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Abstract—Qualitative or equivalently fuzzy integrals are used
as qualitative aggregation functions or as L-fuzzy quantifiers.
In both cases they are generalisations of Sugeno integrals. The
definitions of these fuzzy integrals are quite similar and coincide
in particular cases, but surprisingly there is no deeper analysis
of their relationship. The paper attempts to fill this gap and
provides unified definitions of fuzzy quantifiers on the basis of
which various links between these fuzzy integrals are studied. In
order to make these links more visible and to emphasise their
logical structure, we present them using the graded square and
modern square of opposition.

Index Terms—Fuzzy measures, fuzzy integrals, L-fuzzy quan-
tifiers, qualitative integrals, graded square of opposition, modern
square.

I. INTRODUCTION

When we want to find out the relevant features from data,
the use of numerical aggregation functions is not always
natural since generally the collected data are imprecise and
there is often no reliable estimate of the rules (e.g., expressed
by probability distributions) governing this imprecision. In
such a case the application of qualitative aggregation functions
seems to be more appropriate. Among the most important
qualitative aggregation functions belong the Sugeno integrals
[17], [18]. The definitions of these integrals are based on
monotonic set functions named fuzzy measures or capacities
that aim to represent possible states of nature or importance
of sets of criteria, etc. Sugeno integrals provide a global
evaluation according to given local evaluations. These integrals
also appear in particular definitions of the type 〈1〉 L-fuzzy
quantifiers [7] to model the natural language quantifiers like
”all”, ”some”, ”many”, ”none”.

In both mentioned contexts, the definition of Sugeno inte-
grals is generalised onto qualitative or equivalently fuzzy inte-
grals,1 where the originally used operations of minimum and
maximum are replaced by more general ones. Although the
formal definitions of qualitative integrals in both applications
are very similar and coincide in particular cases, their major
difference consists in the nature of the evaluation scale:

The first author announces a support of Czech Science Foundation
through the grant 18-13951S and the ERDF/ESF project AI-Met4AI No.
CZ.02.1.01/0.0/0.0/17 049/0008414.

1Both the terms “qualitative” and “fuzzy” are used in the literature to refer
the integrals generalizing the Sugeno integrals.

In the context of L-fuzzy quantifiers the structure of truth
values is a complete residuated lattice. Fuzzy measures are
monotonic set functions defined on some algebra of sets which
take their values on the complete residuated lattice.2 In [7],
we can distinguish two types of fuzzy integrals, namely ⊗-
fuzzy integrals with respect to a fuzzy measure and →-fuzzy
integrals with respect to a complementary fuzzy measure.
The ⊗-fuzzy integrals are used to model quantifiers like “all”
and “some”, while the →-fuzzy integrals are used to model
quantifiers like “no” and “not all” which are negations of the
previous quantifiers from the logical perspective. When the
complete residuated lattice is an MV-algebra then both ⊗-
fuzzy integrals and →-fuzzy integrals are linked by negation,
and the ⊗-fuzzy integrals coincide with the Sugeno integrals.

In the context of qualitative aggregation functions the
evaluation scale is a totally ordered set. Sugeno integrals
are generalised extending the operation that combines the
value of the fuzzy measure on each subset of criteria and
the value of the utility function over elements of the subset.
Two qualitative integrals are obtained: one considering fuzzy
conjunction generally denoted ⊗ and another one considering
fuzzy implication denoted →. Sugeno integrals correspond
then to the case when the fuzzy conjunction is the minimum
and the fuzzy implication is Kleene-Dienes implication.

The aim of this paper is to provide a fundamental compar-
ison of the qualitative integrals which are defined in different
contexts and become identical in some particular cases. To
achieve our goal we formulate all types of qualitative integrals
in the same quite general framework, where the truth values
are interpreted in a complete residuated lattice. In order to
emphasise the logical structure and to highlight the links
between all these qualitative integrals, we present them using
the graded square and modern square of opposition. Note
that the squares of opposition are not basically designed to
interpret the links among qualitative integrals, but the use
of qualitative integrals in the context of L-fuzzy quantifiers
shows that the squares of opposition could provide a useful
tool for their simple visualization. We believe that the analysis
of elementary relationships among qualitative integrals helps

2Note that the fuzzy measures in [7] are defined more generally over an
algebra of fuzzy sets, but for the purpose of this paper, we restrict ourselves
to algebras of sets, namely, to power sets of finite sets.
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practitioners to better understand the true meaning of various
definitions of qualitative integrals which are important in
applications as decision making, classification or syllogistic
reasoning.

The paper is structured as follows. Section 2 introduces
a complete residuated lattice as the algebraic structure of
truth values and the set functions: the fuzzy measures and
the complementary fuzzy measures. Section 3 provides the
definitions of qualitative integrals and desintegrals and Section
4 summarizes their properties and fundamental relationships.
Section 5 presents the square of opposition and two its
extensions: the graded square of opposition and the modern
square of opposition. In Section 6 we propose several squares
of opposition with the qualitative integrals or desintegrals at
the vertices. Section 7 is the conclusion.

