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Abstract—This paper introduces two novel contributions to the
online learning algorithm called Fuzzy set Based evolving Mod-
eling with Multitask Learning (FBeM MTL), the first algorithm
in the literature to consider multitask learning in the context of
data stream, adaptive and evolving systems. In this new version,
the degree of intersection of the information granules is directly
used to define a real-valued matrix representing the relationship
among the learning tasks, responsible for defining the parameters
of the consequent part of all functional IF-THEN fuzzy rules.
Unlike the original FBeM MTL, in this new version, we elimi-
nated the need for the binarization of the matrix representing the
connected rules, guiding to both performance improvement and
reduction in the number of user-defined parameters. The second
contribution is the adoption of the Weighted Least Squares
(WLS) method to define the parameters of the consequent part
of the rules, using the similarity measure between every pair of
samples to the mean point to set their corresponding weights
in the WLS problem. Computational experiments on time series
prediction of weather temperature, rain precipitation, wind speed
in eolian farms and stock exchange are used to validate the
performance of this new version. When compared to the original
FBeM MTL and also to several other state-of-the-art evolving
systems in the literature, our approach guides to competitive
results using a reduced number of parameters.

Index Terms—Evolving Fuzzy-Rule-Based Systems, Online
Learning, Multitask Learning, Weighted Least Squares, Time
Series Prediction.

I. INTRODUCTION

In recent years, the large amount of data arriving at speeds
never seen before has given rise to evolving systems, a field
of Machine Learning (ML) where models are capable of
self-adapting not only their parameters but also their internal
structure in real-time. Notably, the evolving Fuzzy-Rule-Based
(eFRB) systems are the evolving extension of the original
Fuzzy-Rule-Based (FRB) systems [16], being first proposed by
[2]. In this new approach, the learning mechanism for updating
the information granules, each one acting as the antecedent
of a fuzzy rule, is executed online in response to the input
data stream. Besides, the parameters of the Takagi-Sugeno
consequent part of the rules are automatically provided by
solving linear regression problems [6].

This work has been supported by grants from CNPq - Brazilian National
Research Council, proc. #143455/ 2017-6 and proc. #307228/2018-5, and
Fapesp proc. #2017/19397-9.

Traditionally, each rule is responsible for its own learning in
an independent way. Usually, no information is shared among
them, thus neglecting the benefits of using Multitask Learning
(MTL), which employs the joint treatment of multiple tasks
[8], [26].

Although not vinculated to evolving systems, the first at-
tempt in the literature to share knowledge among rules was
[12], which assumes a low-dimensional subspace hiding the
correlation information among all tasks. The parameters of
those tasks are learned by an algorithm that is based on
the ε-insensitive criterion and L2-norm penalty terms. On
the other hand, the authors in [5] assumed, in an evolving
approach, that the measure of the degree of intersection
among the rules, readily extracted from their antecedents, more
specifically from the evolving information granules, already
provides a reliable and more parsimonious evolving model
of the structural relationship supported by the rules. As a
complement to the empirical loss, a regularization term was
added to encode the structural relationship established by
the rules. Among the several possibilities of incorporating
the effect of those relationships as regularization constraints,
the Sparse Structure-Regularized Learning with Least Squares
Loss (Least SRMTL) was chosen. Despite its compactness,
this strategy requires a routine to binarize the degree of
relationship (restricted to the [0,1] interval) among the rules,
which, besides demanding an extra parameter to the algorithm
(values above a user-defined threshold will be interpreted as 1
and below such threshold will be converted to 0), results in a
loss of information. Here, the effective degree of relationship
will be directly used to model the structural dependencies
among the rules.

