6Experiments have been executed on a machine equipped by an Intel i7
CPU, 16GiB RAM, Linux SO. Scripts were written in Python 3.7 and executed
in Jupyter Notebook. The NumPy library has been used for fast numerical
computations, but the scripts were not implemented with the objective of
maximizing performance.

Fig. 2. Average execution time on synthetic data

in the log-log domain shows that the time required for exact
granular counting grows exactly with m2, while the growth
for incremental granular counting is ≈ m1.24. The latter value
summarizes the efficiency that is achieved by the implemen-
tation of incremental granular count, which is more apparent
for m < 10k; however, for larger numbers of obervations,
the quadratic time-complexity of the algorithm is expected to
emerge. This phenomenon can be observed in the chart, where
the slope of the line corresponding to incremental granular
count slightly changes for high values of m, with a tendency of
becoming parallel to the line corresponding to exact granular
count.

B. Application: gene expression estimation

In Bioinformatics, RNA-Seq is a protocol that allows to
examine the gene expression in a cell by sampling fragments
of RNA called “reads”. When RNA-Seq output is mapped
against a reference database of known genes, a high percentage
of reads—called multireads—map to more than one gene [9].
Multireads are a source of uncertainty in the quantification of
gene expression, which should be managed in order to provide
significant results. To this end, the mapping procedure provides
a quality index that is a biologically plausible estimate of
the possibility that a read can be associated to a gene [10].
However, a high quality index does not mean certainty in
association: two or more genes can be candidate for mapping
a read because they can be mapped with similar high quality.

Granular counting finds a natural application in the specific
problem of counting the number of reads that are possibly
associated to a gene. (Reads are considered as observations,
while genes are referents.) However, the amount of data
involved in such process may be overwhelming. For exam-
ple, the public dataset SRP014005 downloaded from NCBI-
SRA archive7, contains a case-control study of the Asthma
disease with 55,579 reads mapped on 14,802 genes (16% are
multireads). Nonetheless, accurate granular counting can be
achieved by the use of the proposed algorithm. As an example,

7ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP/
SRP014/SRP014005

in Fig. 3 the incremental granular count has been computed for
gene OTTHUMG00000189570|HELLPAR. (The time required
to compute the count was below 1s.) It is noteworthy observing
how imprecise is the count of this gene, which is due to a large
number of multireads (with different quality levels).

Fig. 3. Incremental granular counting of reads mapping to a sample gene

Incremental evaluation of the granular count can be ob-
served in Fig. 4. Incremental evaluation makes possible partial
analyses without the need to wait that all data are available. For
example, counting the first 2000 items is enough to deduce that
the number of mapped reads for the gene is highly uncertain.

Fig. 4. Four steps for incremental granular counting of reads mapping to a
sample gene (each step adds 1000 observations to the count)

V. CONCLUSIONS

The proposed incremental granular counting algorithm is
a new version of exact granular counting where efficient
computation is combined with the ability of managing partial
sets of data, thanks to the idea of counting by summing the
possibility distributions representing the reference relations.
Although the computational complexity of incremental gran-
ular counting is still quadratic with respect to the number of
observations, in practice the time required for computation

on large amounts of data is significantly smaller than original
exact count. Most importantly, partial counts are possible with
incremental granular counting, which enables to perform data
analysis using granular counts even when not all data are
available.

From the point of view of memory requirements, it must
be noticed that incremental granular count is exact, therefore
the cardinality of the set of all distinct membership degrees
compares with the set of all distinct possibility degrees of all
observations to the referent under consideration. Therefore, the
number of membership degrees scales with m. For very large
amounts of data, this might cause some problems in terms
of memory resources. In such case, approximate granular
counting is a solution as the set of membership degrees is fixed
beforehand. The development of an incremental approximate
granular counting is matter of current research.

ACKNOWLEDGMENTS

This work was partially funded by the INdAM - GNCS
Project 2019 “Metodi per il trattamento di incertezza ed im-
precisione nella rappresentazione e revisione di conoscenza”.
The author is with the Istituto Nazionale di Alta Matematica
“Francesco Severi”, GNCS group.

REFERENCES

[1] N. Boukhelifa, M.-E. Perrin, S. Huron, and J. Eagan, “How Data
Workers Cope with Uncertainty: A Task Characterisation Study,” in Pro-
ceedings of the 2017 CHI Conference on Human Factors in Computing
Systems. ACM, 2017, pp. 3645–3656.

[2] C. C. Aggarwal and P. S. Yu, “A Survey of Uncertain Data Algorithms
and Applications,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 21, no. 5, pp. 609–623, 2009.

[3] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, “Interval analysis,” in
Applied interval analysis. Springer, 2001, pp. 11–43.

[4] T. Y. Lin and N. Cercone, Rough Sets and Data Mining. Boston, MA:
Springer US, 1996.

[5] R. R. Yager, “On the Dempster-Shafer framework and new combination
rules,” Information sciences, vol. 41, no. 2, pp. 93–137, 1987.

[6] D. Dubois and H. Prade, “Possibility Theory,” in Computational
Complexity. New York, NY: Springer New York, 2012, pp.
2240–2252. [Online]. Available: http://link.springer.com/10.1007/
978-1-4614-1800-9_139

[7] C. Mencar and W. Pedrycz, “Granular counting of uncertain data,” Fuzzy
Sets and Systems, vol. 387, pp. 108–126, may 2020. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0165011419302192

[8] ——, “GrCount: Counting method for uncertain data,” MethodsX,
vol. 6, pp. 2455–2459, 2019. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S2215016119302663

[9] A. Consiglio, C. Mencar, G. Grillo, and S. Liuni, “Managing NGS
Differential Expression Uncertainty with Fuzzy Sets,” in Computational
Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2015
(Revised Selected Papers), ser. Lecture Notes in Bioinformatics,
C. Angelini, S. Rovetta, and P. M. V. Rancoita, Eds. Naples,
Italy: Springer, 2016, vol. 9874, pp. 42–53. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-44332-4_4

[10] A. Consiglio, C. Mencar, G. Grillo, F. Marzano, M. F. Caratozzolo, and
S. Liuni, “A fuzzy method for RNA-Seq differential expression analysis
in presence of multireads,” BMC Bioinformatics, vol. 17, no. S12:345,
pp. 167–182, oct 2016. [Online]. Available: http://bmcbioinformatics.
biomedcentral.com/articles/10.1186/s12859-016-1195-2

