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Abstract—The Choquet integral (ChI) is an aggregation func-
tion that is defined with respect to a fuzzy measure (FM). Many
ChI-based decision aggregation methods have been proposed
to learn the underlying FM. However, FM’s boundary and
monotonicity constraints have limited the applicability of such
methods to decision-level fusion. In a recent work, we removed
the constraints on FM to develop a regression model based on
the ChI. Our model has a generalized bias that enables capability
beyond previously proposed ChI regression approaches. We also
developed an approach for learning the parameters of the ChI
regression from training data. In this paper, we develop a
method to apply ℓ2-regularization on our training algorithm.
In our experiments on real-world benchmark data sets, ridge
regularized-ChI regression has outperformed the unregularized
version in 22 out of 30 (73%) experiments. Also, when compared
with several competing regression methods, results show that our
approach has superior performance.

Keywords—regression, Choquet integral, fuzzy integral, fuzzy
measure, regularization, machine learning

I. INTRODUCTION

Regression approaches typically seek a function, f(·), that

can transform or map an independent variable, x, to a de-

pendent variable, y, given a training set of d-dimensional

independent variables, x ∈ Rd, and 1-dimensional dependent

variables, y ∈ R. The relationship between x and y is a

parameterized model (or function), such that

Y ≈ r(x, α),

where α is the set of learned parameters of the regression

function r. A linear model is a common choice for this

function, r(x, α) = wTx + β, where w ∈ Rd and β is the

bias. Using basis functions, we can extend this linear model

to learn non-linear relations, r(x, α) = wTφ(x) + β, where

φ is a set of basis functions. Examples for basis functions

include quadratic, polynomial, and radial basis functions. Basis

functions typically project the input data x into a higher-

dimensional space, which allows the regression function to

learn more complex non-linear relations (in the native space).

However, inclusion of basis functions often eliminates the

interpretability of the results. This is because, without basis

functions, the learned parameter vector w directly indicates

how each variable in the input x affects the output, but when

basis functions are included, the parameter vector w is not as

interpretable.

The regression parameters α are typically trained using a set

of training data pairs (X,Y ) = {(x1, y1), . . . , (xn, yn)}. The

training process optimizes the regression parameters α with

respect to an error function, usually squared-error:

α∗ = argmin
α

n
∑

i=1

(r(xi, α)− yi)
2
.

This is the well-known least-squares problem. For more ex-

tensive details on regression, in general, we suggest [1].

In our recent previous work [2], we proposed a regression

model based on the Choquet integral (ChI) with respect to a

bounded capacity (BC) [3], where we demonstrated that ChI,

in combination with a fuzzy measure (FM)1 can produce a non-

linear aggregation method, which essentially is a compressed

parameterization of a set of linear convex sums, one for each

sort order of the input. Since the number of parameters in

an FM scales as 2d, where d is the number of variables in

the input, training the ChI-FM regression model on a high-

dimensional input data requires a large training data set with

enough rank-independent observations. However, many real-

world data sets often do not contain enough rank-independent

observations; training on such data sets typically results in

an overfit model that does not generalize well on the unseen

data. In this work, we build on the prior work by addressing

the overfitting problem of our ChI-FM regression method with

the introduction of ℓ2-regularization in the training process.

Several previous works have explored regression using ChIs

[4–6]. Some works explored certain types of FMs, such as

Sugeno’s λ-measure, P-measures, or L-measures, e.g., [5].

Different from these works, the learning approach of our

method enables us to learn any bounded capacity, which is

more general than a parameterized FM. Grabisch [4] proposed

a method to learn an FM using training data; however, since

this approach is limited to FMs, it has limited applicability.

In addition, this approach used a single bias value model

(similar to our CIR(1) model proposed here), which limits the

flexibility of the method. Our method learns a more flexible

bias model (up to one bias for each possible sort). ChI was

also applied to logistic regression by Tehrani et al. [6]; this

approach also included a single bias value (like our CIR(1)
model). Our method could be used to extend this logistic

1A fuzzy measure is a bounded monotonic capacity on [0, 1]; see Sec. II.
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TABLE I: Notations and Acronyms

Acronym Description Notation

input data or evidence on X h,h
descending sorting function π

BC (non-monotonic) bounded capacity f
FM (monotonic) fuzzy measure g

FI fuzzy integral
ChI Choquet fuzzy integral Cg(h)
CIR Choquet integral regression Cf (h)

training data pairs: (input, output) (hi, yi)

regression approach. Recently, Du and Zare [7] proposed a

multiple instance learning ChI regression, though a bias model

was not included in this regression approach.