An extensively used method to obtain the Takagi-Sugeno
consequent parameters of each fuzzy rule is the Least Squares
(LS) regression [20]. In this technique, all the samples desig-
nated to a particular rule receive the same relevance when cal-
culating the consequent parameters, despite holding different
membership degrees to the information granules. To the best
of our knowledge, [13] is the only algorithm that employs the
Weighted Least Squares (WLS) method [20] in the context of
evolving systems, weighting each sample with the reverse of
the distance to the center of the cluster to which it belongs. In
this paper, we also employ the WLS method, but in the context
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of the MTL approach introduced previously [5]. For that, an
adaptation of the Accelerated Gradient method was developed
[15], guiding to a version of a recursive WLS procedure.

The remaining sections of the paper are organized as
follows: Section II presents the advances in the FBeM MTL
proposed in this paper, notably the new form to represent the
connections among the rules and the adoption of the WLS
method in the context of the MTL approach. Section III is
dedicated to the computational experiments for the online pre-
diction of weather temperature, rain precipitation, wind speed
in eolian farms and S&P 500 Daily Closing Price. Whenever
possible, a comparative analysis was performed considering
several state-of-the-art evolving systems as contenders. Other-
wise, the comparative analysis will solely involve the newly-
proposed FBeM MTL and the two extensions presented in this
paper. Some concluding remarks and the further steps of the
research compose Section IV.

II. AN IMPROVED VERSION OF THE FUZZY SET BASED
EVOLVING MODELING WITH MULTITASK LEARNING

The new paradigm proposed by [5] introduces the MTL
concept in the realm of eFRB systems. While the traditional
approach used in the literature to update the Takagi-Sugeno
consequent parameters does not share any information among
the rules, authors in [5] state that what is learned by a rule
can be helpful for other rules that have some behaviors in
common. For this, the related rules are learned simultaneously
by extracting and utilizing appropriate shared information
across them.

Consider the training data set {xi[h]

, yi
[h]}Ni

h=1, where Ni
is the quantity of data points assigned to rule Ri, xi

[h] ∈ Rn
(n is the dimension of the input variable), and yi

[h] ∈ R. The
matricial form of the input-output dataset associated with the
ith rule is expressed by:

Xi =


1 xi

[1]T

1 xi
[2]T

...
...

1 xi
[Ni]

T

 , yi =


yi

[1]

yi
[2]

...
yi

[Ni]

 . (1)

In the new approach using MTL [5], the parameters of the
Takagi-Sugeno consequent part θi = [θi0, . . . , θ

i
j , . . . , θ

i
n]T ∈

Rn+1, for each rule Ri, i = 1, . . . , r, are obtained by solving
the optimization problem in Equation (2):

Θ∗ = arg min
Θ

r∑
i=1

L(θi) + Ω(Θ), (2)

where Θ = [θ1,θ2, . . . ,θr] ∈ R(n+1)×r, L(θi) is the
empirical loss of rule Ri taking the input-output dataset and
Ω(Θ) is the regularization term that encodes the structural
dependencies among the learning tasks.

The first contribution of this paper regards the first term of
Equation (2), L(θi). To calculate the prediction loss, we take
into account the similarity between every sample xi

[h]

and

the mean point of all the samples belonging to the ith rule, as
expressed by Equation (3):

s(xi
[h]

, Ri) = 1− 1

n

n∑
j=1

|xi
[h]

j −
∑Ni

h=1 x
i
j
[h]

Ni
|. (3)

where s(xi
[h]

, Ri) can assume any value in the interval [0, 1]

whenever xij
[h] ∈ [0, 1],∀i, j, h.

Let W i be the diagonal matrix representing the similarity
of each sample belonging to the ith rule, as in Equation (4):

W i = diag(s(xi
[1]

, Ri), s(xi
[2]

, Ri), . . . , s(xi
[Ni]

, Ri)). (4)

We consider this matrix W i as the weights of the WLS
method adopted in this paper. The prediction loss L(θi) is
calculated according to Equation (5). Instead of considering
all samples with the same relevance, as was made before [5],
now we adopt different penalty criteria according to the degree
of similarity of the sample to the mean point of the rule.

