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Abstract—This paper introduces fuzzy Challenge Response
Framework, designed to understand the relationship between
the model of a real-world situation and some real observations,
based on scaled fuzzy Implicators between them. This general
framework is applied to a particular case in recommender
systems: the prediction of on-line performance given off-line
evaluation results. We perform an empirical evaluation with
real data from a Czech travel agency, comparing different
recommender algorithms, different metrics for on-line and off-
line evaluations, and different implication operators.

Index Terms—fuzzy web intelligence, recommender systems,
fuzzy decision support systems, on-line vs. off-line evaluation

I. INTRODUCTION

Theoretical algorithmic models are required to be sound
and complete. That is, computed results should be correct and
all correct results should be computable. More challenging
are scenarios, where models are connected to observable
reality (either physical, e.g. weather forecast, or biological,
e.g. diagnosis in medicine). At this point, the problem of
how to measure soundness and completeness arises. However,
the situation becomes even more challenging when human
psychology is involved. As an example, one class of such real
situations are users/customers aiming to buy some product in
an e-shop and recommender systems (RS) aiming to model
preferences of users via observing their behavior. Instead of
correct answers RS responds with an ordered list of items,
which correspond to the model of user’s preferences. Sound-
ness can be understood as a degree of user’s satisfaction with
this ordered response. Soundness becomes the only realistic
goal (it is unrealistic to ask for completeness, if the human
evaluation is involved, or e.g. while considering problems on
the open web).

Jannach and Jugovac [1] critically discussed the value of
algorithmic improvements in off-line recommender systems
evaluation scenarios, which are common in academia. On the
other hand, on-line evaluation in real-world scenarios has also
certain drawbacks, such as high resource demands, temporal
complexity, the lack of repeatability or potential negative
impact on the user experience [2]. Nonetheless, the connection
between off-line and on-line evaluation (and particular metrics
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utilized in each scenario) is often unclear and intensively re-
searched. Therefore, we selected the problem of RS evaluation
as a use-case for the proposed fuzzy Challenge Response
Framework (fChRF).

We understand the relationship between a solution (model,
algorithm) and relevance/satisfaction of the user as an fuzzy
set inclusion/implication (e.g., computed→ correct, model→
reality, or off-line evaluation→ on-line evaluation for our use-
case). Many observed phenomena in RS are inherently fuzzy.
This leads us to consider fuzzy implicators while measuring
the success of the models.

Fuzzy logic has been used for flexible database querying
for more than 30 years. As early as in the works of Zim-
mermann [3] and Fagin [4], [5], fuzzy sets were used as
score interpreted as coding ordering of query results. In [6]
Bordogna et al. reviewed the role of the inclusion operator
in the interpretation of queries addressed to databases and
Information Retrieval systems. Dubois and Prade [7] identified
the role of fuzzy sets in answering queries with incomplete
data and/or with ambiguity. Bosc and Pivert [8] analyzed trade-
off non-commutative operators (e.g. convex combination of
conjunctive and disjunctive ones), enabling merging positive
and negative judgements.

In general, we follow the idea of Bellman et al. [9], where
real world signal data and application needs contributed to the
invention of fuzzy sets model. Likewise, we base our work
also on a real world data and use-case.

The idea of Challenge Response Framework (ChRF) was
motivated by the work of Galois [10]. Galois dealt with
the problem of existence of formula for roots of higher
degree polynomials. He constructed a correspondence between
fields and groups acting on roots in such a way we can
gather information about the group’s structure from the field’s
structure and vice versa1. Motivated by Galois, in [11] we
introduced Galois-Tukey (GT) connections using correspon-
dence to gather information between structures of real line
(e.g topology and measure). In [12] Blass interpreted GT
connections as complexity reductions in computer science and
illustrated it on the reduction of the 3SAT search problem to
the 3COL search problem (vertex 3-colorability of graphs).
Challenges are sets of formulas/graphs; responses are variable

1see https://www.math3ma.com/blog/what-is-galois-theory-anyway
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truth assignment and vertex 3 coloring resp. Finally, a binary
relation determines whether the response meets the challenge.
The Challenge Response terminology was introduced by Blass
in [13]. Using this terminology, we introduced a Challenge
Response Framework (ChRF) and used it to formalize the
graphical support of querying [14].

In this paper, we utilize ChRF to understand the relationship
between a (computed) model and real world observations
in the context of small e-commerce recommender systems.
Specifically, we aim on determining the usability of various
off-line evaluation metrics in learning the true relevance of
recommendations w.r.t. on-line observation of users responses.
The base of this reduction is an implication securing that
the model indeed meets needs of the on-line situation. For
this task, we extend ChRF by fuzzy acceptance relations
and introducing a class of ”scaled fuzzy Implicators” (sfI)
to evaluate these implications. We utilized fChRF in the on-
line evaluation of recommending algorithms (i.e., evaluating
the reduction from users behavior to algorithms predictions).
Afterwards, we also utilized fChRF in evaluating usability
of individual off-line metrics for the prediction of on-line
evaluation results.