Our method [2] was a significant extension of these prior

works as it used a bounded capacity and a bias model that

allowed encoding of a linear model for each possible sort

in the input data. In [2] our experimental results showed

better performance than comparable methods. In this work,

we further improve our method by applying ℓ2-regularization.

Our experimental results show that the application of ℓ2-

regularization has consistently improved the performance as

compared to the unregularized version.

ChIs with respect to non-monotonic measures have been

discussed in [8–11]. These works provide a good basis for

the development and application of ChIs with respect to non-

monotonic measures. Our work here is a significant extension

to these works to enable a generalized ChI-based regression

model along with regularization.

The remainder of this paper is organized as follows. Section

II presents the background on ChIs and BCs, then Section

III discusses our ChI regression (CIR) method. We introduce

ridge regression on CIR in Section IV. We compare the normal

as well as the regularized ChI regression with several other

regression models in Section V. Section VI summarizes. The

acronyms and notations used in this paper are presented in the

Table I.

II. BACKGROUND

A. Fuzzy measures

We consider a measurable space as the tuple (X,Ω), where

X is a set and Ω is a σ-algebra or set of subsets of X such

that

P1. X ∈ Ω;

P2. For A ⊆ X , if A ∈ Ω, then Ac ∈ Ω;

P3. If ∀Ai ∈ Ω, then
⋃

∞

i=1 Ai ∈ Ω.

An FM is a set-valued function, g : Ω → [0, 1], with the

following properties:

P4. (Boundary conditions) g(∅) = 0 and g(X) = 1;

P5. (Monotonicity) If A,B ∈ Ω and A ⊆ B, g(A) ≤ g(B).

There is an additional property that guarantees continuity for

the case where Ω is an infinite set, however, in practice and

in this paper, Ω is finite and thus this property is unnecessary.

FMs provide us with a convenient way to quantify the worth

of combinations of sources, and fuzzy integrals (FI) can be

applied over FMs to aggregate the information from these

sources. The FM values of the singletons, g({xi}) = gi are

commonly called the densities.

An FM that obeys all the above properties, when used for

aggreation with ChI, results in convex sums of input variables

that are bounded between maximum and minimum values

of the input variables. To enable a continuous unbounded

aggregation of outputs, we will relax the properties of the FM

to a BC.

Definition 1. A BC is a set-valued function f : Ω → R, with

the boundary property f(∅) = 0.2

B. Fuzzy integrals

There are many forms of the FI; see [3] for a detailed

discussion. Several previous works [12–17] have explored FIs

as a tool for evidence fusion. The FM provides the expected

worth of each subset of the sources, and the FIs use this to

combine information from the sources while accounting for

both the support of the evidence as well as the expected worth.

In this paper, we focus on the ChI proposed by Murofushi and

Sugeno [18, 19]. Let h : X → R be a real-valued function that

represents the evidence or support of a particular hypothesis.3

In the remainder of this paper, we will shorten h(xi) to hi

and can thus present a collection of inputs in vector form,

h = (h1, h2, . . . , hd)
T .

The discrete (finite Ω) ChI is defined as

∫

C

h ◦ g = Cg(h) =
d

∑

i=1

hπ(i) [g(Πi)− g(Πi−1)] , (1a)

= γT
π hπ, (1b)

where π is a permutation of X , such that hπ(1) ≥ hπ(2) ≥
. . . ≥ hπ(d), Πi = {xπ(1), . . . , xπ(i)}, and g(Π0) = 0 [20, 21].

In (1b), we have simply reformulated (1a) as the dot-product

of the vectors γπ and hπ , where

hπ =
(

hπ(1), hπ(2), . . . , hπ(d)

)T
, (2)

γπ = (g(Π1), (g(Π2)− g(Π1)), . . . , (1− g(Πd−1)))
T
.