L(θi) =
1

2
(yi −Xiθi)TW i(yi −Xiθi)

=
1

2
(yi

T
W iyi − 2θi

T
XiTW iyi + θi

T
XiTW iXiθi)

(5)

The further contribution of this paper concerns the second
term of Equation (2), the regularization term encoding the
dependencies established by the tasks, Ω(Θ). Among the
several assumptions on the structural dependencies leading to
different regularization terms, in this paper, we will utilize a
generalization of the Sparse Structure-Regularized Learning
with Least Squares Loss (Least SRMTL) [27]. Unlike the
original version of FBeM MTL [5], the idea here is to define
the regularization term by directly adopting the real-valued
matrix representing the degree of connection among every pair
of rules, and no more its binarized version. The advantage
is twofold: the binarized version necessarily involves loss of
information and demands an extra threshold to be properly
defined by the user.

Consider the trapezoidal approach for the antecedent part of
the rules as in [14] and let Ri1 be the rule whose antecedent
part is defined as the fuzzy granule Ai1 , fully described by
n quadruples (li1j , λ

i1
j ,Λ

i1
j , L

i1
j ), j = 1, . . . , n, and Ri2 be

the rule whose antecedent part is defined as the fuzzy gran-
ule Ai2 , fully described by n quadruples (li2j , λ

i2
j ,Λ

i2
j , L

i2
j ),

j = 1, . . . , n. The similarity measure between Ri1 and Ri2 is
defined by [14]:

s(Ri1 , Ri2) =1− 1

4n

n∑
j=1

(|li1j − l
i2
j |+ |λ

i1
j − λ

i2
j |

+ |Λi1j − Λi2j |+ |L
i1
j − L

i2
j |).

(6)

Calculating the similarity measure s(Ri1 , Ri2) between
every pair of rules i1, i2 = 1, 2, . . . , r (where r is the number



of rules), we obtain the similarity matrix S of Equation (7),
which may be directly interpreted as the pairwise dependencies
among the rules [5]. One may note that S is symmetric and
all the elements of S are in the interval [0, 1].

S =


s(R1, R1) s(R1, R2) . . . s(R1, Rr)
s(R2, R1) s(R2, R2) . . . s(R2, Rr)

...
...

. . .
...

s(Rr, R1) s(Rr, R2) . . . s(Rr, Rr)

 (7)

The approach introduced in this paper employs directly
the information obtained by matrix S, thus avoiding the
binarization routine adopted in [5]. Inspired by [27], we
consider here a graph where each rule is a node, and an edge
connects two nodes if their corresponding rules Ri1 and Ri2
are related, which happens every time that s(Ri1 , Ri2) > 0.
Let E be the set of edges, the edge k is represented as
a vector ek ∈ Rr defined as follows: eki1 = s(Ri1 , Ri2),
eki2 = −s(Ri1 , Ri2) and eki = 0, i = 1, . . . , r, i 6= i1, i 6=
i2, if s(Ri1 , Ri2) > 0. The complete graph is represented
by matrix G = [e1, e2, . . . , e||E||] ∈ Rr×||E||, where ||E||
is the cardinality of set E [5]. Supposing the absence of
s(Ri1 , Ri2) = 0, i1 = 1, . . . , r, i2 = 1, . . . , r in matrix S,
indicating that all rules are minimally interconnected, we have
||E|| = r(r − 1)/2.

As an example, given the illustrative similarity matrix S
of Equation (8), the corresponding matrix G representing the
complete graph is expressed by Equation (9):

S =


1 0.15 0 0 0

0.15 1 0.25 0.12 0
0 0.25 1 0.35 0
0 0.12 0.35 1 0.20
0 0 0 0.20 1

 , (8)

G =


+0.15 0 0 0 0
−0.15 +0.25 +0.12 0 0

0 −0.25 0 +0.35 0
0 0 −0.12 −0.35 +0.20
0 0 0 0 −0.20

 . (9)

Equation (10) penalizes the Euclidean distance between all
pairs of tasks connected in the graph as a direct proportion of
their similarity measure [5], [27]:

||ΘG||2F =0.15||θ1 − θ2||22 + 0.25||θ2 − θ3||22+

0.12||θ2 − θ4||22 + 0.35||θ3 − θ4||22+

0.20||θ4 − θ5||22

(10)

where || · ||2F is the squared Frobenius norm and || · ||22 is the
squared l2-norm.