Specifically, the main contributions are as follows:
• We introduce fuzzy Challenge Response Framework

(fChRF) as an alternative way of describing reduction
of real situation to a model.

• We introduce scaled fuzzy Implicators (sfI), which serve
as an alternative way of evaluating quality of models.

• By comparing on-line and off-line results in A/B ex-
periments based on a small e-commerce enterprise, we
identified off-line metrics, that imply the actual on-line
results well.

II. BACKGROUND FORMAL MODELS

A. Fuzzy Challenge Response Framework

First, let us introduce a formal framework (fuzzy Chal-
lenge Response Framework, fChRF) for the reduction of real
world problems to computed solutions. Our use-case is to
improve the on-line performance of recommendations based
on the knowledge of off-line performance of these algorithms
(model). In a sense we reduce the on-line problem to the off-
line one.

Basic building blocks of fChRF are situations. A situation
S = (C,R,A) consists of a set of challenges C (c ∈ C are
instances of challenges), a set of possible responses R and
a fuzzy acceptability relation A : C × R −→ [0, 1] (A need
not be a crisp binary relation A ⊆ C ×R, a response can be
acceptable in some degree).

The power of fChRF is based on reductions. Namely,
challenges of real world (typically the ones that we can not
solve, or would like to improve) can be translated to challenges
of model (off-line evaluation in our use-case), where it is easier
to find responses. Hopefully, one can translate these responses
to the responses to original challenges. This appeared already
in many-one reductions of combinatorial problems. Idea of this

Fig. 1. fChRF illustration. Left: a situation with fuzzy acceptability with
offline learning (blue line - train/test data) resulting in an algorithm α
(green line), which extends calculated relevance to the whole domain. Online
evaluation - actual user behavior (red line) has to be compared to α. Right:
on-line fChRF - upper situation is real user activity and bottom is the model
situation with recommendation of α (more on this in IV-B).

paper is to translate on-line evaluations to off-line evaluations
and measure the degree of inherent implication.

Assume, we have two fChRF situations, the real world
situation Sreal = (Cre, Rre, Are) and the model situation
Smodel = (Cmo, Rmo, Amo). A pair of functions f− :
Cre −→ Cmo, f

+ : Rmo −→ Rre, is said to form a fChR-
reduction from Sreal to Smodel if the following condition holds
(∀cre ∈ Cre)(∀rmo ∈ Rmo):

Amo(f
−(cre), rmo) −→ Are(cre, f

+(rmo) (1)

So f− and f+ form a fChR reduction in some degree (see
Figure 1 right). Here is the second place, where fuzziness can
play a role. Namely, we have to find which fuzzy implicator
between two fuzzy acceptability relations is a proper model
to measure the quality of reduction.

Let us note that in our application we have dom(Amo) =
Cmo and hence we do not need the machinery introduced in
[14].

B. Scaled fuzzy connectives and residuation

For evaluation of implication (1) we need a larger scale
of implicators to fit real needs. In the following section, we
continue on our previous work [15]. Main motivation is to
have sound and complete fuzzy rule semantics based on fuzzy
modus ponens. Note that notation is mnemonic: B, b stands for
body, H,h stands for head and R, r stands for rule. Based on
Hajek’s comparative notion of truth [16], our modus ponens
is defined as follows:

(B, b), (H ←I B, r)

H,CI(b, r)
(2)

Note that →I is a connective (symbol in syntax), I denotes
it’s truth function. We say C(b, r) = h is a conjunctor, if

• C : [0, 1]× [0, 1] −→ [0, 1]
• (c1) C extends classical {0, 1} conjunction
• (c2) C is nondecreasing in both coordinates
• (c3) C is left-continuous in b-coordinate



Note that left-continuous t-norms fulfill this, nevertheless our
conjunctors need not be neither commutative nor associative.

We say that I(b, h) = r is an implicator, if
• I : [0, 1]× [0, 1] −→ [0, 1]
• (i1) I extends classical {0, 1} implication
• (i2) I is nonincreasing in b-variable and nondecreasing

in h-variable
• (i3) I is right-continuous in h variable
• (i4) (∀h < 1)I(1, h) < 1

Note that (i3) guarantees the pair (I, CI) is a residuated
pair and (i4) gives CI(1, 1) = 1.

Under these conditions we have soundness and (approxi-
mate) completeness of our fuzzy inference. Aggregation op-
erators (see e.g. [5], usually inside body) are assumed to be
left continuous in all variables.