(3)

The key insight from (1b) is that the ChI with respect to the

FM is essentially a collection of d! linear-order statistics on

h, one for each possible sort order of the evidence h.4 The

elements of γπ are simply the weights of each evidence value,

as represented by the gain in the FM up through the lattice.

More detail on the properties of fuzzy ChIs and fuzzy integrals

in general can be found in [20–22].

2With regard to Choquet integral regression, described in Section III, this
boundary condition on f is arbitrary. It can be shown that any constant bias
applied to all values in f does not change the result of the regression. This
boundary condition can help with optimization from a practical computing
standpoint.

3Generally, when dealing with an information fusion problems it is con-
venient to have h : X → [0, 1], where each source is normalized to the
unit-interval.

4It can be further specified to say that the ChI is a collection of d! ordered

weighted averages (OWA), as
∑

i(γπ)i = 1.



III. CHOQUET INTEGRAL REGRESSION

A. CIR formulation

We can directly extend the ChI at (1) to Choquet integral

regression (CIR) by integrating with respect to a BC f and

adding a bias term,

∫

C

h ◦ f = Cf (h) = βπ +

d
∑

i=1

hπ(i) [f(Πi)− f(Πi−1)] ,

(4a)

= βπ + ρTπhπ, (4b)

where π and Π are defined as in (1), hπ is defined at (3),

βπ ∈ R is a bias term5, and

ρπ =
(

(f(Π1)− f(∅)), (f(Π2)− f(Π1)), . . . ,

(f(X)− f(Πd−1))
)T

. (5)

In an FM g, f(∅) and f(X) are assigned the static boundary

values of 0 and 1, respectively. We remove these boundary

constraints in (5) by including f(∅) and f(X) in ρπ; see γπ
at (3) for comparison.

How is the CIR formulation at (4) a regression? Consider

the formulation of CIR at (4b)—with βπ as the learned bias

and ρπ as the learned weight vector, this clearly is in the

form of linear regression. In addtion, since we removed the

boundary constraints, the values in ρπ can take any value in

the set of reals, R—see (5). This makes the CIR a compressed

parameterization of a set of linear convex sums. In other

words, CIR is a set of linear regressions, one for each of the

d! possible sorts of h. The ChI, since it is an aggregation

operator, produces outputs that are bounded by the interval

[min{h},max{h}]; while the CIR, by allowing the learned

parameters in ρπ to take any value in R, enables the mapping

of inputs to anywhere in the set of reals, Cf (h) ∈ R, and is

therefore a regression operator.

B. CIR learning

Given a set of training data pairs {(h1, y1), . . . , (hn, yn)},

yi ∈ R, ∀i, we would like to learn a prediction function o such

that o(hi) = yi. This is a standard regression problem. In our

prior work [23, 24], we explored the approaches to train the

ChI as a prediction function, by minimizing the sum of squared

error (SSE) between the true output and the prediction for a

given set of training data, i.e.,

g∗ = argmin
g

{

n
∑

i=1

(Cg(hi)− yi)
2

}

. (6)

It can be shown that the solution to (6) is the quadratic

program (QP)

min
ug

uT
g Dug + tTug, Cug ≤ 0, (0, 1)T ≤ ug ≤ 1, (7)

5At this point in the manuscript, we choose to generalize the bias so that
one could have up to d! different bias terms, one for each sort; however, as
we will explore in Section III-B, this may be computationally intractable—d!
can grow to be a large number—and, hence, we will also develop solutions
that use fewer bias terms.

where ug is the lexographically-ordered FM g, i.e.,

ug = (g({x1}), g({x2}), . . . , g({x1, x2}), g({x1, x3}), . . . ,
g({x1, x2, . . . , xd})); the matrices D and t are composed

of the training data h and y; and the matrix C enforces

the monotonicity property on the learned FM g. Our prior

work [24] contains the details on the construction of these

matrices and the implementation of the QP. Using this QP-

based learning approach, we applied ChI on many sensor

fusion problems; however, the output of ChI is limited to the

interval between the maximum and the minimum of the inputs.

Hence, we explore next, the process to learn the CIR, which

does not have such limitations.

In this manuscript, we focus on the BC f and the CIR at (4).