Finally, the regularization term adopted in this paper, Ω(Θ),
implementing the multitask perspective and generalized from
the Sparse Structure-Regularized Learning with Least Squares
Loss [27], is expressed by Equation (11):

Ω(Θ) = ρ||ΘG||2F , (11)

where the parameter ρ may be determined by a grid [25] or
random search [7]. The term Ω(Θ) forces the related tasks
(informed in matrix G) to exhibit a low Euclidean distance
between the corresponding pair of columns of matrix Θ [5].
The final expression of the optimization problem is given by
Equation (12):

Θ∗ = arg min
Θ

r∑
i=1

1

2
(yi−Xiθi)TW i(yi−Xiθi)+ρ||ΘG||2F .

(12)
In the original version of the MTL approach proposed in

[5], there were two additional regularization terms that imple-
mented a kind of elastic net regularization [28] and forced the
elements of matrix Θ to approach zero whenever the impact
on the empirical loss was reduced. In the generalized version
proposed by this paper, however, they were discarded without
compromising the quality of the results and leading to the
elimination of two additional user-defined parameters of the
algorithm. In effect, the affine functions at the Takagi-Sugeno
consequent part of the rules act locally and are hyperplanes,
making the sub-models already regularized, thus reducing the
potential benefit of those additional regularization terms.

To solve the problem of Equation (12), we adapted the
accelerated gradient method [15] available on the MALSAR
package [27]. The corresponding gradient of the objective
function J(Θ) in Equation (12), associated with the parameters
Θ, is defined by:

∂J(Θ)

∂Θ
=

[
∂J1(θ1)

∂θ1
∂J2(θ2)

∂θ2 . . . ∂Jr(θr)
∂θr

]
+ 2ρΘGGT ,

(13)
where ∂Ji(θ

i)

∂θi is defined as:

∂Ji(θ
i)

∂θi
= XiTW iXiθi −XiTW iyi, i = 1, . . . , r. (14)

III. COMPUTATIONAL EXPERIMENTS

To compare the performance of this improved version of
FBeM MTL against (i) the original proposal in [5], (ii)
popular ML algorithms, and (iii) several recently proposed
evolving systems, four sets of computational experiments
regarding weather forecasts around the world and stock ex-
change prediction were considered. They are described in the
following sections. Evidently, other domains of application
could have been considered, not restricted to time series
prediction, such as adaptive filtering in signal processing and
many other online regression problems.

In all experiments, the algorithms are evaluated using the
root mean square error, whose formula is expressed in Equa-
tion (15). H is the total quantity of available data points, y[h]

is the original value at instant h, and ŷ[h] is the prediction
provided by the model at instant h.



RMSE =

√√√√ 1

H

H∑
h=1

(y[h] − ŷ[h])2 (15)

The values provided by all time series were normalized
in the interval [0, 1], considering the training dataset and
according to Equation (16):

xi =
xi −min([x1, x2, . . .])

max([x1, x2, . . .])−min([x1, x2, . . .])
. (16)

A. Precipitation prediction

The goal of this first experiment is to predict one step ahead
monthly precipitation in several locations exhibiting diverse
climate behavior in South America [1]. The dataset is provided
by GPCC (Global Precipitation Climatology Centre) [22] and
contains data from 1917 to 2016. Only the series that did not
contain missing values were considered, which resulted in the
86 geographical locations indicated in Figure 1, with 1200
data points each.

