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Abstract—In this contribution methods for improving the
quality of multi-class classification by the k nearest neighborhood
classifiers in the case of large number of missing values in data
sets are considered. Two versions of classifiers are compared.
In the first case the aggregation of certainty coefficients of the
individual classifiers with the use of the arithmetic mean is
applied. In the second case interval modelling and interval-valued
aggregation functions are involved. It is proved that the classifier
which uses interval methods entails a much slower decrease in
classification quality.

Index Terms—multi-class classifier, k-NN classifier, missing
values, interval-valued aggregation functions

I. INTRODUCTION

Binary classifiers are one of the supervised machine learning
methods that help in extracting knowledge. However, in real
world applications we often encounter problems that involve
more than two classes. It is the so called multi-class problem.
Classification problems in multiple classes may be solved in
diverse ways. One of the most popular methods is a bina-
rization or a decomposition (cf. [1]). In multi-class problems
there are more decision constraints than in the case of a
binary problem. This is why decomposition methods are often
applied in order to simplify the problem. There exist different
decomposition strategies. The most popular are one-versus-
one (OVO) and one-versus-all (OVA) (cf. [2]). A detailed
overview of both methods, presenting their advantages and
disadvantages, with an experimental study for several well-
known algorithms was provided in [1].
In this contribution we consider a problem of k nearest
neighborhood (k-NN ) based multi-class classifiers in the case
of missing values in data test tables. In the case of missing
values in data tables a problem of lowering the performance of
classifiers is observed (cf. [3], [4], [5], [6]). Our aim is to show
superiority of the proposed interval methods over numerical
ones. Interval-valued fuzzy set theory, as one of the extensions
of fuzzy sets theory, is a promising tool for solving diverse
real-life problems (cf. [7], [8], [9], [10], [11]). We propose
an approach of creating the so called uncertainty intervals
(cf. [12], [13], [14]) for the k-NN and then aggregating the
obtained intervals with the use of interval-valued aggregation
functions. We prove that this method has better results than
the other applied method where an aggregation function is just
the numerical arithmetic mean. Aggregation functions proved

to be an effective tool in many application areas (cf. [15]).
Here we use interval-valued aggregation functions which are
recently developed by several authors and successfully applied
in real life problems (cf. [16]).
There are many implementations of the k-NN method in
various software libraries and programming languages. The
implementation of our classifiers was made in Python language
with usage of its libraries NumPy, pandas and scikit-learn. We
proved that the proposed interval method obtained statistically
significantly better results than the numerical ones which was
justified with the use of Statistica programme.
The paper is organized as follows. In Section II, we recall the
notion and examples of interval-valued aggregation functions.
Next, in Section III, details of the considered classifiers are
provided. Finally, in Sections IV-V implementation details and
discussion on the results are given.

II. INTERVAL-VALUED AGGREGATION FUNCTIONS

We recall definition of an interval-valued fuzzy set and some
comparability relations used in interval-valued fuzzy settings.

Definition 1 (cf. [14]). An interval-valued fuzzy set F on X is
a mapping F : X → LI such that F (x) = [F (x), F (x)] ∈ LI

for x ∈ X , where

LI = {[x, x] : x, x ∈ [0, 1], x 6 x}.

The well-known classical monotonicity (partial order) for
intervals is of the form (cf. [20])

[x, x] � [y, y]⇔ x 6 y, x 6 y. (1)

We will also use the following comparability relations on LI

(cf. [21]):
[x, x] �π [y, y]⇔ x 6 y, (2)

[x, x] �ν [y, y]⇔ x 6 y. (3)

The listed comparability relations (1)-(3) follow from the
epistemic settings of interval-valued fuzzy sets which rep-
resents the uncertainty of the membership value of a given
object in an interval-valued fuzzy set. Further examples of
comparability relations, including orders between intervals one
may find for example in [22], [23], [24]. In [25] the admissible
linear orders were introduced and the general method to build
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different linear orders for the family of intervals LI was
presented.

Definition 2 ([25]). An order ≤LI on LI is called admissible
if it is linear and satisfies that for all x, y ∈ LI , such that
x � y, then x ≤LI y.

Example 1. Well-known examples of admissible (linear)
orders on LI are presented below:
• Xu and Yager order defined as
[x, x] ≤XY [y, y] if and only if

x+ x < y + y or (x+ x = y + y and x− x 6 y − y).

• The first lexicographical order (with respect to the first
variable), ≤Lex1 defined as [x, x] ≤Lex1 [y, y] if and only
if

x < y or (x = y and x 6 y).

• The second lexicographical order (with respect to the second
variable), ≤Lex2 defined as
[x, x] ≤Lex2 [y, y] if and only if

x < y or (x = y and x 6 y).

In this paper we will use interval-valued aggregation func-
tions, possible aggregation functions and necessary aggrega-
tion functions (cf. [26]) which follow from the notions of
comparability relations (1)-(3). Firstly, we recall the concept
of an aggregation function on the unit interval [0, 1].

Definition 3 (cf. [27], p. 6). A function A : [0, 1]n → [0, 1],
n ∈ N, n > 2, which is increasing in each variable, i.e., for
all s1, . . . , sn, t1, . . . , tn ∈ [0, 1]

( ∀
16i6n

si 6 ti)⇒ A(s1, . . . , sn) 6 A(t1, . . . , tn), (4)

is called an aggregation function if A(0, . . . , 0) = 0,
A(1, . . . , 1) = 1.