For experiments we need a scaled fuzzy implicator to adapt
both the b-coordinate contribution by a function f(b) and
the h-coordinate contribution by function g(h). Assume both
f and g are nondecreasing function from [0, 1] into [0, 1],
f(0) = g(0) = 0, f(1) = g(1) = 1, f is left-continuous,
g is right-continuous with (∀h < 1)g(h) < 1 and I is an
implicator. Then scaled fuzzy implicator If,g is defined as
follows (specifically for Łukasiewicz):

If,g(b, h) = I(f(b), g(h))

If,gL (b, h) = min{1, 1− f(b) + g(h)}
(3)

Note that If,g is an implicator.

III. RECOMMENDER SYSTEMS USE-CASE

Now we would like to test these formal concepts in a real
world production use-case. Let us describe in more details the
considered recommender systems use-case. For the sake of
space, we only describe the most significant properties. For
more details, please refer to [2].

Recommender systems (RS) belong to the class of auto-
mated content-processing tools, aiming to provide users with
unknown, surprising, yet relevant objects without the necessity
of explicitly query for them. The core of recommender systems
are machine learning algorithms applied on the matrix of user
to object preferences. Throughout the decades of recommender
systems research, there was a discrepancy between indus-
try and academia in evaluation of proposed recommending
models. While academic researchers often focused on off-
line evaluation scenarios based on recorded past data, industry
practitioners value more the results of on-line experiments on
live systems, e.g., via A/B testing. While off-line evaluation is
easier to conduct, repeatable, fast and can incorporate arbitrary
many recommending models, it is often argued that it does
not reflect well the true utility of recommender systems as
seen in on-line experiments [17]. On-line evaluation is able
to naturally incorporate current context, tasks or search needs
of the user, appropriateness of recommendation presentation
as well as causality of user behavior. On the other hand, A/B
testing on live systems is time consuming and it can even
harm retailer’s reputation if bad recommendations are shown
to users.

A. Dataset and Evaluation Domain
We focused on recommendation tasks for small e-commerce

vendors. Specifically, our test domain was a medium-sized
Czech travel agency. The agency sells tours of various types
to several dozens of countries. Each object (tour) is available
in selected dates. All tours contain a textual description
accompanied with a range of content-based (CB) attributes,
e.g., tour type, meal plan, type of accommodation, length of
stay, prices, destination country/ies, points of interest etc.

The agency’s website contains simple attribute and keyword
search GUI as well as extensive browsing and sorting options.
Recommendations are displayed on a main page, browsed
categories, search results and opened tours. However, due to
the importance of other GUI elements, recommendations are
usually placed below the initially visible content.

B. Recommending Algorithms
A wide range of item-to-item recommending models were

defined for the experiment. We specifically considered three
branches of algorithms corresponding with the three prin-
cipal sources of data: object’s content based attributes (CB
attributes), their textual description and the history of users’
visits (collaborative filtering).

– Skip-gram word2vec models [18] were utilized for the
stream of user’s visits, i.e., the sequence of visited objects was
used instead of a sentence of words. Individual trained models
considered different embedding sizes e ∈ {32, 64, 128} and
context window sizes w ∈ {1, 3, 5}.

– Doc2vec models [19] were utilized for the textual de-
scription of objects. Doc2vec model, in addition to the word
embeddings, calculates also embeddings of the document
itself. Therefore the output of the algorithm are embeddings
of a given size for each object (document). Textual description
of objects was preprocessed by a Czech stemmer2 and stop-
words removal. Individual trained models considered different
embedding sizes e ∈ {32, 64, 128} and context window sizes
w ∈ {1, 3, 5}.

– Finally, cosine similarity models were utilized for CB
attributes. Nominal attributes were binarized, while numeric
attributes were standardized before the similarity calculation.
We evaluated two variants of the approach differing in whether
to allow evaluating similarity on self (s = True/False). In
this way, we may promote/restrict recommendations of already
visited objects, which belongs to some of the commonly used
strategies.

Given a query of a single object, the recommendations
would be a list of top-k objects most similar to the query
object (or its embeddings vector). For each considered item-
to-item recommending algorithm, we utilized several variants
of aggregation for individual items from user’s visits history.
Aggregations are composed as follows. The parameter k ∈
{1, 3, 5, 10} denotes the maximal length of the input list of
visited objects, e.g., considering only 5 most recently visited
objects.3 The keyword from {”mean”, ”max”, ”positional”

2https://github.com/UFAL-DSG/alex/tree/master/alex/utils
3Full user profile is used if no maximal length was specified.



TABLE I
OFF-LINE TRAINED ALGORITHMS. Div. and Nov: stands for diversity and
novelty enhancements; parameter e stands for embeddings size, w denotes
context window size and s denotes whether calculating similarity on self is

allowed.