Fig. 1: Geographical locations of the precipitation time series
(taken with permission from [1])

The number of lag variables selected is 2, after performing
an autocorrelation analysis of the time series. The original
dataset is used for training (to select the best hyperparameters),
while the test is conducted with the flipped time series, as
suggested by [11]. The hyperparameters of both the original
and the improved version of FBeM MTL are β = 0.3,
hr = 12, η = 2 and ρ = 1000, specified after a grid search
strategy [25] taking the training dataset and considering the
following candidate values: β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, hr ∈
{3, 6, 12, 24}, η ∈ {0, 2, 5} and ρ ∈ {10, 100, 1000, 10000}.
A time window (N ) of the last 24 data points was used in the
solution of Equation (12), based on the seasonal behavior of
the time series. For the original FBeM MTL, there were three
extra parameters that were eliminated in the improved version
proposed here: thσ = 0.8 and ρ2 = ρ3 = 0.

Table I provides the performance of all FBeM versions:
the ancient FBeM [14] (batch version, without the MTL ap-
proach), the original FBeM MTL [5] and the two new versions

proposed in this paper. FBeM MTL 2.0 refers to the version
with the generalization of the Least SRMTL method, which
besides using the real-valued matrix G and eliminating the
binarization routine, reduces the number of hyperparameters
of the algorithm. FBeM MTL 2.1 builds on the improvements
achieved in version 2.0 and introduces the WLS method to
obtain the parameters of the Takagi-Sugeno consequent part
of the rules. The average number of rules (Rules) and root
mean square error (RMSE) are analyzed. In this first set of
experiments, no other contender was considered, given that
those datasets have never been explored before in the available
literature of evolving systems. This new scenario will then
attest that the relative behavior among the original and the two
new versions of FBeM MTL will be preserved no matter the
particular nature of the climate time series. On the other hand,
the remaining experiments will include additional contenders
and the focus of analysis will be expanded.

TABLE I: One step ahead prediction performance for the
time series of the precipitation in several locations of South
America

Model Rules RMSE
FBeM 8.2390 0.1902
FBeM MTL 8.2390 0.1803
FBeM MTL 2.0 8.2390 0.1800
FBeM MTL 2.1 8.2390 0.1800

As one may note, the number of rules follows the same tra-
jectory for all the FBeM family, since the procedure to obtain
the information granules remains unchanged. For the RMSE,
the improvement in performance from FBeM to FBeM MTL
has already been observed in [5]. The two versions of the
improved FBeM MTL are responsible for an incremental
reduction in the prediction error.

B. Temperature prediction

This second experiment intends to predict one step ahead
of monthly temperatures in a weather time series for the cities
Death Valley, Ottawa and Lisbon. It was first conceived by
[14] and further extended by [5] for the MTL approach. The
same representative contenders selected previously by [14] and
[5] were used to properly evaluate the performance of the two
improved versions of FBeM MTL.

The hyperparameters of both the original and improved
version of FBeM MTL are β = 0.7, hr = 48, η = 0.5, ρ = 1
and the last 12 observations of the time series, as in [14] and
[5]. A time window (N ) of the last 12 data points was used
in the solution of Equation (12), corresponding to a year of
observations. For the original FBeM MTL, there were three
extra parameters: thσ = 0.5 and ρ2 = ρ3 = 0. The parameters
of the other contenders follow the prescriptions of [14].

Table II presents the performance of the two improved
versions of FBeM MTL against several existing contenders in
the literature, according to the parameters and results reported
by [14] and [5]. The best values are highlighted in bold for
each column.