Therefore, we would like to solve the minimization problem

(f∗, β∗) = argmin
f,β

{

n
∑

i=1

(Cf (hi)− yi)
2

}

. (8)

First, we will rewrite (4) as

Cf (hi) = βπ +

d
∑

j=0

f(Πj)
[

(hi)π(j) − (hi)π(j+1)

]

, (9)

where we define (hi)π(0) = (hi)π(d+1) = 0, ∀i. Since

f(Π0) = f(∅) = 0, the first summation term equals

0. However, if the user wants to set different boundary

conditions, or none at all, this term can be adjusted

accordingly. To continue, f is then lexographically

ordered, i.e., uf = (f(∅), f({x1}), f({x2}), . . . ,
f({x1, x2}), f({x1, x3}), . . . , f({x1, x2, . . . , xd})).

6 The

SSE term (8) on expansion gives

E2 =

n
∑

i=1

(Cf (hi)− yi)
2 =

n
∑

i=1

(HT
i uf +BT

i β − yi)
2, (10)

where Hi is a 2d× 1 vector that contains the difference terms

in (9); Bi is a b× 1 bit vector that chooses (or computes) the

bias from the vector β for a given training data pair (more on

that soon).

To transform (10) into a standard least-squares problem, we

concatenate a variable vector u = (uf , β)
T , and then build the

vector

Di =
(

HT
i , B

T
i

)

. (11)

Thus, (10) becomes

E2 =

n
∑

i=1

(Diu− yi)
2, (12)

This has the standard least-squares solution of

u = (DTD)−1DTy, (13a)

D =











D1

D2

...

Dn











. (13b)

6One could choose any ordering of f and derive the QP matrices appropri-
ately. For example, in our code library we use binary ordering, such that uf =
(f(∅), f({x1}), f({x2}), f({x1, x2}), f({x3}), f({x1, x3}), . . . , f(X)).



This solution is satisfying as it further bolsters our claim that

CIR is regression at its core. We used the least-squares solver

in Matlab for the results presented in this paper. Problems

such as singular matrices and underdetermined systems are

automatically addressed by the solver. Note that the least-

squares solution at (13) is a mathematically correct solution,

but can be problematic due to its inverse; hence, least-square

solvers are often more stable in practice.

We now describe the process to build the matrices Hi and

Bi. The approach for a simple 3-input case is show in Example

1. It may be useful to follow along with this example as we

describe the process in more detail.

The 2d × 1 Hi matrix is designed to contain the (d + 1)
difference terms,

[

(hi)π(j) − (hi)π(j+1)

]

, in (9). The rest of

the elements of Hi are all zero. That is,

Hi =





































0− (hi)π(1)
...

0
...

(hi)π(1) − (hi)π(2)
...

0
...

(hi)π(d) − 0





































. (14)

The Bi matrix varies based on the user’s choice of the

β vector construction. Though one could imagine numerous

ways to learn the bias vector β, in this paper, we present three

possible choices:

1) Use a single scalar β value; thus, Bi = 1, ∀i. This is

simplest and least computationally expensive choice.

2) Pick the β value based on the first element in the sort

order π(1), i.e., β is only dependent on the input with

greatest magnitude. Thus, Bi is d×1 and takes the form

[Bi]π(1) = 1, else [Bi] = 0.

3) The third method mimics the lattice of the BC and sets

Bi according to the non-zero elements of Hi. That is,

[Bi]j =

{

1 [Hi]j > 0,

0 else.
(15)

In the third method, Bi is a 2d × 1 matrix with d + 1
entries set to 1. Thus, for each sort order, the bias value in

the regression solution is the sum of d + 1 elements of the

β vector. In this way, the CIR can thus learn the β vector to

produce a different bias for each sort order, but encoding this

bias with only 2d values (rather than d!). Table II outlines the

three methods for learning the bias.

One could also imagine choosing a β value for each possible

sort order; thus, Bi is d!× 1 and has one entry that is set to 1
depending on the coding of the sort order. We view this choice

as intractable in practice, as d! can become very large, e.g.,

10! = 3, 628, 800.

TABLE II: Three Methods for Building Bias Vector β

Name Description Bi

1-bias One bias term Bi = 1, ∀i
d-bias One term for each max-value in sort [Bi]π(1) = 1

else [Bi] = 0
2d-bias Computed bias for each possible sort See (15)

Example 1. For this example, we will use a β vector that is

2d × 1. Consider two training data pairs (n = 2) with three

inputs (d = 3) as follows:

(h1, y1) = ((1, 2, 4)T , 8),

(h2, y2) = ((4,−6, 1)T , 2).