II. FRAMEWORK AND NOTATIONS

The algebraic structure of truth values is a complete resid-
uated lattice (L,∧,∨,⊗,→, 0, 1), where (L,∧,∨, 0, 1) is a
complete lattice, (L,⊗, 1) is a commutative monoid and the
adjointness property for ⊗ and → is satisfied, i.e., a ≤ b→ c
if and only if a ⊗ b ≤ c holds for any a, b, c ∈ L, where ≤
is the lattice ordering. The operations ⊗ and → are called the
multiplication and residuum, respectively. Define ¬a = a→ 0
the negation of a for any a ∈ L. We say that L is divisible if
a ⊗ (a → b) = a ∧ b holds for any a, b ∈ L and satisfies the
law of double negation if ¬¬a = a for any a ∈ L. A divisible
residuated lattice satisfying the law of double negation is called
MV-algebra. Throughout this paper we will use the following
property satisfied in each residuated lattice

(a⊗ b)→ c = a→ (b→ c). (1)

Moreover, if {bi|i ∈ I} is a non-empty set of elements from
L and a ∈ L, the following properties hold:
(a) a⊗ (

∨
i∈I bi) =

∨
i∈I(a⊗ bi),

(b) a→
∧
i∈I bi =

∧
i∈I(a→ bi),

(c) (
∨
i∈I bi)→ a =

∧
i∈I(bi → a),

(d) a⊗
∧
i∈I bi ≤

∧
i∈I(a⊗ bi),

(e)
∨
i∈I(a→ bi) ≤ a→

∨
i∈I bi,

(f)
∨
i∈I(bi → a) ≤

∧
i∈I bi → a.

If L is an MV-algebra the above inequalities may be replaced
by equalities (for more details on the residuated lattices see
we refer to [1]).

The multiplication ⊗ is increasing according to both argu-
ments, the residuum → is decreasing according to the left
argument and increasing according to the right argument.
Moreover for all a, b ∈ L, a ≤ b if and only if a→ b = 1.

Let C be a non-empty universe of discourse.

Definition 1. A fuzzy measure (or a capacity) µ : 2C → L
is a set function such that µ(∅) = 0, µ(C) = 1, and A ⊆ B
implies µ(A) ≤ µ(B).

These set functions are classically used uncertainty mod-
elling [6], or multiple criteria aggregation [12] in order to
represent the importance of the sets of possible states of nature
or sets of criteria.

Definition 2. A complementary fuzzy measure (or an anti-
capacity) ν : 2C → L is a set function such that ν(∅) = 1,
ν(C) = 0, and A ⊆ B implies ν(B) ≤ ν(A).

The complementary fuzzy measures, are used in multiple
criteria decision making when the local evaluation is inter-
preted as a degree of defect or intensity of rejection. In this
context they represent the tolerance level assigned to sets of
criteria [5].

If µ is a fuzzy measure then a complementary measure may
be introduced in two ways:
(a) ν = µcom defined as µcom(A) = ¬µ(A),
(b) ν = µneg defined as µneg(A) = µ(C \ A) where C \ A is

the complement of A in C.
One can see that if the fuzzy measure µ in the previous two
definitions is replaced by a complementary fuzzy measure ν,
we obtain dual definitions of fuzzy measures. Moreover, we
have µ ≤ (µcom)com and µ = (µneg)neg, where the first
inequality becomes the equality if the law of double negation
is satisfied. Note that the first inequality is a consequence of
the adjointness property, particularly, a→ 0 ≤ a→ 0, hence,
a ⊗ (a → 0) ≤ 0, which implies a ≤ (a → 0) → 0 for any
a ∈ L.

Definition 3. The conjugate fuzzy measure of a fuzzy measure
µ is a map µc : 2C → L defined by

µc(A) = µ(C \A)→ 0 = ¬µ(C \A).

Obviously, we have µc = (µneg)com = (µcom)neg,
(µcom)c = µneg and (νcom)c = νneg.

In what follows, we simply write
∧
A (
∨
A) instead of∧

A⊆C (
∨
A⊆C) and

∧
A6=∅ (

∨
A 6=∅) instead of

∧
A⊆C, A 6=∅

(
∨
A⊆C, A 6=∅)

III. QUALITATIVE INTEGRALS AND DESINTEGRALS

This section presents generalisations of Sugeno integrals
named qualitative integrals and qualitative desintegrals [4],
[5], [7]. Throughout this part, µ is a fuzzy measure, ν is a
complementary fuzzy measure and f : C → L is a function.

A. Qualitative integrals

The Sugeno integral of f with respect to µ is defined by:

Sµ(f) =
∨
A

(
µ(A) ∧

∧
i∈A

fi
)

=
∨
A

∧
i∈A

(µ(A) ∧ fi).

There are two possibilities to generalise the Sugeno integral:
one for each expression. Considering the binary operator ⊗,
the integrals proposed by Dubois, Prade and Rico (DPR)
generalise the first expression [4]; the integrals proposed by
Dvořák and Holčapek (DH) generalise the second expression
[7].

Definition 4. •
∫ ⊗

DH,µ f =
∨
A 6=∅(

∧
i∈A(fi ⊗ µ(A)),

•
∫ ⊗

DPR,µ f =
∨
A µ(A)⊗ (

∧
i∈A fi).