TABLE II: One step ahead prediction performance for the time
series of the temperature at Death Valley, Ottawa and Lisbon

Model Death Valley Ottawa Lisbon
Rules RMSE Rules RMSE Rules RMSE

MA* - 0.167 - 0.162 - 0.141
SWMA* - 0.083 - 0.081 - 0.071
MLP* 20 0.064 20 0.084 20 0.108
eTS* 5 0.086 8 0.084 7 0.094
xTS* 5 0.086 11 0.085 7 0.092
DENFIS* 13 0.068 23 0.086 27 0.094
FBeM MTL* 8 0.037 6 0.049 7 0.051
FBeM MTL 2.0 8 0.037 6 0.049 7 0.050
FBeM MTL 2.1 8 0.037 6 0.048 7 0.050

* results obtained by [14] and [5]

The two improved versions of FBeM MTL are capable of,
while keeping the reduced number of rules of its predecessor,
obtaining an incremental reduction in the RMSE measure when
compared with its original version, outperforming all the other
methods.

C. Wind speed prediction for eolian farms

This third experiment, first conceived by [5], consists of
predicting the wind speed at the three largest wind farms in
the United States: Alta Wind Energy Center, Roscoe Wind
Farm and Shepherds Flat Wind Farm [23], whose locations are
presented in Figure 2. For each wind farm, five well-distributed
turbines were evaluated on an hourly time window basis during
the year of 2012. The same evolving state-of-the-art prediction
algorithms utilized by [5] as contenders were adopted.

Fig. 2: Geographical locations of the wind energy farms

The hyperparameters of all the FBeM MTL versions are
β = 0.9, hr = 1344, η = 10, ρ = 100 and the last 2
observations of the time series, as prescribed in [5]. A time
window (N ) of the last 24 data points was used in the solution
of Equation (12), which is equivalent to the last day of wind
speed observations. For the original FBeM MTL, there were
three extra parameters: thσ = 0.7 and ρ2 = ρ3 = 0. The
parameters of the other contenders follow the prescriptions of
[5].

We compared statistically the RMSE obtained by the evolv-
ing algorithms employing the Friedman test [10], with p =
0.05 as the threshold. Whenever the null hypothesis is rejected,
the Finner posthoc test is applied [9], with the same threshold,
to verify the statistical advantage in a pairwise comparison.
Table III presents the resulting statistical comparison. The
table provides information about the rank of each algorithm,

the average RMSE (RMSE), the number of algorithms statis-
tically better than the evaluated algorithm (#<) and the number
of algorithms statistically worse than the evaluated algorithm
(#>).

TABLE III: Ranking of the statistical comparison for the
RMSE

Model rank RMSE #< #>
FBeM MTL 2.1 2.867 0.0455 0 4
ePL-KRLS 3.267 0.0459 0 4
FBeM MTL 2.0 3.300 0.0456 0 4
FBeM MTL 3.833 0.0457* 0 3
ePL 4.267 0.0507* 0 3
eTS 5.600 0.0616* 3 1
eTS-KRLS 6.467 0.0507* 5 1
eTS+ 6.600 0.0509* 5 1
eTS-LS-SVM 8.800 0.0769* 8 0

* results obtained by [5]

The rank is used to sort the rows of Table III. All
the FBeM MTL versions are highlighted in bold to facili-
tate the comparison with the other algorithms. The original
FBeM MTL version obtained the fourth position in the table,
being statistically superior to the last three algorithms (column
#>). With the improvements embedded by version 2.0 (the
removing of the need for the binarization routine), we achieved
a result slightly better, but yet behind the performance of
ePL-KRLS [24], an evolving algorithm which combines, in
the same model, the participatory learning paradigm with an
adaptive method based on kernels for time series prediction.
It was with the adoption of the WLS method in version 2.1,
however, that FBeM MTL was able to obtain the best per-
formance compared to the other contenders, being statistically
superior to the last four algorithms.

Figure 3 presents the predictions for the Site 36679 of
Alta Wind Energy Center, comparing the performances of the
original FBeM MTL and the extended FBeM MTL 2.1. In the
general view of Figure 3a, the overall performance seems to
be equivalent between the two versions. On the other hand, in
Figures 3b and 3c, one may note the more accurate prediction
provided by FBeM MTL 2.1.