ID Algorithm Parameters History Nov. Div.
1 doc2vec e: 128, w: 1 positional-1 yes no
2 doc2vec e: 128, w: 1 temporal no yes
3 doc2vec e: 32, w: 5 mean no no
4 doc2vec e: 32, w: 5 mean no yes
5 doc2vec e: 128, w: 5 max yes no
6 cosine s:False temporal yes no
7 cosine s:True mean yes no
8 cosine s:True positional-10 no no
9 word2vec e: 64, w: 5 mean no yes

10 word2vec e: 32, w: 5 temporal no yes
11 word2vec e: 128, w: 3 positional-1 no no
12 word2vec e: 32, w: 3 positional-10 no no

and ”temporal”} denotes the aggregation strategy, i.e., what
algorithm is utilized to aggregate individual results for items
from the input list. Mean and max denote average and maximal
values for each candidate object respectively. Positional and
temporal denote weighted average, where weights of less
recently visited / lower positioned objects are reduced. For
positional aggregation, the weight wp decrease with the posi-
tion kp of the object in the input list: wp = 1−(rank/kp). For
temporal aggregation, the weight wt is based on the timespan
between the visit’s date t and present:

wt = 1/(log(timespan(t).days) + ε) (4)

As certain types of algorithms may provide recommen-
dations that lacks sufficient novelty or diversity, we utilized
strategies enhancing temporal novelty as well as diversity.
For diversity enhancements, we adopted the Maximal Margin
Relevance approach [20] with λ parameter held constant at 0.8.
For enhancing temporal novelty, we applied a similar approach
and re-ranked the list of objects based on a weighted average
of their original relevance r and their temporal novelty n = wt:
r̄(o) = λ ∗ r(o) + (1 − λ) ∗ n(o). The λ parameter was held
constant at 0.8.

In general, a recommending algorithm α gets user behavior
from session t−1 and outputs ordered list of objects for session
t by assigning their position α(o).

In total, 800 variants of recommender systems were eval-
uated off-line. Based on the results of off-line metrics, 12
algorithms depicted in Table I were selected for on-line
evaluation.

IV. RECOMMENDER SYSTEMS EVALUATION

Due to the differences in evaluation processes, mea-
sures/metrics used off-line and on-line evaluation often differs.

A. Off-line Evaluation metrics

In off-line evaluation, we focused on four types of metrics,
commonly used in recommender system’s evaluation: rating
prediction, ranking prediction, novelty and diversity.

For rating and ranking based metrics, we suppose that
visited objects have the rating (relevance) r = 1 and all

others r = 0. Mean absolute error (MAE) was evaluated
as a member of rating-based metrics. Following ranking-
based metrics were evaluated: area under ROC curve (AUC),
mean average precision (MAP), mean reciprocal rank (MRR),
precision and recall at top-5 and top-10 recommendations (p5,
p10, r5, r10) and normalized discounted cumulative gain at
top-10, top-100 and a full list of recommendations (nDCG10,
nDCG100, nDCG). The choice of ranking metrics reflects the
importance of the head of the recommended list (e.g., MRR)
as only a short list of recommendations can be displayed to the
user. However, as the list of recommendable objects may be
restricted due to the current context of the user (e.g., currently
browsed category), we also included metrics evaluating longer
portions of the recommended lists (e.g., AUC, nDCG).

Two types of novelty in recommendations were considered:
recommending recently created or updated objects (temporal
novelty, novt) and recommending objects not seen by the user
in the past (user novelty, novu). For temporal novelty, we
utilized the score equal to wt (4). For user novelty, a fraction of
already seen vs. all recommended objects was used. Finally,
the intra-list diversity (ILD) [21] was utilized as a diversity
metric. Novelty and diversity metrics were evaluated on top-5
and top-10 recommended objects.

All off-line metrics were evaluated for each pair of test set
user and recommender. Mean values for each recommender
are reported.

B. On-line Evaluation measures

In on-line evaluation, our primary concern is to evaluate
the extent to which the provided recommendations imply
”positive” user actions (i.e., actions that can be considered as
an evidence of user’s preference). Due to the sparsity of high-
level preference data, such as purchases, we focused mainly
on low-level evidences of user’s preference. Specifically, we
focused on collecting two types of users’ actions: clicks and
visits. First, we consider a click on a recommended object
as (strong) evidence of positive user preference. Second, if a
recommended object was later on displayed by the user, we
also consider it as a (weaker) evidence of positive preference
(i.e., the recommendation presentation was not so persuasive
or noticed by the user, however the recommended object itself
was probably relevant). In cases, where a visited item was
recommended multiple times in the past, we attribute the visit
to the most recent recommendation. Formally, we define user’s
click response hcu(o) to the recommended object o, as 1 if
the user u clicked on recommended object o and 0 otherwise.
Similarly, user’s visit response hvu(o) is defined as 1 if the
user u visited object o after it was recommended to him/her
and 0 otherwise.

While the utilized user feedback is binary, the relevance of
recommended objects can be considered as a graded set (i.e.,
the relevance of objects decrease with the position within the
list of recommendations).

To be more formal, assume X is a set of objects, α is an
algorithm assigning each object o ∈ X a position in a list of
recommended objects (e.g. α(o) = 1 is the best object).