Both integrals coincide if L is an MV-algebra (see, e.g.,
Theorem 3.9 in [7]). In general, however, we have

∫ ⊗
DH,µ f ≥∫ ⊗

DPR,µ f since
∧
i∈I(a⊗ bi) ≥ a⊗

∧
i∈I bi.



With the binary operator → Dubois, Prade and Rico in [5]
defined the following residuum based integral, which is also
refered as cointegral.

Definition 5.
∫→

DPR,µ f =
∧
A(µc(A)→

∨
i∈A fi).

3

B. Qualitative desintegrals

This section deals with desintegrals, which are integrals
whose values are decreasing when the function values are
increasing. In [4], the desintegrals are defined for decreasing
local evaluation scales (i.e., 0 expresses the best evaluation)
assuming that the global evaluations have the standard order.
To introduce them, the negative scale is reversed considering
¬f and the fuzzy measure µ is replaced by a complementary
fuzzy measure ν. A different approach is considered in [7],
where the authors define a type of desintegral in the sense
that the aggregation function is decreasing according to in-
creasing values of f and the fuzzy measure is replaced by
a complementary fuzzy measure. Nevertheless, in contrast to
[4], the authors do not consider ¬f , since the function is the
first argument of the residuum operation and, therefore, the
resulting values are decreasing from the definition of residuum.

Definition 6. •
∫→

DH,ν f =
∧
A

∨
i∈A(fi → ν(A)),

•
∫ −⊗

DPR,ν f =
∫ ⊗

DPR,¬νc ¬f ,
•
∫ −→

DPR,ν f =
∫→

DPR,¬νc ¬f .

IV. PROPERTIES BETWEEN DIFFERENT QUALITATIVE
INTEGRALS AND DESINTEGRALS

This section presents various relationships between the
qualitative integrals and desintegrals introduced in the previous
section. Let us start with a result proved in [7].

Theorem 1 (Theorem 3.18). If L is a complete MV-algebra,

(i)
∫→

DH,ν f =
∧
A(
∧
i∈A fi → ν(A)).

(ii)
∫→

DH,µcom f = ¬
∫ ⊗

DH,µ f ,

(iii)
∫ ⊗

DH,νcom f = ¬
∫→

DH,ν f .

Similar properties hold for the qualitative integrals defined
by Dubois et al. [4].

Theorem 2. If L is a complete MV-algebra, then

(i)
∫→

DPR,µ f =
∧
A(
∨
i∈A(µc(A)→ fi).

(ii)
∫→

DPR,µ f = ¬
∫ ⊗

DPR,µc ¬f ,

(iii)
∫ ⊗

DPR,µc f = ¬
∫→

DPR,µ ¬f .

Proof. (i) It immediately follows from∨
i∈I(a→ bi) = a→

∨
i∈I bi.

3Note that, although, the conjugate fuzzy measure µc is applied in the
definition of residuum based integral, the integral is referred to the fuzzy
measure µ. The reason is the coincidence of

∫→
DPR,µ and

∫⊗
DPR,µ with the

Sugeno integral for the fuzzy measure µ that holds for the Kleene-Dienes
implication and the Kleene-Dienes conjunction.

(ii) We have∫→
DPR,µ f =

∧
A

(
µc(A)→

∨
i∈A fi

)
=
∧
A

(
µc(A)→ (¬¬

∨
i∈A fi)

)
=
∧
A ¬(µc(A)⊗ ¬(

∨
i∈A fi))

= ¬
(
µc(A)⊗

∨
A

(∧
i∈A ¬fi

))
= ¬

∫ ⊗
DPR,µc ¬f,

where we used a → b = a → (¬¬b) = a → ((¬b) → 0) =
(a⊗ ¬b) → 0 = ¬(a⊗ ¬b), which holds for any a, b ∈ L in
each MV-algebra.
(iii) It can be proved analogously to (ii).

The relationship between two types of residuum based
qualitative integrals is as follows.

Proposition 1. Assuming that the law of double negation is
satisfied in L, it holds that

∫→
DH,ν f ≤

∫→
DPR,νneg ¬f .

Proof. The property
∨
i∈I(bi → a) ≤

∧
i∈I bi → a entails

¬
∧
i∈A fi =

∨
i∈A ¬fi and using ¬a→ ¬b = b→ a, we get∫ →

DPR,νneg

¬f =
∧
A

((νneg)c(A)→
∨
i∈A
¬fi) =∧

A

(¬ν(A)→ ¬
∧
i∈A

fi) =

∧
A

(
∧
i∈A

fi)→ ν(A) ≥
∧
A

∨
i∈A

(fi → ν(A)) =

∫ →
DH,ν

f,

where (νneg)c = (((νneg)neg)com = νcom = ¬ν.

It should be noted that the restriction to complete residuated
lattices satisfying the law of double negation is essential
in the previous proposition, otherwise, there is no general
relationship (at least we do not see it). For complete MV-
algebras, we get the following coincidence.

Theorem 3. If L is a complete MV-algebra, then
∫→

DH,ν f =∫→
DPR,νneg ¬f.

