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Abstract—The ordered weighted average (OWA) operator is a
well-known aggregation tool that is primarily used for decision-
level fusion. However, the OWA is a convex sum, i.e., its learned
coefficients are constrained to sum to one, and thus the output
is restricted to lie between the maximum and minimum values
of the inputs. Relaxing this constraint on the sum of weights
transforms the OWA into a linear order statistic (LOS), which
allows the aggregation operation to map the input to any value on
the set of reals, thus behaving more like a regression operator. The
LOS parameterizes the regression operation of d-features using
just d parameters, which helps with the model’s interpretability.
However, learning just d parameters limits the amount of non-
linear space explored for an optimal solution, and thus reduces
the expressibility of the LOS algorithm. We propose a novel aggre-
gation method called the extended linear order statistic (ELOS),
where for each position in the sorted input vector we have d

parameters, one for each input feature, thus learning a total of d2

weights for the aggregation of d features. The increased number
of parameters helps the algorithm improve its expressibility
while maintaining interpretability. In our experiments on real-
world benchmark data sets, ELOS has outperformed both linear
regression and LOS in 8 out of 10 experiments.

Keywords—ordered weighted average, linear order statistic,
linear regression, machine learning, explainable AI

I. INTRODUCTION

The ordered weighted average (OWA) aggregation operator

was introduced by Yager in 1988 [1]. It was primarily designed

to aggregate the outputs from multiple decision makers to

produce an overall fused decision function. An OWA operator

on d dimensional data is a mapping F : Rd → R. Given

an input vector x = (x1, x2, . . . , xd) and the corresponding

weight vector v, the OWA function is given by

OWA(x,v) =
d

∑

i=1

vix(i), (1)

where x(1) ≥ x(2) ≥ · · · ≥ x(d), vi ≥ 0, and
∑d

i=1 vi = 1.

The OWA induces non-linearity in the solution by sorting

the input vector prior to the aggregation operation. It also

limits the outputs of aggregation between the minimum and

the maximum values of the input sample x, and thus is best

suited for decision-level fusion. In Yager’s later work [2],

he extended the application of OWA to regression problems.

This work introduced an OWA-based approach to evaluate

the fitness of a solution to the data, where, the weighting

vector of the OWA operator controls the penalties for each

data point, based on the magnitude of the error measure (e.g.

squared-error). Yager et al. demonstrated that OWA-based

regression provides a generic formulation of the regression

problem in which existing classical methods like least squares

(LS) regression, least absolute deviation (LAD) regression,

and maximum likelihood (ML) estimators are special cases.

Also, the OWA-based regression solutions were found to be

less sensitive to outliers as compared to the traditional methods

like LS, LAD, and ML-estimators.

The OWA function at (1) can be modified to

OWAg(x,v) =

∑d

i=1 vix(i)
∑d

i=1 vi
, (2)

where x(1) ≥ x(2) ≥ · · · ≥ x(d), and vi ≥ 0. While this is

equivalent to (1), as it implicitly encodes the constraint on the

weights on x to sum to 1, it does help with certain learning

problems. This form can be relaxed to the linear order statistic

(LOS), which has the form

LOS(x,w) =
d

∑

i=1

wix(i), (3)

where the weights w are no longer constrained to sum to 1,

and can also take negative values. This enables the aggregation

operation to behave more like a regression operator that can

map the input to any value on the set of reals.

An LOS for the aggregation of d sources is parameterized by

d values, each representing the weight corresponding to each

position in the sorted input vector,xπ = (x(1), x(2), . . . , x(d)).
While having just d parameters makes the solution more

explainable, since we have only a single parameter for each

sorted position, the LOS algorithm is quite limited in terms

of the amount of non-linear space it explores for an optimal

solution—i.e., its “expressibility” is limited. In this paper,

we propose a novel aggregation method called the Extended

Linear Order Statistic (ELOS), where the aggregation of d

sources is parameterized by d2 weights. For each position

in the sorted input vector we again have d weights, one for

each source. The increased number of parameters helps the
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algorithm improve its expressibility, but it still maintains its

interpretability.

The remainder of this paper is organized as follows. Section

II presents the background on OWA operators and OWA-based

regression, then Section III discusses the problem formulation

and training process of LOS. In Section IV, we introduce

ELOS and describe the training process. Section V discusses

the ℓ1- and ℓ2-regularization. We then compare the perfor-

mance of ELOS with linear regression and LOS in Section

VI. Section VII summarizes this work and discusses possible

future work.