The sort order for data pair 1 is Π = (3, 2, 1), and the sort

order for data pair 2 is Π = (1, 3, 2). Thus, the QP sub-

matrices for this example are

H1 = (−4, 0, 0, 2, 0, 0, 1, 1)T ,

H2 = (−4, 3, 0, 0, 0, 7, 0,−6)T ,

B1 = (1, 0, 0, 1, 0, 0, 1, 1)T ,

B2 = (1, 1, 0, 0, 0, 1, 0, 1)T .

For this example, the least-squares problem is underde-

termined. Using Matlab’s solver, the solution is uf =
(−2, 0, 0, 0, 0,−0.86, 0, 0)T , and β = 0.

We now extend CIR with regularization to account for over-

fitting in learning.

IV. CIR WITH RIDGE REGULARIZATION

Recall the insight of (4) (or (1b)) where we observe that the

ChI encodes d! regression models (or linear-order statistics),

one for each of the d! possible sort orders. Let us enumerate

these sorting orders as π1, π2, ..., πd!, leading to the d! regres-

sion models, ρπ1
, ρπ2

, ..., ρπd!
. We then modify the SSE cost

function in (12) to include ℓ2 (ridge) regularization terms for

all d! models, yielding

E2
R =

n
∑

i=1

(Diu− yi)
2 + λ

d!
∑

j=1

‖ρπj
‖22, (16)

where λ is the regularization parameter defining the weight of

the regularizer—a user-tuned quantity. To solve this, we must

express the various regression models, ρπj
, in terms of the BC,

uf . This is accomplished by defining a d× 2d matrix Aρπi
to

sift the regression model from uf , i.e.,

ρπi
= Aρπi

uf . (17)

Note the matrix Aρπi
is mostly zeros, and each row has

at-most two non-zero elements (one +1 and one −1); this

matrix-vector product produces the difference terms shown in

(5). Also note that since the ridge regression term at (16) is

applied to the product Aρπi
u, we can interpret the term as a

Tikhonov regularizer and the matrix Aρπi
can be thought of

as a Tikhonov matrix [25].



Each sort order will have its own Aρπi
, thus there will be

d! unique sifting matrices. We now express (16) in terms of

uf as

E2
R =

n
∑

i=1

(Diu− yi)
2 + λ

d!
∑

j=1

ρTπj
ρπj

(18a)

=

n
∑

i=1

(Diu− yi)
2 + λ

d!
∑

j=1

uT
f A

T
ρπj

Aρπj
uf (18b)

=

n
∑

i=1

(Diu− yi)
2 + λuT

f Ĝρuf , (18c)

where Ĝρ =
∑d!

j=1

(

AT
ρπj

Aρπj

)

. Note that Ĝρ is a constant

sparse matrix of size 2d × 2d and only depends on d, thus it

can be built offline. Finally, appending block matrices of zeros

to Ĝρ to make it compatible with the concatenated vector u

allows the ridge cost function to be written as

E2
R =

n
∑

i=1

(Diu− yi)
2 + λuTGρu, (19)

where Gρ =

(

Ĝρ 0
0 0

)

. Unfolding the squared term in (19),

setting the gradient with respect to u equal to zero, and solving

for u gives the minimizer

ûR =
(

DTD + λGρ

)−1
DTy. (20)

This solution is satisfying since its form is very similar to the

well-known ridge regression solution.7 Note that if Gρ = I ,

where I is the identity matrix, the solution matches that of

ridge regression exactly. This is not surprising; because the

fuzzy measure vector we are learning here has a different

structure than the typical regression weight vector, the reg-

ularization matrix, Gρ, must have a different structure than

the identity matrix to compensate.

It is also interesting to note that since ρπi
is defined by

a subset of uf , the objective function at (16) is essentially

group lasso performed on uf [26]. Furthermore, since each

individual element of uf appears in more than one ρπi
, it is

the more general case of group lasso with overlapping groups

[27, 28].