Proof. Using (i) of Theorem 1, we have∫→
DH,ν f =

∧
A(
∧
i∈A fi → ν(A))

=
∧
A(¬ν(A)→¬

∧
i∈A fi)

=
∧
A(¬ν(A)→

∨
i∈A ¬fi)

=
∧
A(νcom(A)→

∨
i∈A ¬fi)

=
∧
A(((νcom)neg)neg(A)→

∨
i∈A ¬fi)

=
∧
A(((νneg)com)neg(A)→

∨
i∈A ¬fi)

= ((νneg)c(A)→
∨
i∈A ¬fi)

=
∫→

DPR,νneg ¬f,

where we use a→ b = ¬b→ ¬a.

Noticing that
∫ −→

DPR,ν f =
∫→

DPR,νneg ¬f , it is easy to check
that

∫→
DH,ν f ≤

∫ −→
DPR,ν f when the law of double negation is

satisfied and that
∫→

DH,ν f =
∫ −→

DPR,ν f when L is a complete
MV-algebra.

Note that similarly one can define another desintegral re-
placing a complementary fuzzy measure ν by a fuzzy measure



µ, namely,
∫→

DH,µ f . Then, we obtain
∫→

DH,µ f =
∫→

DPR,µneg ¬f
in a complete MV-algebra. Indeed, by Theorem 1, we have∫ →

DH,µ
f =

∧
A

(
∧
i∈A

fi → µ(A))

=
∧
A

(¬
∨
i∈A
¬fi → ¬¬µ(A))

=
∧
A

(¬µ(A)→
∨
i∈A
¬fi)

=
∧
A

(¬(µneg)neg(A)→
∨
i∈A
¬fi)

=
∧
A

((µneg)c(A)→
∨
i∈A
¬fi) =

∫ →
DPR,µneg

¬f,

where we used (µneg)neg = µ and the properties of a complete
MV-algebra.

Theorem 4. Let L be a complete residuated lattice, and let
us assume that the law of double negation is satisfied. Then,

(i)
∫→

DPR,µ f ≥
∫→

DH,µneg ¬f ,
(ii)

∫→
DH,µneg f ≤

∫→
DPR,µ ¬f ,

(iii) if L is an MV-algebra, then
∫→

DPR,µ f =
∫→

DH,µneg ¬f .

Proof. (i)∫→
DPR,µ f =

∧
A(µc(A)→

∨
i∈A fi)

=
∧
A(¬

∨
i∈A fi → ¬µc(A))

=
∧
A(
∧
i∈A ¬fi → (µc)com(A))

=
∧
A(
∧
i∈A ¬fi → µneg(A))

≥
∧
A

∨
i∈A(¬fi → µneg(A))

=
∫→

DH,µneg ¬f,

where we used a → b = ¬b → ¬a (due to the law of
double negation),

∨
i ai → b =

∧
i(ai → b) (i.e. for b = 0,

we obtain ¬
∨
i ai =

∧
i ¬ai) which holds in each complete

residuated lattice, and (µc)com(A) = ((µneg)com)com(A) =
¬¬µneg(A) = µneg(A).

(ii) ∫→
DH,µneg f =

∧
A

∨
i∈A(fi → µneg(A))

≤
∧
A(
∧
i∈A fi → µneg(A))

=
∧
A(¬µneg(A)→ ¬

∧
i∈A fi)

=
∧
A(µc(A)→

∨
i∈A ¬fi)

=
∫→

DPR,µ ¬f,

where we used the same properties as in case (i).
(iii) ∫→

DPR,µ f =
∧
A(µc(A)→

∨
i∈A fi)

=
∧
A(¬

∨
i∈A fi → ¬µc(A))

=
∧
A(
∧
i∈A ¬fi → µneg(A))

=
∫→

DH,µneg ¬f,

where we used a → b = ¬b → ¬a which holds in each
MV-algebra and (i) of Theorem 1.

As a consequence of Theorem 4(iii), we obtain the following
corollary.

Corollary 1. If L be a complete MV-algebra, then it holds
that

∫ −→
DPR,ν f =

∫→
DH,ν f.

Proof. From the definition of
∫ −→

DPR,ν f , we find that∫ −→
DPR,ν

f =

∫ →
DPR,¬νc

¬f =

∫ →
DH,(¬νc)neg

¬¬f =

∫ →
DH,ν

f,

where (¬νc)neg = ((νc)com)neg) = (νc)c = ν, which holds
in any MV-algebra.

V. THE GRADED AND MODERN SQUARES OF OPPOSITION

The traditional square of opposition was introduced by
logicians of Ancient Greeks in Aristotle’s time [16] to de-
scribe a logical structure between universally and existentially
quantified statements using the schema displayed in Figure 1.

A: all P’s are Q’s E: all P’s are Q’s

I: at least one P is a Q O: at least one P is a Q’

Contrary

su
ba

lte
rn

su
ba

lte
rn

subcontrary

Contradictory
Contra

dicto
ry

Figure 1. Traditional square of opposition

The vertices of the square are denoted by AEOI and satisfy
the following relations:
• A and O are the negation of each other,
• A entails I and E entails O,
• together A and E cannot be true but both maybe false,
• together I and 0 cannot be false but both maybe false.
The following subsections present the recently proposed

grade version of the traditional square of opposition [2] and the
generalisation of the square of opposition called the modern
square of opposition [19].