II. BACKGROUND AND PRIOR WORK

The OWA has been used in many fields, such as decision

making [3–6], risk analysis [7, 8], environment assessment

[9, 10], and sports performance analysis [11, 12]. Given the

wide range of applications, several OWA-based aggregation

operators were proposed. Induced ordered weighted average

(IOWA) by Yager et al. [13] introduced a modified ordering

approach where the ordering is induced by a variable called

the order inducing variable. Chiclana et al. [14] introduced

the ordered weighted geometric (OWG) aggregation operator,

a geometric mean-based OWA operator. Yager et al. [15]

introduced continuous OWA (C-OWA) to aggregate contin-

uous interval values. While most of these developments were

oriented towards OWA-based aggregation tools, in 2009, Yager

et al. [2] extended the application of OWA to regression

problems and demonstrated that OWA-based regression partic-

ularly outperforms traditional least-squares and least-absolute-

deviation methods when the data contains a significant portion

of outliers. The ELOS regression approach we propose builds

on these prior works and parameterizes the aggregation of

d-dimensional inputs using d2 parameters, wherein for each

of the d sorted positions in the input we again have d

weights, each corresponding to individual variables in the

input vector—more details in Section IV.

III. PROBLEM FORMULATION

Given a set of training data (y, X), where X =
{x1,x2, . . . ,xn}, xi ⊂ R

d (a set of feature vectors) and

y = (y1, y2, . . . , yn)
T (a vector of outputs)1, the classic

regression problem involves learning a function that maps the

input data X to the output. Such function is a parameterized

model such that

y ≈ f(x,w),

where w is the set of learned parameters of the regression

function f . During training, the regression parameters w are

optimized with respect to an error function, usually squared-

error,

w
∗ = argmin

w

n
∑

i=1

(f(xi,w)− yi)
2
. (4)

Consider the prepended input xi = (xi,0, xi,1, xi,2, . . . xi,d)
T ,

where xi,0 is defined as the constant bias multiplier 1, and

1Note that the output y could be extended to multiple outputs for each
input vector without loss of generality.

(xi,1, xi,2, . . . , xi,d)
T are the d-features of the input, the

function f(xi,w) takes the form

f(xi,w) =

d
∑

j=0

xi,jwj = w
T
xi, (5)

where wo is the bias term and each weight in

(w1, w2, . . . , wd)
T is the coefficient of the corresponding

variable in the input vector (xi,1, xi,2, . . . , xi,d). This is

the well-known least-squares problem with a closed-form

solution for (4),

w
∗ = (XTX)−1XT

y, (6)

where

XT =











1 x
T
1

1 x
T
2

...
...

1 x
T
n











(7)

is the n × (d + 1) input matrix in which each row is an

input vector (with the prepended bias multiplier 1 in the first

position), and y is the vector of outputs in the training set. For

more extensive details on regression, in general, we suggest

[16].

A. Linear Order Statistic (LOS) Regression

The regression function for LOS takes the same form as (5)

except that the input vectors xi are first sorted in descending

order,

fLOS(xi,w) =

d
∑

j=0

(xi)πi(j)wj = w
T (xi)πi

, (8)

where π is a sorting function, such that (xi)πi(1) ≥
(xi)πi(2) ≥ · · · ≥ (xi)πi(d); (xi)πi(0) = 1 is defined so that

w0 represents the bias in the regression. Thus, w1 corresponds

to the weight on the input variable with the highest magnitude,

w2 corresponds to the weight on the next highest variable, and

so on. The closed-form solution at (6) also applies to LOS-

regression by simply forming the following sorted input data

matrix,

XT
π =











1 (x1)
T
π1

1 (x2)
T
π2

...
...