Assume we are interested only in top-k objects, k ≤ |X|.
Positions p ≤ k have assigned a fuzzy score 0 < sk(p) such
that sk(1) = 1 and

α(o1) < α(o2) iff sk(α(o1)) > sk(α(o2)) (5)

Note that sk(α) : X −→ [0, 1] is a fuzzy set representing the
ordering of top-k elements of X assigned by α.

The fuzzy score we use is a linear one

sk(p) =
1

k
∗ (k + 1− p) for p = 1, . . . , k (6)

The online evaluation is based on an idea that the lack
of user activity on an object (no-click, no-view) has to be
discounted according to position of that object in the list of
recommended objects. The higher the object in list (hence
more visible) the higher the penalization. Instead of defining
discount on position we define it on the respective score s(p).

Motivated by the logarithmic relevance discount introduced
in nDCG metric, we define fDGk : [0, 1] −→ [0, 1] by
fDGk (0) = 0,

fDGk (sk(p)) =
1

log2(p+ 1)
for p = 1, . . . , k (7)

and we extend it to [0, 1] by piece-wise constant left-
continuous interpolation. Notice e.g. that fDG20 (0.9) =
fDG20 (s20(3)) = 1

2 .
1) Fuzzy Challenge Response Framework for on-line mea-

sures: Let us now describe the fuzzy Challenge Response
Framework for on-line evaluation measures (for an overview,
see Figure 1, right). First, due to the nature of the underlined
domain, we consider two ChRF reductions, depending on
the underlined evidence type (clicks or visits). The reduc-
tions differ in the considered volume of objects: for clicks,
challenges Ccon contain top-kc and for visits, challenges Cvon
contain top-kv objects recommended for user u. Analogically,
we differentiate two online user behavior situations (see Figure
1, top-right), namely ”click” situation Scu = (Ccon, h

c
u, A

c
u) and

”visit” situation Svu = (Cvon, h
v
u, A

v
u).

In both cases, we record user’s feedback u (clicks hcu, or
visits hvu) on objects from Ccon and Cvon resp. Acceptability
relations Au equals the user’s responses, e.g., Acu(o, hcu(o)) =
hcu(o).

We further consider two analogical model situations (see
Figure 1 bottom, right) Scα and Svα. They contain the same
challenges as in behavior situations, and record actions of
a recommender α, i.e., positions of objects in the list of
recommendations α(o). Note that as usually kc ≤ kv and
therefore a response for Cvon is an extension of response for
Ccon. Avα is an extension of Acα. Acceptability relations have
the same definition for both model situations, up to the usage
of kc and kv parameters and equals the linear fuzzy score (6)
of objects’ position w.r.t. algorithm α.

Acα(o, α(o)) = fDGk (sk(α(o))) (8)

To sum up, model situations Scα and Svα can be denoted
as (Ccon, {1, 2, . . . , kc}, Acα) and (Cvon, {1, 2, . . . , kv}, Avα) re-
spectively. Reductions f−, f+ are in these cases identities as

users and objects are same (and similarly responses are num-
bers from [0, 1]). Correctness of reduction (1) turns to fuzzy
implicator If,gL/G(b, h), where b = Aα(o, α(o)) = s(α(o)) and
h = Au.

Let us show an example. Assume kc = 6, kv = 20, α(o1) =
1 and α(o2) = 6 (i.e. o1 is the best object by recommender α
and o2 is on the tail of the ”click” list and in the first third on
the ”visit” list). Furthermore assume f to be fDGk and g to be
an identity, α and u are fixed. Then the online performance
of algorithm α if object o2 was not ”clicked” or ”visited” is
computed as follows:

Acceptability degree in user behavior situation is

g(h) = h = Ac/vu (o2, h
c/v
u (o2)) = Ac/vu (o2, 0) = 0 (9)

For the model situation, acceptability is as follows:

Ac/vα (o2, 6) = fDG6 (1/6) = fDG20 (0.75) ≈ 0.356 (10)

Note that we use an approximation of fDGk (sk(6)) =
1/ log2(6+1) ≈ 0.356. Corresponding Łukasiewicz implicator
evaluates as

I
fDG
6 ,g
L (1/6, 0) = I

fDG
20 ,g
L (0.75, 0) ≈ 0.644 (11)

If o2 was clicked/visited, the result is 1 for both implicators.
For o1, the result is 1 if clicked/visited and 0 otherwise. For
Goedel implicator, fuzzy scaled implicator for this scenario is
just the classical binary implication.

2) Aggregations of on-line measures: In [22] Hajek and
Havranek introduced implicational quantifiers. These were
various combinations of number (sums) of true positives, false
positives, true negatives and false negatives. They used it in
cases where data could be expressed in a four-fold table (4ft).
Implicational quantifiers were used to measure relevance of
implication ϕ → ψ between crisp classifications ϕ/¬ϕ and
ψ/¬ψ forming axes of 4ft. Motivated by [22] we interpret
quantifiers in implication (1) by aggregation. It makes good
sense because we would like to have overall evaluation on
”how good is α (trained off-line with respect to some metric)
in predicting users on-line behavior”.