V. EXPERIMENTS

We evaluated the performance of our CIR methods and

the impact of ℓ2-regularization using real world data sets

from the UCI Machine Learning repository [29]. In addition,

we compared the performance with several other regression

methods; Table III presents the details on methods used in our

experiments. The methods Interactions, PureQuadratic, and

Quadratic use basis functions (indicated by φ(h) in Table III)

to project the input data into a higher-dimensional space and

thereby induce non-linearity into the regression solutions. Note

7The ridge regression minimizer, when learning regression weight vectors

directly is ŵR =
(

XTX + λI
)

−1
XTy, where X is a data (or design)

matrix, y is a vector of target outputs, and I is the identity matrix [1].

TABLE III: Regression Methods

Name Model Model Dim. Comments

Linear y = wTh+ β d+ 1 Standard method

Interact y = wTφ(h) + β d2 + 1 Linear plus pair-
products (no square
terms)

PureQuad y = wTφ(h) + β 2d+ 1 Linear plus square
terms (no Interact

terms)

Quad y = wTφ(h) + β d2 + 2d+ 1 Linear plus Interact

and PureQuad terms

LOS y = wThπ + β d+ 1 Sorts input first

CIR(b) y = Cf (h) 2d + b b indicates bias
model {1, d, 2d}

that these are not the only multivariate regression methods

that exist; one could choose from a whole host of basis

functions, non-parametric predictors, etc. We chose these

methods since we consider them to be a fair comparison of

“simple” regression methods. We implemented these methods

using the fitlm function in Matlab with corresponding

model specification: interactions, purequadratic,

and quadratic, respectively. To solve linear order statistic

(LOS) regression [30], we first sort the inputs and then apply a

linear regression. The sorting process induces the non-linearity

of LOS. The CIR β model that is used is indicated by CIR(b)
where b indicates the number of bias terms {1, d, 2d}—see

Table II.

A. Impact of ridge regression on CIR methods

Using 10 real-world data sets from the UCI machine learn-

ing repository [29], we compared the performance of CIR

methods with and without the application of ridge regression.

Table IV shows the performance of the CIR(b) methods8

and their corresponding ridge-regularized methods. The mean

squared error (MSE) values presented in the table are the

average values taken over 100 experimental trails—MSE of

each trial is taken over a 10-fold cross validation. Based on a

two-sample t-test, we identified the instances where the ridge

regularization has improved the performance at a 5% statistical

significance level. Overall, the application of ridge regression

has improved the performance of CIR(1) in six out of ten

instances, and for both the CIR(d) and CIR(2d) methods, we

observed improved performance in eight out of ten instances.

We increased the ridge regularization parameter (λ) in small

steps and observed the MSE as well as the shrinkage of

the learned regression parameters (i.e., the regression models

sifted from the BC via (17)) for the CIR methods. The shrink-

age plots in Figs. 1 and 2 demonstrate how the regularization

8Since the number of parameters in the BC for CIR methods scales as 2d

where d is the number of features, computation becomes intractable for larger
values of d, e.g., 10!=3,628,800. Therefore, for the data sets with more than
six features, we applied principal component analysis (PCA) to reduce the
dimensionality to six features, and then applied the CIR methods.



TABLE IV: Impact of ridge regression on CIR methods*

Method Concrete
Real

Estate

Fish
Toxic-

ity

Aquatic
Toxic-

ity

Red
Wine

White
Wine

ENB-2 Yacht Airfoil ISE

n 1,030 414 908 546 1599 4898 768 308 1503 536

d 8 5 6 8 11 11 8 6 5 7

CIR(1) 0.315 0.364 0.421 0.629 0.658 0.729 0.056 0.157 0.338 0.534
(0.003) (0.008) (0.007) (0.333) (0.004) (0.001) (0.001) (0.041) (0.002) (0.012)

CIR(1)-Ridge 0.311 0.345 0.410 0.513 0.648 0.726 0.055 0.150 0.338 0.479

(0.003) (0.004) (0.004) (0.004) (0.004) (0.001) (0.001) (0.006) (0.002) (0.006)

λ = 0.01 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.001 λ = 0.0001 λ = 0.001 λ = 0.1

CIR(d) 0.311 0.365 0.423 0.618 0.655 0.725 0.052 0.151 0.336 0.542
(0.004) (0.007) (0.015) (0.122) (0.004) (0.002) (0.001) (0.015) (0.001) (0.015)