1 (xn)
T
πn











, (9)

where (xi)πi
is simply the sorted version of the ith input

vector. Finally, the LOS weight vector w that minimizes (4)

can be calculated by

w
∗ = (Xπ

TXπ)
−1Xπ

T
y. (10)

IV. EXTENDED LINEAR ORDER STATISTIC

While the LOS-regression solution of a d-dimensional input

comprises one weight each for each position in the sorted

input and an additional bias parameter, ELOS trains d weights

for each position in the sorted input, where each weight



TABLE I: ELOS Weight Matrix for 5-dimensional Data

Input Sort Order, π(i)
xi,1 w1,1 w1,2 w1,3 w1,4 w1,5

xi,2 w2,1 w2,2 w2,3 w2,4 w2,5

xi,3 w3,1 w3,2 w3,3 w3,4 w3,5

xi,4 w4,1 w4,2 w4,3 w4,4 w4,5

xi,5 w5,1 w5,2 w5,3 w5,4 w5,5

5 × 5 weight matrix W for ELOS regression of 5-dimensional data. The
weights selected for the aggregation of the example input vector x =
(1.3, 0.7,−0.2, 2.1, 1.6)T are marked in bold font. Note that we will learn
an additional bias weight β, for a total of 52 + 1 = 26 parameters.

corresponds to an individual variable, plus a bias parameter;

i.e., the regression solution comprises d2 + 1 weights.

Again, consider an input vector xi = (xi,1, . . . , xi,d)
T ,

where (xi,1, xi,2, . . . , xi,d) are the d-features of the input. The

regression function for ELOS takes the form

fELOS(xi,w) =
d

∑

j=1

(xi)πi(j)wj,i + β, (11)

where π is again a sorting function, such that (xi)πi(1) ≥
(xi)πi(2) ≥ · · · ≥ (xi)πi(d), and here β is the bias term. The

regression weights are now a d2 matrix, as shown in Table

I. We first write the ELOS regression in this way for ease of

understanding, but later we will extend this formulation for

ease of data-driven learning of W and β.

A graphical representation of the associated weights for

each input is shown in Table I for a 5-dimensional input vector,

x = (1.3, 0.7,−0.2, 2.1, 1.6)T . The sorting function on this

vector would be π = (4, 5, 1, 2, 3); hence, the bold weights in

the shown matrix would be the weights applied to this input

vector. Essentially, the ELOS combines the power of linear

regression with that of the LOS regression; each row of W is

associated with each element of the input vector (like linear

regression), and each column of W corresponds to the sort of

the input elements (like LOS regression).

The ELOS formulation at (11) is good for illustrating how

ELOS works, but this is problematic for data-driven learning

of W and β. Hence, we reform the input vectors x and the

weight matrix W as follows. It may help to examine Fig. 1 as

you read along with the following mathematical explanation.

First, consider the extension of the ith input vector xi,

x
e
i = (1, (xi)

e
πi
)T , (12)

where the first element of 1 is included so that the bias can

be implicitly included in w
e (which we describe later). The

vector (xi)
e
πi

is a d2-length vector with only d non-zero terms;

this vector will enforce the sort, as indicated by π. The vector

(xi)
e
πi

has the form

(xi)
e
πi

= ([(xi,1)
e
πi
]T , [(xi,2)

e
πi
]T , . . . , [(xi,d)

e
πi
]T )T . (13)

Each of [(xi,j)
e
πi
] is simply a vector of zeroes, with each

element of xi sorted into the corresponding spot in the sort.

Figure 1 illustrates the construction of (x)eπ for the example

input vector x = (0.4,−0.1, 0.7)T , with sort π(1) = 3, π(2) =
1, π(3) = 2. The first element of (x)eπ is the bias multiplier.

0.4

xπ(2)

-0.1

xπ(3)

0.7

xπ(1)

1.0 0 0.4 0 0 0 -0.1 0.7 0 0

Input x = (0.4,−0.1, 0.7)T

Extended input xe
πBias

multiplier

Fig. 1: Transformation of an example 3-dimensional input

vector x to its extended form.

The blue chunk is (x1)
e
π , where x1 has been sorted into the

second spot. The red chunk is (x2)
e
π , where x2 has been

sorted into the third spot. And similarity for the green chunk,

where x3 has been sorted into the first spot. While this may

seem complicated notation, it significantly simplifies the data-

driven learning process. Since each input vector xi is extended

to (xi)
e
πi

, the weight matrix W must be correspondingly

extended.

Let the extended form of W be

w
e = (β,w1,1, w1,2, . . . , w1,d, w2,1, . . . , wd,d)

T , (14)

where all we have done is take each row of W sequentially

to form a long vector and prepended the bias term as the first

element of we.

We can now rewrite (11) as

fELOS(xi,w) = (we)Txe
i , (15)

which you can see is most pleasing—we have essentially

written ELOS regression as a linear regression equation.