Lets assume the previously described fuzzy Challenge Re-
sponse Framework and furthermore f to be fDGk and g to
be an identity. Then we can define several variants of scaled
fuzzy implicators as a function of item o recommended by
algorithm α to the user u and his/her on-line response:4

IcL(α, o, u) := min
{

1, 1− fDGkc (skc(α(o))) + hcu(o)
}

IvL(α, o, u) := min
{

1, 1− fDGkv (skv (α(o))) + hvu(o)
}

IcG(α, o, u) := hcu(o)

IvG(α, o, u) := hvu(o)

(12)

Having the scaled fuzzy implicators defined on the individ-
ual pairs of recommended objects and user’s responses, we
yet need to define their aggregations in order to obtain some

4Note that Goedel and Product implications are equal here and reduced to
the binary form due to the binary user’s response h and non-zero object’s
relevance w.r.t. α.



relevant performance statistics for individual recommending
algorithms. While in theory, it is possible to consider e.g.
minimal or median values, in our use-case it is impractical,
as the user’s positive response is quite scarce in recommender
systems.5 Instead, we focused on several aggregation metrics
based on (weighted) average of implicator values for individual
recommending algorithms. First, let IcL(α) denote the mean
value of IcL(α, o, u) for all applicable combinations of object
o and user u. Other implicator variants will be aggregated
analogically. Note that IcG(α) is identical to the click through
rate (CTR) commonly utilized in RS evaluation.

Two additional aggregation metrics were evaluated: position
discounted and user’s novelty based. In user’s novelty based
approach, we address the problem that the evaluation may be
infested by a small volume of users with excessive interaction
records. This is a specific consideration for travel agencies,
where it is extremely rare if a user buys more than a single tour
at once. Therefore, individual users have similar value for the
agency and it should be reflected in the RS evaluation metrics -
specifically it is important to assess, how the system performs
for the novel users. Therefore, IcG,nov(α) and IvG,nov(α) are
defined as weighted averages with weight w = 1/|Xu|,
where Xu denotes all objects visited by the user u. In
position discounted weighting, the idea is that recommending
algorithms should provide ordering as consistent with the
user’s evaluation as possible (beyond a simple presence in
top-k) and so the positively evaluated objects recommended
on the lower positions should receive less credit. Therefore,
IcG,pos(α) and IvG,pos(α) are defined as weighted averages
with weight w = 1/log2(α(o) + 1). Please note that novelty
and position based weighting could be introduced analogically
also for Łukasiewicz implications, but we omit them here for
the sake of space and clarity.

V. RESULTS AND DISCUSSION

A. Off-line Evaluation

For the off-line evaluation we used a dataset from [2] and
evaluated it w.r.t. metrics described in Section IV-A. After
some cleansing steps, the evaluation dataset contained 260K
records of 72K users. We split the dataset into a train set
and a test set based on a fixed time-point, where test set
contained one and half month of most recent interactions.
After limiting to users, who have at least one record in the train
set as well, the resulting test set contained 3400 records of 970
users. Based on the results w.r.t. individual off-line metrics, 12
algorithms (see Table I) were selected for on-line A/B testing.
Selected off-line and on-line metrics of these algorithms are
displayed in Table II.

B. fChRF for On-line Evaluation

The on-line A/B testing was conducted on the travel
agency’s production server for a period of approximately
one month. One recommending algorithm was assigned to
each user based on his/her ID. During the on-line evaluation,

5I.e., in majority of cases, huc (o) and huv (o) equals to zero.

we monitored which objects were recommended to the user,
whether (s)he clicked on some of them and which objects (s)he
visited.

A total of 4238 users participated in the on-line evaluation
and in total over 26000 recommending sessions were observed.
The total volume of click events was 830 and the total volume
of visits after recommendation was 2824.

In order to retrieve the implication scores, we yet need to
set the size of considered top-k lists. Although the selection
can be arbitrary in general, we followed the properties of
the background application. The application displays top-6
recommended items to the user, while it logs top-20 most
relevant items according to the algorithm α. Therefore we set
kc = 6 for the clicks-based response hc (as lower ranked items
were not displayed to the user and therefore (s)he could not
click on them) and kv = 20 for the visits-based response hv
(as lower-ranked items could be still visited).

Table II contains results of on-line A/B testing. One inter-
esting observation is that although the evaluation metrics are
based on the same response, achieved results are quite diverse.
Mean and median of Kendall’s Tau coefficient for pairwise
comparison of on-line metrics is 0.41 and 0.36 respectively.
Similar values were achieved also while comparing results
of the same implicators applied either on clicks or visits, so
we may conclude that both action types, although correlated,
measure inherently different aspects of user’s preference.