A. Graded square of opposition

In the graded square of opposition we attach four variables
α, ε, o, ι valued on L to vertices A,E,O,I, respectively. The
involutive nature of the negation on L is essential to define the
graded square of opposition because of the expected symmetry
between contradictories. So, we assume that L satisfies the
law of double negation, the property, which is satisfied in any
MV-algebra.

Let us consider a triplet (i, c, d) of implication, conjunction
and disjunction operations on L. Recall that c, d : L×L→ L
are increasing in both arguments, i : L×L→ L is decreasing
in the first argument and increasing in the second argument.

Definition 7. A graded square of opposition αεoι displayed
in Figure 4 respects the following constraints:
(a) α and o (resp. ε and ι) are each other’s negation:

o = ¬(α) and ι = ¬(ε).
(b) a subaltern relationship between α and ι (resp. ε and o):

i(α, ι) = 1 and i(ε, o) = 1.



(c) There is mutual exclusion between α and ε, i.e., they
cannot be simultaneously equal to 1, but can be both 0:
c(α, ε) = c(ε, α) = 0.

(d) ι and o must cover all situations but they can be simul-
taneously 1:
d(ι, o) = d(o, ι) = 1.

If we assume that
• i and c are mutually definable by semi-duality:
i(x, y) = ¬(c(x,¬(y))) ⇐⇒ c(x, y) = ¬(i(x,¬(y))),

• d : L × L → L is associated with c by the De Morgan
duality: d(x, y) = ¬(c(¬(x),¬(y))),

then the properties i(α, ι) = 1, i(ε, o) = 1, c(α, ε) = 0 and
d(ι, o) = 1 are equivalent.

α ε

ι o

Contrary

su
ba

lte
rn

subaltern

subcontrary

ContradictoryContra
dicto

ry

Figure 2. Graded square of opposition

B. Modern square of opposition

In a modern square of opposition the vertices α and o are
contradictory as well as ι and ε. In contrast to the traditional
square of opposition, the vertices do not fulfill the respective
contrary, subcontrary nor subaltern relationships, but the rela-
tionships are designed to model different oppositions between
quantified sentences. More precisely, the modern square of
opposition is formalised using the notation Q(S, P ) expressing
the formula ”Q S are P”, where Q is a quantifier, S and P
are qualifiers. The modern square of opposition displayed in
Figure 3 is defined by the following relationships between
vertices:
• the internal negation: the negation of the predicate P,
• the external negation: the negation of the whole sentence,
• the dual relation is defined as the commutative composi-

tion of the internal relation and the external negation.

internal negation
α: Q(S, P ) ε: Q(S,¬P )

dual

internal negation
ι: ¬Q(S,¬P ) o:¬Q(S, P )

du
al

external negationexternal
negation

Figure 3. Modern square of opposition

Note that the dual relation is what we name the semi-dual
relation. To summarize in a modern square of opposition, there
is a semi-duality relation between the vertices α and ι.

The modern square of opposition is used by instance to
graphically represent all relations holding between all variants
of negations that can be built using the various degrees of
freedom existing in fuzzy linguistic summaries [13].

VI. SQUARES OF OPPOSITION AND QUALITATIVE
INTEGRALS OR DESINTEGRALS

In this section, we present different squares in which ver-
tices are qualitative integrals or desintegrals. These represen-
tations should highlight the common features between both
generalisations of the Sugeno integrals.

A. Graded square of opposition with integrals

a) L is a totally ordered set (not necessary a residuated
lattice): Let us consider the qualitative aggregation schemes
defined as follows. Let π : C → L be a map such that
maxx∈C π(x) = 1. Obviously, there exists x ∈ C such that
π(x) = 1. In the multicriteria decision making the map π is a
possibility distribution of a possibility measure Π on C defined
by Π(A) = maxx∈A π(x) for any A ∈ C. The conjugate
of a possibility measure is the map N : C → L defined by
N(A) = minx 6∈A ¬π(x) for any A ∈ C.

For any map f : C → L one can define the following
qualitative aggregation schemes:

inf
x
π(x)→ f(x) and sup

x
π(x)⊗ f(x).

Adding a binary operation ∗ on L and the transformations
• the residuation of ∗ is aRes(∗)b = sup{c : a ∗ c ≤ b}
• the semi-dual of ∗ is aS(∗)b = ¬(a ∗ ¬b).

we get the following result presented in [5].

Proposition 2. If we suppose that there exists x such that
f(x) = 1, x′ such that ¬f(x′) = 1, x” such that π(x”) = 1
and y such that ¬π(y) = 1, then the graded square presented
in Fig. 4 is a graded square of opposition whenever we choose
• the operations ¬, ⊗, → such that :

1⊗ a ≥ ¬(1⊗¬a), a⊗ 1 ≥ ¬(¬a⊗ 1), and →= S(⊗),
• the negation ¬, the implication i = Res(∗), the conjunc-

tion c = S(i) and d the De Morgan dual of c where ∗ is
any conjunction on L such that a ∗ b ≤ min(a, b).

Note that the previous result does not assume the commu-
tativity of ⊗ and 1 need not be the neutral element for ⊗.