Finally, it is easy to see that ELOS can be solved much the

same as linear and LOS regression were solved,

(we)∗ = ([Xe]
T
Xe)−1[Xe]

T
y, (16)

where

[Xe]T =











(xe
1)

T

(xe
2)

T

...

(xe
n)

T











, (17)

Once the (d2 + 1)-ELOS weight vector (we)∗ is learned

using a training data set, the ELOS regression output for a new

input x can be calculated using (15). Example 1 demonstrates

the ELOS regression calculation in more detail.

Example 1. Consider the problem of learning an ELOS

regression model on a 5-dimensional training data set

(y, X), where X = {x1,x2, ...,xn}, xi ⊂ R
5 and

y = (y1, y2, ..., yn)
T . Consider the input vector x =

(1.3, 0.7,−0.2, 2.1, 1.6)T . The sort order of the variables in x

are π(1) = 4, π(2) = 5, π(3) = 1, π(4) = 2, π(5) = 3. Thus,



the weight applied to the fourth input x4 would be w4,1, the

weight applied to the fifth element x5 is w5,2, and so on as

shown in Table I. Thus the output is calculated as

y = β + w4,1x4 + w5,2x5 + w1,3x1 + w2,4x2 + w3,5x3.

(18)

Remark 1. It is easy to show that ELOS is equivalent to linear

regression or LOS regression when the weight matrix W takes

a certain form. ELOS is equivalent to linear regression if the

rows of W , illustrated in Table I, are constant-valued. That is

if wi,1 = wi,2 = . . . = wi,d, ∀i.
Similarly, ELOS is equivalent to LOS regression if the

columns are equal: w1,j = w2,j = . . . , wd,j , ∀j.

This Remark illustrates that ELOS can do everything both

linear and LOS regression are able to do. The only concern is

whether ELOS will over-fit to training data. We now turn to

describing how we can apply regularization to the regression

methods described in this paper.

V. REGULARIZATION

While increasing the number of learned parameters might

improve the expressibility of the algorithm, more parameters

may sometimes capture the noise in the training data and

thereby result in an over-fit solution. Regularization allows

us to restrict the size of the learned parameters and thus

discourages the algorithm from learning a solution that is more

complex than necessary. In our experiments on ELOS and

comparable regression methods in Section VI, we explored

the impact of ℓ1- and ℓ2-regularization.

A. ℓ2-regularization: Ridge regression

The sum of squared-error (SSE) function at (4) can be

modified to include the ℓ2-regularization penalty to make the

ℓ2-penalized-SSE function

SSEℓ2 =

n
∑

i=1

(f(xi,w)− yi)
2
+ λ

d
∑

j=1

w2
j , λ ≥ 0, (19)

where λ is the regularization parameter. Each of the regres-

sions (linear, LOS, and ELOS) at (5), (8), and (15) can be

written in the form of a simple dot-product wT
x; hence, (19)

can be rewritten as

SSEℓ2 =

n
∑

i=1

(

w
T
xi − yi

)2
+ λ

d
∑

j=1

w2
j . (20)

Expanding (20) gives

SSEℓ2 =
(

w
TX − y

)T (

w
TX − y

)

+ λ‖w‖22. (21)

By taking the derivative of (21) and setting to zero, it can be

shown that SSEℓ2 is minimized when

w = (XTX + λI)−1XT
y, (22)

which is the well-known ridge-regression solution. While (22)

is notated for linear regression, this can be applied to both LOS

and ELOS by replacing X with Xπ or Xe and the appropriate

form of the weight vector w. For more extensive detail on

ℓ2-regularization, in general, we suggest [16]. We used the

Matlab’s fitrlinear function to apply ℓ2-regularization,

which accounts for numerical issues that can occur with the

closed-form solution at (22).

B. ℓ1-regularization: Lasso regression

The SSE function at (4) can be modified to include the

ℓ1-regularization penalty as

SSEℓ1 =

n
∑

i=1

(f(xi,w)− yi)
2
+ λ

d
∑

j=1

|wj |, (23)

where λ is again the regularization parameter. Unlike ridge

regression, ℓ1-regularization does not have a closed-form so-

lution. We used Matlab’s fitrlinear function to apply ℓ1-

regularization. Matlab implements the Alternating Direction

Method of Multipliers (ADMM) algorithm [17] to solve for

the optimal weight vector w subject to ℓ1 regularization.