Furthermore, there is an observable increase in performance
between IG and IG,pos, so we may conclude that even
within the top-k recommended items, the ordering tends to
be consistent with user’s response. However, it is yet to
clarify, whether the difference can be attributed to the correctly
learned user model, or a position bias known, e.g., from
search engines [23]. Similarly, we also observed an increase of
performance between IG and IG,nov , meaning that evaluated
algorithms are in average better at recommending for novice
users. As for the individual recommending algorithms, there is
no single best algorithm. Nonetheless, while observing mean
ranks of algorithms w.r.t. individual on-line metrics, the top
three algorithms are IDs 10, 3 and 8 in Table I. Surprisingly,
these algorithms are members of all three branches (word2vec,
doc2vec and cosine), however, they all utilize longer users
history profiles. From the practical point of view, word2vec
models can be recommended over the other two branches,
because the evaluated word2vec models achieved most consis-
tent results, while both cosine and doc2vec branches contained
some badly performing models (IDs 6 and 4 in Table I).

C. fChRF for Off-line to On-line Reductions

In this subsection we would like to evaluate the contribution
of off-line metrics’ results to the on-line ones.

First, we consider on-line situations (i.e., results of indi-
vidual algorithms w.r.t. some on-line metric) as real world
situation and off-line situations (results of algorithms w.r.t.
individual off-line metrics) as models. Hence, we are going
to use once again fChRF reduction. Because each of off-
line metrics express a different quality of an algorithm and



TABLE II
OFF-LINE AND ON-LINE RESULTS OF RECOMMENDERS SELECTED FOR A/B TESTING. BEST RESULTS W.R.T. EACH METRIC ARE IN BOLD.

alg. AUC MRR nDCG100 nov10t nov10u ild10 IcG IcG,pos IcG,nov IcL IvG IvG,pos IvG,nov IvL
1 0.617 0.031 0.057 0.239 0.905 0.797 .00385 .00415 .0074 0.5531 .00520 .0142 .00544 0.3554
2 0.679 0.031 0.075 0.224 0.742 0.838 .00408 .00475 .0074 0.5534 .00516 .0102 .00691 0.3553
3 0.555 0.028 0.050 0.213 0.818 0.786 .00741 .00948 .0087 0.5560 .00570 .0116 .00616 0.3560
4 0.555 0.025 0.046 0.216 0.841 0.859 .00417 .00504 .0050 0.5536 .00428 .0090 .00540 0.3548
5 0.526 0.012 0.031 0.233 0.569 0.740 .00581 .00707 .0070 0.5547 .00552 .0163 .00595 0.3558
6 0.796 0.142 0.211 0.263 0.959 0.277 .00324 .00321 .0040 0.5525 .00338 .0069 .00342 0.3537
7 0.795 0.148 0.214 0.232 0.804 0.223 .00554 .00590 .0111 0.5540 .00510 .0125 .00748 0.3551
8 0.783 0.128 0.205 0.220 0.801 0.208 .00772 .00851 .0106 0.5555 .00600 .0100 .00600 0.3555
9 0.833 0.106 0.204 0.218 0.721 0.666 .00527 .00539 .0066 0.5537 .00558 .0107 .00746 0.3555

10 0.838 0.136 0.217 0.253 0.782 0.479 .00633 .00758 .0094 0.5550 .00612 .0174 .00640 0.3561
11 0.755 0.096 0.174 0.218 0.852 0.513 .00563 .00592 .0056 0.5540 .00630 .0117 .00595 0.3561
12 0.842 0.124 0.234 0.217 0.746 0.421 .00512 .00595 .0072 0.5541 .00584 .0097 .00676 0.3554

Fig. 2. Heatmap of ranked results for off-line to on-line implicators. For each on-line metric, the off-line metrics are ranked according to the corresponding
mean fuzzy implication value. Dark green represents the best results, light yellow corresponds to the mid-field and dark red represents the worst results.

algorithms decide the ordering of objects in on-line sessions,
metrics should be a part of challenges. It is impossible to
incorporate users into challenges, because the set of users
significantly differs for both off-line and on-line evaluations.
Objects in the considered domain also considerably vary in
time, hence individual objects can not be part of challenge set
as well. So, we have to utilize aggregations over users and
objects instead and apply fChRF on per-algorithm’s results
w.r.t. each combination of off-line and on-line metrics.

To be more specific, assume ρon1 , . . . , ρonm are evaluated on-
line metrics (all mentioned in Table II) and ρoff1 , . . . , ρoffn

are evaluated off-line metrics. Entries in Table II are results
aggregated along users and objects. Notice however, that
columns in Table II are not commensurable - we have to
normalize them.

For each off-line metrics ρoffp , p = 1, . . . , n let xpi : i =
1, . . . , 12 be the performance of algorithm αi measured under
ρoffp and let bpi : i = 1, . . . , 12 be its unit vector normalization
in `2 norm. Similarly for ρonq , q = 1, . . . ,m and performance
yqi : i = 1, . . . , 12 let hqi : i = 1, . . . , 12 be its unit vector
normalization.