The properties: Π(A) = maxx∈A π(x) and ⊗ is increasing
according to both arguments, entail∫ ⊗

DPR,Π
f =

∫ ⊗
DH,Π

f = sup
x
π(x)⊗ f(x).

Similarly the properties: N(A) = minx 6∈A ¬π(x) and →
is decreasing according to the first argument and increasing
according to the second one, entail∫ →

DPR,N
f = inf

x
π(x)→ f(x).



α : infx π(x)→ f(x) ε : infx, π(x)→ ¬f(x)

ι : supx π(x)⊗ f(x) o : supx, π(x)⊗ ¬f(x)

Contrary

su
ba

lte
rn

su
ba

lte
rn

subcontrary

Contradictory
Contra

dicto
ry

Figure 4. Square of opposition of weighted qualitative aggregations

Hence, using the different equalities between the integrals, the
square of opposition in Fig. 4 can be rewritten to the square of
opposition displayed in Fig. 5 expressing certain links between
various qualitative integrals.

α :

∫→
DPR,N f(x)

=∫→
DH,¬Π

¬f(x)
ε :

∫→
DPR,N ¬f(x)

=∫→
DH,¬Π

f(x)

ι :

∫ ⊗
DPR,Π f(x)

=∫ ⊗
DH,Π f(x)

o :

∫ ⊗
DPR,Π ¬f(x)

=∫ ⊗
DH,Π ¬f(x)

Contrary

su
ba

lte
rn

su
ba

lte
rn

subcontrary

Contradictory
Contra

dicto
ry

Figure 5. Square of opposition of various qualitative integrals

b) L is a complete residuated lattice:
Recall that a → b = 1 if and only if a ≤ b holds in any

complete residuated lattice.

Proposition 3. In a complete residuated lattice satisfying the
law of double negation the square presented in Figure 6 is a
square of opposition considering ⊗,→, ¬, conjunction c = ⊗,
implication i =→ and defining d as the De Morgan duality
of ⊗.

Contrary
α:
∫ ⊗

DPR,µ f ε: ¬
∫ ⊗

DH,µ f

subaltern

subcontrary
ι:
∫ ⊗

DH,µ f o:¬
∫ ⊗

DPR,µ f

su
b a

lt e
r n ContradictoryContra

dictory

Figure 6. Graded square of opposition with qualitative integrals

Proof. It immediately follows from the inequality
∫ ⊗

DPR,µ f ≤∫ ⊗
DH,µ f mentioned below Definition 4. Indeed, for the sake of

simplicity, put α =
∫ ⊗

DPR,µ f , ι =
∫ ⊗

DH,µ f = 1, ε = ¬ι and

o = ¬α. From α ≤ ι, we find that i(α, ι) = α→ ι = 1. Since
α ≤ ι implies ε = ¬ι ≤ ¬α = o, we get i(ε, o) = 1. Hence,
we proved the subaltern. The contrary follows from c(α, ε) =
α⊗ε = α⊗¬ι ≤ α⊗¬α = 0, where we used the monotonicity
of ⊗ and ¬ι ≤ ¬α. Note that α ⊗ ¬α = α ⊗ (α → 0) ≤ 0,
which holds in any residuate lattice. Finally, the subcontrary
follows from d(ι, o) = ¬(¬ι ⊗ ¬o) = ¬(¬ι ⊗ α) ≥ ¬(α ⊗
¬α) = ¬0 = 1, where we used the monotonicity of ⊗ (i.e.
¬ι ⊗ α ≤ α ⊗ ¬α) and the negation reversing the ordering
(i.e. ¬(¬ι⊗ α) ≥ ¬(α⊗ ¬α)).

It should be noted that if the complete residuated lattice in
the previous proposition is a complete MV-algebra, then we
obtain a degenerated square of opposition with the pairs of
identical vertices, namely, α = ι and ε = o.

B. The modern square of opposition

This section presents modern squares with fuzzy quantifiers
or qualitative integrals. Let us syart with a generalisation of
the modern square with quantifiers presented in Fig. 3.

Let f : C → L be a map. Define finf , fsup : 2C → L as
follows:

finf(A) =
∧
i∈A

fi and fsup(A) =
∨
i∈A

fi.

It is easy to see that if the law of double negation is satisfied,
then ¬fsup = (¬f)inf and ¬finf = (¬f)sup. Now, we can
introduce a quantifier as follows:

Q(µ, fsup) =
∧
A∈2C

µc(A)→ fsup(A), (2)

which is defined for any pair of maps from 2C to L, where the
first map is a fuzzy measure µ and the second map is the map
fsup determined from a map f : C → L. One can see that
the quantifier Q is modeled as a classical type 〈1, 1〉 fuzzy
quantifier “all” defined over the universe 2C (cf. [9]–[11]),
where the residuum is used to express the implication between
qualifiers. Motivated by the modern square in Fig. 3, we can
formulate a modern square for the fuzzy quantifier defined
over the universe 2C , which is displayed in Fig. 7. It should

internal negation
A: Q(µ, fsup) E: Q(µ,¬finf)

dual

internal negation
I: ¬Q(µ,¬finf) O:¬Q(µ, fsup)

d u
a l

external negationexternal
negation

Figure 7. Modern square with fuzzy quantifiers

be noted that we introduce the internal negation of fsup as the
negation of the map f and not fsup, i.e., (¬f)sup = ¬finf .
Hence, the double application of the internal negation fsup

gives us the original map fsup, whenever the law of double
negation is satisfied, but c(fsup, (¬f)sup) = 0 is not true



for a conjunction. Therefore, c(Q(µ, fsup), Q(µ,¬finf)) 6= 0
can occur and Contrary used in the traditional (and also
graded) square of opposition fails in general, which is a
difference between these two approaches to the squares of
opposition. The following example shows that Contrary can
be satisfied if one restricts the space of fuzzy measures and
maps appropriately.