VI. EXPERIMENTS

We tested the ELOS algorithm on real world data sets from

the UCI machine learning repository [18]. Using mean squared

error (MSE) as the performance measure, we compared ELOS

with linear regression and LOS regression on 10 benchmark

data sets2. We also evaluated the impact of ℓ1- and ℓ2-

regularization on each of these methods through a grid search

over a set of values for the regularization parameter λ, ranging

on a logarithmic scale between 0.0001 and 1000. We reported

the results with the best λ. Each experiment consisted of

100 randomized trials, where the result of each trial is the

average MSE calculated over a 10-fold cross validation. Table

II presents the experimental results, where the MSE reported

in each cell is the average MSE of 100 experimental trials;

its standard deviation is presented in parentheses. All the

experiments are implemented in Matlab.

A. ELOS versus linear regression

ELOS, unlike linear regression, learns a weight vector for

each feature in the training data—one for each sort position.

Figures 2 and 3 compare the weights learned by ELOS and

linear regression on Airfoil and Concrete data sets, respec-

tively. In both these figures, we see that the ELOS weights for

each feature are spread on either side of the linear regression

weights, thus allowing ELOS to treat the features differently

depending on their sort order. These figures show that the

overall values of the weights of ELOS follow that of the linear

regression weights, which is intuitively pleasing.

B. ELOS vs. LOS

Figures 4 and 5 compare the learned parameters for ELOS

and LOS on the Airfoil and Concrete data sets, respectively.

While the LOS has learned one weight for each sorted

position, ELOS learns a weight vector for each feature and

2See Table III in Appendix A for details on the UCI regression data sets
used in the experiments.
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Fig. 2: Comparison of learned parameters of ELOS and linear

regression on Airfoil data set. For each feature, ELOS has

learned 5 weights, each corresponding to sort position of that

feature, whereas linear regression learns only one weight per

feature. ELOS was able to capture non-linearity in the input-

output relation, which is represented by the variation in the

learned weights for each feature.
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Fig. 3: Comparison of learned parameters of ELOS and linear

regression on Concrete data set. For each feature, ELOS has

learned 8 weights, each corresponding to sort position of that

feature.
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Fig. 4: Comparison of learned parameters of ELOS and LOS

on Airfoil data set. For each sort position, ELOS has learned

5 weights, one for each feature, where as the LOS has learned

only one weight per sort position.
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Fig. 5: Comparison of learned parameters of ELOS and LOS

on Concrete data set. For each sort position, ELOS has learned

8 weights, one for each feature, where as the LOS has learned

only one weight per sort position

applies weights according to the sort. In both Figures 4 and

5, the high variance of ELOS weights about the LOS weights

for each feature demonstrate the flexibility of ELOS to treat

each feature differently based on their sort position. Thus,

linear regression and LOS are special cases within ELOS,

since ELOS, in addition to learning the weights for individual

features, also explores the non-linearity introduced by the

sorting of input vector.

C. Results on benchmark data sets

Table II shows the performance comparison of ELOS and

the other competing methods on real-world data sets. The MSE



TABLE II: MSE on Benchmark Data Sets

Method Concrete
Real

Estate

Fish
Toxic-

ity

Aquatic
Toxic-

ity

Red
Wine

White
Wine

ENB-2 Yacht Airfoil ISE
# of

best in-
stances

n 1,030 414 908 546 1599 4898 768 308 1503 536 -

d 8 5 6 8 11 11 8 6 5 7 -

ELOS 0.345 0.379 0.403 0.558 0.67 0.757 0.057 0.332 0.392 0.506
(0.003) (0.006) (0.004) (0.012) (0.003) (0.001) (0.001) (0.011) (0.002) (0.008) 7

ELOS-ℓ1 0.359 0.377 0.409 0.561 0.681 0.772 0.062 0.408 0.4 0.496
(0.004) (0.005) (0.004) (0.007) (0.003) (0.001) (0.001) (0.01) (0.002) (0.009) 1
λ = 0.01 λ = 0.0001 λ = 0.001 λ = 0.01 λ = 0.001 λ = 0.001 λ = 0.0001 λ = 0.0001 λ = 0.001 λ = 0.001

ELOS-ℓ2 0.362 0.374 0.408 0.567 0.678 0.773 0.059 0.398 0.401 0.497
(0.004) (0.005) (0.004) (0.01) (0.004) (0.001) (0.001) (0.011) (0.002) (0.009) 1
λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.001 λ = 0.001 λ = 0.0001 λ = 0.001 λ = 0.01