While constructing the fChRF scenario, our approach is fol-
lowing. We fix an on-line metric ρonq and evaluate contribution
of each off-line metrics to ρonq as (13), i.e., an instance of
implication (1) for all algorithms.

To be more formal, let q ∈ {1, . . . ,m} be fixed. Let real
behavior fChRF situation Sonq = (Conq , Ronq , Aonq ) consists of

• Conq = {αi : i = 1, . . . , 12}
• Ronq = {p : p = 1, . . . , n}
• Aonq (αi, p) = hqi
Model fChRF situation Soff = (Coff , Roff , Aoff ) is

constructed similarly:
• Coff = Conq
• Roff = Ronq
• Aoff (αi, p) = bpi

Let f− and f+ be identities on respective domains.
Then implication (1) has a form of

Aoff (αi, p) −→ Aonq (αi, p) (13)

and this evaluates to I(bpi , h
q
i ) for q fixed, i = 1, . . . , 12

and p = 1, . . . , n. For evaluation of implication (13) we
use three classical fuzzy implications (Łukasiewicz, product
and Goedel). For the sake of comprehensibility, we show the
heatmaps of ranking results w.r.t. each on-line metric (see
Figure 2, which is in fact a visualization of three fuzzy sets).

Heatmaps are constructed as follows. For fixed metrics
ρoffp and ρonq , cqp is an average of respective per-algorithm
implication values:

cqp =

∑12
i=1 I(bpi , h

q
i )

12
(14)

Each row in Figure 2 represents the ranking of cqp values for a
fixed q, i.e., which off-line metric implies the selected on-line
metric more (in average).



While observing the results in Figure 2, we may note that
results w.r.t. Łukasiewicz and product implications are highly
similar. In both cases, ranking-based metrics that focus on
the whole list of recommendations (AUC, nDCG) provided
fairly good results, while other ranking-based metrics were
clearly inferior. Also 1-MAE and user-based novelty metrics
performed well. Nonetheless, the highest values were achieved
by temporal novelty metrics. On the other hand, results of
Goedel implications are almost complementary to the previous
cases. The best ranks are achieved by ranking-based metrics
focused on a short list of top-k results (r5, nDCG10, p5, MRR)
and also diversity metrics (ILD5, ILD10), which performed
especially well on visits-based on-line metrics.

We assume that this discrepancy is caused by the very
nature of each implicator. Note that Goedel implicator does
not consider the truth value of f(b) if it is larger than g(h).
On the other hand, both Łukasiewicz and product implicators
incorporate f(b) and roughly aim on quantifying the difference
of both truth value levels. As such, Goedel implicator tends
to be ”less forgiving”, if an off-line metric over-estimates
the on-line performance. This can be illustrated by the mean
values for each implicator, which were 0.63, 0.89 and 0.96 for
Goedel, product and Łukasiewicz respectively.

As the metrics like nDCG10, p5 and r5 are highly biased
towards the performance of top results, it is unlikely that
they will over-estimate the on-line performance, especially
in the case of clicks behavior (especially IcG,pos), which is
also tied with the short list of top recommended objects.
Therefore, results of Goedel implicator can be utilized to
determine, which metric performs best for the ”exclusion
task”, i.e., remove as many bad-performing algorithms based
on a threshold on some off-line metric. This may be relevant
in cases, where we suppose to have multiple well-performing
algorithms and therefore it is not too harmful to inadvertently
exclude one of these together with the bad-performing ones.

On the other hand, product and Łukasiewicz implications
provide a better view on the actual amount of over-estimation
and therefore may be more suitable for ”selection tasks”, i.e.,
ensuring that there are well-performing algorithms w.r.t. an on-
line metric in the selected top algorithms w.r.t. some off-line
metric.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a fuzzy Challenge Response Frame-
work (fChRF) to model the relationship between real situations
and their (trained) models. We further introduced a class of
scaled fuzzy Implicators (sfI) to measure the quality of real
world to model situations reduction. These formal concepts
were evaluated in a real-world use-case from the domain of
recommender systems and small e-commerce enterprises. We
utilized fChRF both in the on-line evaluation as well as for
evaluating connections between off-line and on-line metrics.
Experiments identified several off-line metrics suitable for
assessing the relevance of RS during online deployment.

One of the main limitations of this paper is the binary
form of user’s response h

c/v
u (o). This is a common case

in contemporary RS evaluation scenarios. However, one can
imagine that an analysis of finer-grained feedback (e.g. time
spent on page or additional actions performed by the user
[24], [25]) could result into a graded relevance scores and
more interesting applications for fChRF. This problem is
the main direction of our future work. Additional directions
incorporate evaluation on more domains and additional use-
cases for fChRF. We would also like to conduct experiments
measuring the business value of off-line metrics.
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