Example 1. Assume that c(Q(µ, fsup), Q(µ,¬finf) =
Q(µ, fsup)⊗Q(µ,¬finf) and consider a proper filter F on 2C ,
i.e., F ⊂ 2C such that F 6= ∅, A ∩B ∈ F for any A,B ∈ F
and if A ∈ F and A ⊆ B, then B ∈ F . Note that the elements
of a proper filter F can be interpreted as big sets in 2C . If
f : C → L and µ is a fuzzy measure such that there exists
X ∈ F with µ(X) = 1 and fsup(X) ⊗ ¬finf(X) = 0, then
Q(µ, fsup)⊗Q(µ,¬finf) = 0. Indeed, we have

Q(µ, fsup)⊗Q(µ,¬finf)

=
∧
A

µc(A)→ fsup(A)⊗
∧
B

µc(B)→ ¬finf

≤
∧
A

∧
B

µc(A)⊗ µc(B)→ fsup(A)⊗ ¬finf

≤ µc(X)⊗ µc(X)→ fsup(X)⊗ ¬finf(X) = 1→ 0 = 0.

Hence, a restriction of maps and fuzzy measures can ensure
the satisfaction of Contrary in the graded square of opposition.
Note that we used a proper filter which could solve a similar
issue posted by Murinová and Novák in [14] (see also [15]).

Note that the external negation of Q defined in (2) is the
type 〈1, 1〉 fuzzy quantifier “Some”, where the multiplication
is used to express the conjunction between qualifiers. If one
accepts the square proposed in Fig. 7 as a modern square of
opposition, one can use it for a clear description the relation-
ships among qualitative integrals and desintegrals proposed by
Dubois, Prade and Rico in [4]. More precisely, we have the
following results.

Proposition 4. In a complete MV-algebra the square presented
in Fig. 8 is a modern square considering ¬f as internal
negation and ¬ as the external negation.

internal negationA:
∫→

DPR,µ f E:
∫→

DPR,µ ¬f

dual

internal negation
I:
∫ ⊗

DPR,µc f O:
∫ ⊗

DPR,µc ¬f

du
al

external negationexternal
negation

Figure 8. Modern square with qualitative integrals

Proof. It is easy to see that Q(µ, fsup) =
∫→

DPR,µ f . We prove
only the next equality of vertices ¬Q(µ,¬finf) and

∫ ⊗
DPR,µc f

in Fig. 7 and Fig. 8, respectively, the remaining equalities can

be done analogously. Similarly to the proof of Theorem 2(ii),
we have

¬Q(µ,¬finf) = ¬
∧
A (µc(A)→ ¬finf(A))

= ¬
∧
A

(
µc(A)→ (¬

∧
i∈A fi)

)
= ¬

∧
A ¬

(
µc(A)⊗ (¬¬

∧
i∈A fi)

)
=
∨
A µ

c(A)⊗
∧
i∈A fi

=
∫ ⊗

DPR,µc f,

where we used a→ b = ¬(a⊗ ¬b).

Note that the square obtained in Fig. 8 is a generalisation of
the square in Fig. 5. A natural question that arises is whether
this square can also possess the properties of graded square
of opposition. Assuming that the law of double negation is
satisfied, one can see from the comment below Definition 7
that the square in Fig. 8 is a graded square of opposition if∫ →

DPR,µ
f ≤

∫ ⊗
DPR,µc

f, (3)

where we use a → b = 1 if and only if a ≤ b for a, b ∈
L. Unfortunately, (3) is not true in general as the following
proposition demonstrates.

Proposition 5. For any A ⊆ C such that 0 < µc(A) < 1 and
µc(A)⊗¬µc(A) < ¬µc(A), then there exists a map f : C → L
such that

∫→
DPR,µ f >

∫ ⊗
DPR,µc f .

Proof. Let us consider the map f : C → L give by

fi =

{
¬µc(A), i ∈ A,
0, otherwise.

Then, we have∫ →
DPR,µ

f =
∧
X

µc(X)→
∨
i∈X

fi =

(
∧

X∩A6=∅

µc(X)→
∨
i∈X

fi) ∧ (
∧

X∩A=∅

µc(X)→
∨
i∈X

fi) =

(
∧

X∩A6=∅

µc(X)→ ¬µc(A)) ∧ (
∧

X∩A=∅

µc(X)→ 0) =

(µc(C)→ ¬µc(A) ∧ µc(A)→ 0 =

(1→ ¬µc(A)) ∧ ¬µc(A) = ¬µc(A),

where we used the antitony of → in the first argument, i.e.,
a → c ≤ b → c if a ≥ b, , and the monotony of µ, i.e.,
µ(X) ≤ µ(A) for any X ⊆ C such that X ∩ A = ∅. On the
other hand, we have∫ ⊗

DPR,µc

f =
∨
X

µc(X)⊗
∧
i∈X

fi =∨
X∩A=X

µc(X)⊗
∧
i∈X

fi ∨
∨

X∩A6=X

µc(A)⊗
∧
i∈X

fi =∨
X∩A=X

µc(X)⊗ ¬µc(A) ∨
∨

X∩A6=X

µc(A)⊗ 0

= µc(A)⊗ ¬µc(A),

where we used the monotony of µ.