Linear 0.424 0.445 0.437 0.553 0.661 0.729 0.087 0.520 0.505 0.437 1
(0.002) (0.002) (0.002) (0.003) (0.001) (0.001) (0.000) (0.003) (0.001) (0.003)

Linear-ℓ1 0.418 0.445 0.435 0.550 0.660 0.728 0.087 0.519 0.501 0.437 1
(0.003) (0.002) (0.002) (0.005) (0.001) (0.001) (0.001) (0.004) (0.001) (0.003)

λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.0001 λ = 0.0001 λ = 0.01 λ = 0.001

Linear-ℓ2 0.411 0.445 0.434 0.552 0.658 0.728 0.087 0.519 0.493 0.437 1
(0.002) (0.002) (0.002) (0.004) (0.001) (0.001) (0.001) (0.004) (0.001) (0.003)

λ = 0.1 λ = 0.01 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.1 λ = 0.0001 λ = 0.0001 λ = 0.1 λ = 0.001

LOS 0.708 0.727 0.718 0.940 0.996 0.977 0.758 1.086 0.797 0.508 0
(0.002) (0.005) (0.003) (0.007) (0.002) (0.001) (0.003) (0.009) (0.001) (0.008)

LOS-ℓ1 0.707 0.727 0.709 0.934 0.987 0.977 0.754 1.088 0.797 0.509 0
(0.002) (0.007) (0.002) (0.007) (0.011) (0.001) (0.003) (0.006) (0.002) (0.006)
λ = 0.01 λ = 0.001 λ = 0.01 λ = 0.01 λ = 0.0001 λ = 0.0001 λ = 0.01 λ = 0.0001 λ = 0.01 λ = 0.1

LOS-ℓ2 0.704 0.723 0.716 0.935 0.985 0.977 0.748 1.086 0.790 0.505 0
(0.002) (0.006) (0.003) (0.005) (0.012) (0.001) (0.004) (0.007) (0.001) (0.004)
λ = 0.01 λ = 0.01 λ = 0.01 λ = 0.1 λ = 0.0001 λ = 0.0001 λ = 0.01 λ = 0.0001 λ = 0.1 λ = 0.01

MSE values in the table are the average (and standard deviation) of 100 randomized experimental trails; the MSE of each trial is taken over a 10-fold cross
validation. Bold indicates the lowest MSE at a 5% statistical significance based on a two-sample t-test.

values presented in the table are the average values taken over

100 randomized experimental trails, where the MSE of each

trial is the mean MSE over a 10-fold cross validation. The

best algorithms on each of these data sets were marked in bold

font. We performed a two-sample t-test at a 5% significance

level to determine the statistically best results—hence, more

than one algorithm can be considered as best. The last column

in Table II shows the total number of data sets on which the

algorithm produced the best results. Overall, ELOS performed

better than Linear regression and LOS in 8 out 10 instances.

Regularization did not seem to have a strong impact on ELOS

since ℓ1- and ℓ2-regularized versions performed better than

unregularized-ELOS only on two out of 10 data sets.

VII. CONCLUSION AND FUTURE WORK

In this work we introduced ELOS, an OWA-based regres-

sion operator and demonstrated that it is a significant im-

provement over simple linear and LOS regression. ELOS, by

learning a weight vector for each input feature—one weight for

each sort position—treats each variable independently and also

enables the non-linearity introduced by the sorting process.

Thus, it combines the benefits of both linear regression as

well as LOS regression. Experiments on real-world benchmark

data sets indicated the superior performance of ELOS over

linear and LOS regression. Furthermore, ELOS maintains the

explainability of learned solutions since we can tease apart the

treatment of each feature based on its sort position.

Future work will extend the application of ELOS to decision

fusion problems. We will also explore the application of

regularization strategies that force the learned weights of

ELOS towards predefined structures, which will enable us to

identify data sets on which a simpler model like an LOS or

a linear regression may be a better fit. We will also explore

how ELOS can be instantiated in deep learning architectures,

providing explainable layers for deep networks.
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APPENDIX A

BENCHMARK DATA SETS FROM THE UCI MACHINE

LEARNING LIBRARY [18]

Table III contains the information about the data sets used

in this paper.
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