CIR(d)-Ridge 0.307 0.347 0.410 0.515 0.645 0.723 0.055 0.145 0.336 0.487

(0.003) (0.004) (0.003) (0.005) (0.003) (0.001) (0.001) (0.008) (0.002) (0.005)

λ = 0.01 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.0001 λ = 0.0001 λ = 0.0001 λ = 0.1

CIR(2d) 0.302 0.358 0.462 0.800 0.683 0.724 0.222 0.189 0.315 0.630
(0.005) (0.011) (0.011) (0.101) (0.007) (0.002) (0.412) (0.031) (0.002) (0.021)

CIR(2d)-Ridge 0.294 0.341 0.436 0.546 0.670 0.721 0.053 0.152 0.315 0.552

(0.004) (0.007) (0.005) (0.010) (0.005) (0.002) (0.001) (0.018) (0.002) (0.010)

λ = 0.01 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.001 λ = 0.001 λ = 0.001 λ = 0.1

*MSE values in the table are the average of 100 experimental trails—MSE of each trial is taken over a 10-fold cross validation.
Bold indicates that the ℓ2-regularization has improved the performance of that CIR method at a 5% statistical significance.
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Fig. 1: Impact of ridge regularization on the CIR(1) BC

parameters learned on Aquatic Toxicity data set.

restricted the magnitude of the parameters9 with the increasing

λ values. In both the examples, the best MSE was observed

between the λ values of 0.01 and 0.1.

B. Performance of CIR methods

Table V shows the regression results of the CIR methods

and the comparison algorithms for several real-world data sets.

For each data set, the table shows the number of objects n and

the number of features d. The best algorithms for each data

set are shown in bold font. We performed a two-sample t-test

9The data sets Aquatic Toxicity and Instanbul Stock Exchange have eight
features and seven features respectively. However, since we applied PCA to
reduce the dimensionality to six features, the learned BCs for both the data
sets have 26=64 parameters. In Figs. 1 and 2, for demonstration purpose, we
are showing the trend of a randomly selected 12 out of the 64 BC parameters.
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Fig. 2: Impact of ridge regularization on the CIR(1) BC

parameters learned on Istanbul Stock Exchange data set.

at a 5% significance level to determine the statistically best

results; hence, more than one algorithm can be considered as

best. Overall, CIR methods produced best results on six out

of 10 data sets, and CIR(1) with ridge regression was the best

algorithm with best results on four out of 10 data sets. Even for

the cases where the CIR methods were not the best, the ridge

regularized CIR methods produced good(-enough) results.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we reviewed our previously developed method

of learning regression models using the Choquet fuzzy integral

[2] and enhanced this method by applying ℓ2 regularization.

Experimental results with real-world data sets demonstrated

that the introduction of regularization significantly improved

the performance of CIR methods in 22 out of 30 (73%)



TABLE V: MSE on Benchmark Data Sets*

Method Concrete
Real

Estate

Fish
Toxic-

ity

Aquatic
Toxic-

ity

Red
Wine

White
Wine

ENB-2 Yacht Airfoil ISE
# of

best in-
stances

n 1,030 414 908 546 1599 4898 768 308 1503 536 -

d 8 5 6 8 11 11 8 6 5 7 -

Linear 0.424 0.445 0.437 0.553 0.661 0.729 0.087 0.520 0.505 0.437 1
(0.002) (0.002) (0.002) (0.003) (0.001) (0.001) (0.000) (0.003) (0.001) (0.003)

Linear-ℓ1 0.418 0.445 0.435 0.550 0.660 0.728 0.087 0.519 0.501 0.437 1
(0.003) (0.002) (0.002) (0.005) (0.001) (0.001) (0.001) (0.004) (0.001) (0.003)

λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.0001 λ = 0.0001 λ = 0.01 λ = 0.001

Linear-ℓ2 0.411 0.445 0.434 0.552 0.658 0.728 0.087 0.519 0.493 0.437 1
(0.002) (0.002) (0.002) (0.004) (0.001) (0.001) (0.001) (0.004) (0.001) (0.003)

λ = 0.1 λ = 0.01 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.0001 λ = 0.0001 λ = 0.1 λ = 0.001