To illustrate the behavior of this new, improved version of
FBeM MTL, Figure 4 presents the evolution of the algorithm
along time for the Site 36278 of Alta Wind Energy Center.
The first row (Figures 4a to 4c) shows the distribution of the
information granules (in fact, a top view of the trapezoidal
shapes) at specific time instants and the other two rows, which
correspond to the same time instants of row 1, refer to the
contributions introduced in this paper: the second row (Figures
4d to 4f) depicts the operation of the generalized version of
the Least SRMTL method, which considers directly the degree
of connection among the pairs of rules without the need for
any binarization process, and the third row (Figures 4g to 4i)
illustrates the weighting policy of the WLS approach.

In row 2, the graphs’ nodes are numbered and their co-
ordinates are calculated as the center of the core region
of the granules. The width of the edges is proportional to



(a) General view (b) First zoom (c) Second zoom

Fig. 3: Comparison of the prediction performance for the Site 36679 of Alta Wind Energy Center

(a) Information granules at h = 2200 (b) Information granules at h = 5036 (c) Information granules at h = 8400

(d) Resulting graph at h = 2200 (e) Resulting graph at h = 5036 (f) Resulting graph at h = 8400

(g) Some samples and their weights at h = 2200 (h) Some samples and their weights at h = 5036 (i) Some samples and their weights at h = 8400

Fig. 4: Evolution of the behavior of the improved FBeM MTL along time for the Site 36278 of Alta Wind Energy Center.
Another version of Figures 4a, 4b and 4c were already published in [5]

the similarity between each pair of connected rules. The
corresponding values, which are indicated above the edges,

were multiplied by 100 to turn the graphs more visible.

At the time instant h = 2200, Figure 4a presents three



scattered granules, with a central granule connected more
intensively with the other two, as Figure 4d shows. The
resulting G matrix is presented in Equation (17a). At the time
instant h = 5036, Figure 4b indicates the creation of new
information granules, which are more specialized in specific
regions. They are concentrated more in the lower left region
of the figure, with the exception of one more distant granule.
As a consequence of the overlapping of granules in this area,
Figure 4e shows nodes with a more intense connection rate,
which is also observed in the resulting matrix G of Equation
(17b). Finally, at h = 8400, Figure 4c exhibits the granules
at the end of the time series. They are more equally spaced,
which reflects in the connection pattern for the nodes of Figure
4f and in the matrix G of Equation (17c).

In row 3, we plot some of the samples belonging to the
information granules with their corresponding weight, calcu-
lated by Equation (3). As one may note, to samples located far
from the denser region lower weights are assigned and, as a
consequence, they contribute less in the prediction loss given
by Equation (5).

D. Online Prediction of S&P 500 Daily Closing Price

This fourth experiment consists of predicting the S&P 500
Daily Closing Price, a commonly employed time series used
in the ML community and available publicly. The period
analyzed comprises the dates 03.01.1950 and 12.03.2009,
totalizing 14,893 data points. As recommended by [11], the
original dataset is used for training, and the flipped time series
is applied for testing. The output of the prediction model is
calculated considering the last five observations of the time
series, according to Equation (18):

x̂(h+ 1) = f(x(h− 4), x(h− 3), x(h− 2), x(h− 1), x(h)).
(18)

Table IV presents the performance of all FBeM MTL
versions compared to several contenders in the literature. The
hyperparameters are set to β = 0.05, hr = 50, η = 2 and
ρ = 1, after a grid search strategy [25] taking the train-
ing dataset and considering the following candidate values:
β ∈ {0.01, 0.05, 0.1}, hr ∈ {10, 50, 100}, η ∈ {0, 2, 5} and

ρ ∈ {0, 1, 10}, respectively. A time window (N ) of the last
4 data points was considered. For the original FBeM MTL,
there were three extra parameters: thσ = 0.8 and ρ2 = ρ3 = 0.