From the previous proposition, one can see that µc(A) ⊗
¬µc(A) = ¬µc(A) is a necessary condition to ensure (3)
for any map f : C → L. In a complete residuated lattice
satisfying the law double negation, for all A ⊆ C, we
have ¬µc(A) = ¬¬µ(A) = µ(A). Hence, the previous
equality can be rewritten as µc(A) ⊗ µ(A) = µ(A). Since
µc(A) ⊗ µ(A) ≤ µc(A), we find that µ(A) ≤ µc(A), i.e., µ
is a pessimistic fuzzy measure (see, e.g. [3]). The following
proposition shows a sufficient condition for which the desired
inequality (3) is satisfied.

Proposition 6. If we consider a complete residuated lattice
satisfying the law double negation, and if we consider a
pessimistic fuzzy measure then under the condition that there
exists i ∈ C such that µ({i}) = 1 the modern square with
qualitative integrals presented in Fig. 8 is also a graded square
of opposition.

Proof. Let us consider a pessimistic fuzzy measure µ and let
us suppose that there exists i0 ∈ C such that µ({i0}) = 1.
Note that we have also µc({i}) = 1. Hence, we have∫ →

DPR,µ
f =

∧
A

(µc(A)→
∨
i∈A

fi) ≤
∧
A

(µ(A)→
∨
i∈A

fi)

≤ µ({i0})→ fi0 = ¬(1⊗ ¬fi0) = fi0

≤ µc({i0})⊗ fi0 ≤
∨
A

µc(A)⊗
∧
i∈A

fi =

∫ ⊗
DPR,µc

f,

where we used the fact that µ is a pessimistic measure, i.e.,
µ(A) ≤ µc(A) for any A ⊆ C.

A trivial example of the pessimistic fuzzy measure satisfy-
ing the sufficient condition of the previous proposition is

µ(A) =

{
0, A = ∅,
1, otherwise.

One can simply verify that µc = µ and
∫ ⊗

DPR,µc f =
∨
C fi and∫→

DPR,µ f =
∧
C fi.

Proposition 7. In a complete MV-algebra the square presented
in Fig. 9 is a modern square.

internal negationA:
∫→

DH,µneg f E:
∫→

DPR,µ f

dual

internal negation
I:
∫ ⊗

DPR,µc ¬f O:
∫ ⊗

DPR,µc f

du
a l

external negationexternal
negation

Figure 9. Modern square with qualitative integrals

Proof. It immediately follows from Proposition 4, where f and
¬f are interchanged and

∫→
DPR,µ ¬f is replace by

∫→
DH,µneg f ,

which is correct according to Theorem 3.

VII. CONCLUSION

In this paper, we analyzed the relationships between recently
introduced qualitative integrals and desintegrals in literature.
For our analysis, we introduced all integrals in the unique
framework with complete residuated lattices as the algebraic
structure for truth values. In order to highlight these relation-
ships, we used the graded and modern squares of opposition
with the integrals or desintegrals at the vertices. Both squares
of opposition allow to obtain results from one type of integrals
to another one, which can be used in applications as decision
making or classification. Moreover, the properties following
from the squares of opposition can be applied in syllogistic
reasoning with generalized (fuzzy) quantifiers.
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[1] R. Bělohlávek. Fuzzy Relation Systems: Foundations and Principles,
Kluwer Academic Publisher, New York, 2002.

[2] D. Dubois, H. Prade. Gradual Structures of Oppositions. In: Magdalena
L., Verdegay J., Esteva F. (eds) Enric Trillas: A Passion for Fuzzy Sets.
Studies in Fuzziness and Soft Computing, vol. 322. Springer, 2015.

[3] D. Dubois, H. Prade, A. Rico. On the Informational Comparison of
Qualitative Fuzzy Measures. International Conference, Information Pro-
cessing and Management of Uncertainty in Knowledge-based Systems
- IPMU 2014, Montpellier, France, 216-225, 2014.

[4] D. Dubois, H. Prade, A. Rico. Residuated variants of Sugeno integrals:
Towards new weighting schemes for qualitative aggregation methods.
Inf. Sci. 329, (2016) 765-781.

[5] D. Dubois, H. Prade and A.Rico. Graded cubes of opposition and possi-
bility theory with fuzzy events. International journal of Approximative
Reasoning 84 (2017) 168-185.

[6] D. Dubois, H. Prade, R. Sabbadin. Qualitative decision theory with
Sugeno integrals, In: M. Grabisch et al., eds., Fuzzy Measures and
Integrals - Theory and Applications, Heidelberg, Physica-Verlag, 314-
322, 2000.
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