Interactions 0.358 0.364 0.417 0.764 0.658 0.763 0.053 0.409 0.371 0.485 0
(0.003) (0.004) (0.004) (0.105) (0.004) (0.004) (0.000) (0.009) (0.001) (0.009)

Quadratic 0.229 0.349 0.424 0.714 0.657 0.774 0.011 0.087 0.367 0.509 2
(0.001) (0.005) (0.005) (0.141) (0.005) (0.007) (0.000) (0.002) (0.002) (0.010)

Pure Quadratic 0.264 0.367 0.428 0.552 0.665 0.758 0.078 0.080 0.454 0.462 1
(0.001) (0.004) (0.003) (0.007) (0.003) (0.002) (0.000) (0.001) (0.001) (0.006)

LOS 0.708 0.727 0.718 0.940 0.996 0.977 0.758 1.086 0.797 0.508 0
(0.002) (0.005) (0.003) (0.007) (0.002) (0.001) (0.003) (0.009) (0.001) (0.008)

LOS-ℓ1 0.707 0.727 0.709 0.934 0.987 0.977 0.754 1.088 0.797 0.509 0
(0.002) (0.007) (0.002) (0.007) (0.011) (0.001) (0.003) (0.006) (0.002) (0.006)
λ = 0.01 λ = 0.001 λ = 0.01 λ = 0.01 λ = 0.0001 λ = 0.0001 λ = 0.01 λ = 0.0001 λ = 0.01 λ = 0.1

LOS-ℓ2 0.704 0.723 0.716 0.935 0.985 0.977 0.748 1.086 0.790 0.505 0
(0.002) (0.006) (0.003) (0.005) (0.012) (0.001) (0.004) (0.007) (0.001) (0.004)
λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.1 λ = 0.0001 λ = 0.0001 λ = 0.01 λ = 0.0001 λ = 0.1 λ = 0.01

CIR(1) 0.315 0.364 0.421 0.629 0.658 0.729 0.056 0.157 0.338 0.534 1
(0.003) (0.008) (0.007) (0.333) (0.004) (0.001) (0.001) (0.041) (0.002) (0.012)

CIR(d) 0.311 0.365 0.423 0.618 0.655 0.725 0.052 0.151 0.336 0.542 0
(0.004) (0.007) (0.015) (0.122) (0.004) (0.002) (0.001) (0.015) (0.001) (0.015)

CIR(2d) 0.302 0.358 0.462 0.800 0.683 0.724 0.222 0.189 0.315 0.630 1
(0.005) (0.011) (0.011) (0.101) (0.007) (0.002) (0.412) (0.031) (0.002) (0.021)

CIR(1)-Ridge 0.311 0.345 0.410 0.513 0.648 0.726 0.055 0.150 0.338 0.479 4
(0.003) (0.004) (0.004) (0.004) (0.004) (0.001) (0.001) (0.006) (0.002) (0.006)
λ = 0.01 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.001 λ = 0.0001 λ = 0.001 λ = 0.1

CIR(d)-Ridge 0.307 0.347 0.410 0.515 0.645 0.723 0.055 0.145 0.336 0.487 3
(0.003) (0.004) (0.003) (0.005) (0.003) (0.001) (0.001) (0.008) (0.002) (0.005)
λ = 0.01 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.0001 λ = 0.0001 λ = 0.0001 λ = 0.1

CIR(2d)-Ridge 0.294 0.341 0.436 0.546 0.670 0.721 0.053 0.152 0.315 0.552 3
(0.004) (0.007) (0.005) (0.010) (0.005) (0.002) (0.001) (0.018) (0.002) (0.010)
λ = 0.01 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.001 λ = 0.001 λ = 0.001 λ = 0.1

*MSE values in the table are the average of 100 experimental trails—MSE of each trial is taken over a 10-fold cross validation.
Bold indicates lowest MSE at a 5% statistical significance.

instances. We then showed that ℓ2 regularized CIR methods

were superior to competing regression models on real-world

benchmark data.

Future work will include extending the CIR method to deep

learning architectures. In a recently published work [31] we

show that the Choquet integral can be built using standard

neural network operations and can thus be used to represent

learned layers in deep networks. We also will extend the

explainable AI (XAI) approaches proposed in [32, 33], which

allow interpretation of the result of the Choquet integral.
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