TABLE IV: Online Prediction of S&P 500 Daily Closing Price

No. of rules
(AVG.) NDEI

PANFIS [17] 4 0.09
GENEFIS [18] 2 0.07
eT2RFNN [19] 2 0.04
Simpl eTS [3] 7 0.04
eTS [4] 14 0.04
SEFS [11] 2(1.2835) 0.0182
FBeM MTL [5] 1(2.0872) 0.0203
FBeM MTL 2.0 1(2.0872) 0.0205
FBeM MTL 2.1 1(2.0872) 0.0203

Figure 5 shows the prediction of FBeM MTL 2.1 for the
test data. Although the extended versions were not able to
improve the performance of FBeM MTL for this particular
case, notice that FBeM MTL 2.1 operates with three less
user-defined parameters. FBeM MTL and FBeM MTL 2.1
achieved the second-best result, just behind SEFS [11], an
approach that uses online training errors to automatically
update the threshold parameter that controls the number of
rules. The volatile nature of S&P 500 seems to make this
time series more suitable for SEFS.

IV. CONCLUDING REMARKS

This paper presents an improved version of the newly
proposed Fuzzy set Based evolving Modeling with Multitask
Learning (FBeM MTL) [5], which showed, by the first time
in the literature of evolving systems, the benefits of using
multitask learning to share knowledge when determining the
Takagi-Sugeno consequent parameters of the online composi-
tion of fuzzy IF-THEN rules. Given that each rule has a subset
of linked samples, we extended the original Least Squares
Regularized Optimization to a Weighted Least Squares (WLS)
Regularized Optimization, with each weight being inversely
proportional to the distance of the corresponding sample to
the center of mass of the linked rule. Intuitively, it raises the
impact of samples located at denser areas when compared
with samples situated further away. Besides that, we also

G2200 =

+0.83 +0.60 0
−0.83 0 0.77

0 −0.60 −0.77

 (17a)

G5036 =


+0.90 +0.94 +0.86 +0.58 0 0 0 0 0 0
−0.90 0 0 0 +0.92 +0.95 +0.68 0 0 0

0 −0.94 0 0 −0.92 0 0 +0.92 +0.64 0
0 0 −0.86 0 0 −0.95 0 −0.92 0 +0.72
0 0 0 −0.58 0 0 −0.68 0 −0.64 −0.72

 (17b)

G8400 =


+0.85 +0.84 +0.79 0 0 0
−0.85 0 0 +0.79 +0.66 0

0 −0.84 0 −0.79 0 +0.87
0 0 −0.79 0 −0.66 −0.87

 (17c)

https://finance.yahoo.com/quote/%5EGSPC/history/
https://finance.yahoo.com/quote/%5EGSPC/history/


Fig. 5: Prediction of the S&P 500 Daily Closing Price

developed a generalization of the regularization term that
encodes the structural dependencies among the rules. Unlike
the original approach, which considered a binary connection
between two rules, in this new formulation we directly resorted
to the degree of intersection of the information granules to
define a real-valued matrix representing a fuzzy relationship
among the rules, avoiding the loss of information that the
binarization routine brings, and also eliminating a threshold
hyperparameter that drives the binarization and should be
properly defined by the user. Lastly, after detecting a low
impact in the final solution, we decided to eliminate two elastic
net-like regularization terms from the optimization problem,
thus guiding to the reduction in the number of hyperparameters
to be set by the user and bringing compactness to the model,
without compromising performance.

To analyze the impact of the contributions proposed by
the paper, we conducted a series of four experiments in the
challenging fields of weather forecast—more specifically on
time series prediction of precipitation, temperature and wind
speed for eolian farms—and of stock exchange prediction.
We compared the performance of the two extended versions
of FBeM MTL with the original version and also, whenever
possible, with several existing algorithms in the literature.
The experiments evidenced the benefits of the contributions
presented in this paper.

As future work, we plan to extend the MTL approach to
deal with a regularized version of generalized linear models,
such as kernel regression [21], in replacement to the traditional
regularized linear regression.
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