The notion of an aggregation function may be naturally
extended from the domain [0, 1] to the domain LI in the
following way.

Definition 4 (cf. [28]). An operation A : (LI)n → LI is
called an aggregation function on LI if it is increasing, i.e.,

∀
xi,yi∈LI

xi � yi ⇒ A(x1, . . . , xn) � A(y1, . . . , yn) (5)

and A(0, ..., 0︸ ︷︷ ︸
n×

) = 0, A(1, ..., 1︸ ︷︷ ︸
n×

) = 1, where 0 = [0, 0],

1 = [1, 1].

Below we give some construction methods of interval-
valued aggregation functions on LI . These methods involve
the notion of an aggregation function on [0, 1].

Definition 5 (cf. [29]). A : (LI)n → LI is said to be a
representable aggregation function on LI if there exist two
aggregation functions A1, A2 : [0, 1]n → [0, 1], A1 6 A2

such that, for every x1 = [x1, x1], x2 = [x2, x2], ..., xn =
[xn, xn] ∈ LI it holds that

A(x1, x2, . . . , xn) = [A1(x1, x2, . . . , xn), A2(x1, x2, . . . , xn)].

By replacing in the monotonicity condition (5) the classical
order � with the relations �π or �ν we obtain the following
types of aggregation operators.

Definition 6 ([26]). An operation A : (LI)n → LI is called
a possible aggregation function (pos-aggregation function) if

∀
xi,yi∈LI

xi �π yi ⇒ A(x1, . . . , xn) �π A(y1, . . . , yn) (6)

and A(0, ..., 0︸ ︷︷ ︸
n×

) = 0, A(1, ..., 1︸ ︷︷ ︸
n×

) = 1.

Definition 7 ([26]). An operation A : (LI)n → LI is called a
necessary aggregation function (nec-aggregation function) if

∀
xi,yi∈LI

xi �ν yi ⇒ A(x1, . . . , xn) �ν A(y1, . . . , yn) (7)

and A(0, ..., 0︸ ︷︷ ︸
n×

) = 0, A(1, ..., 1︸ ︷︷ ︸
n×

) = 1.

We may also consider interval-valued aggregation functions
with respect to linear orders.

Definition 8 ([30]). A : (LI)n → LI is called an aggregation
function with respect to the admissible linear order ≤LI , if

∀
xi,yi∈LI

xi ≤LI yi ⇒ A(x1, . . . , xn) ≤LI A(y1, . . . , yn)

and A(0, ..., 0︸ ︷︷ ︸
n×

) = 0, A(1, ..., 1︸ ︷︷ ︸
n×

) = 1.

Below we present the representatives of aggregation func-
tions belonging to the mentioned classes of aggregation func-
tions on LI which were applied in our experiments. Namely,

A1(x1, x2, ..., xn) =

[
x1 + x2 + ...+ xn

n
,
x1 + x2 + ...+ xn

n

]
,

(8)
where A1 is a representable aggregation function on LI , it

is a pos-aggregation functions and a nec-aggregation function
(cf. [26]) and it is an interval-valued aggregation function with
respect to the linear orders ≤Lex1, ≤Lex2 and ≤XY (cf. [30]).

A2(x1, x2, ..., xn) = [
x1 + x2 + ...+ xn

n
,

max(
x1 + x2 + ...+ xn

n
, ...,

x1 + · · ·+ xn−1 + xn
n

)], (9)

where A2 is a nec-aggregation function and it is neither
a representable aggregation function nor a pos-aggregation
function (cf. [26]).

A3(x1, x2, ..., xn) =
[
x1 + ...+ xn

n
,
x2
1 + ...+ x2

n

x1 + ...+ xn

]
(10)

and its more general version A4, where p ∈ N, p > 2,

A4(x1, ..., xn) =

[
x1 + ...+ xn

n
,

xp1 + ...+ xpn

xp−11 + ...+ xp−1n

]
. (11)

A3 and A4 are pos-aggregation functions but they are neither
aggregation functions nor nec-aggregation functions, where



it used the convention 0
0 = 0. The upper bounds of these

aggregation operators were built with the use of Lehmer means
(cf. [31], p. 185) which do not fulfil the classical monotonicity
(4) and as a result A3, A4 do not fulfil the condition (5) but
they fulfil condition (6) (cf. [26]).

A5(x1, ..., xn) =

[√
x2
1 + ...+ x2

n

n
,

3

√
x3
1 + ...+ x3

n

n

]
, (12)

A6(x1, ..., xn) =

[
3

√
x3
1 + ...+ x3

n

n
,

4

√
x4
1 + ...+ x4

n

n

]
,

(13)
where A5 and A6 are representable aggregation func-

tions, pos-aggregation functions and interval-valued aggrega-
tion functions with respect to the linear orders ≤Lex1 and
≤Lex2 (cf. [32]) but they are not nec-aggregation functions
(cf. [26]).

A7(x1, x2, . . . , xn) =

[min(
x1 + x2 + · · ·+ xn

n
, ...,

x1 + · · ·+ xn−1 + xn

n
),

x1 + x2 + · · ·+ xn
n

]. (14)

Aggregation function (14) is a nec-aggregation function
but it is neither a pos-aggregation function (cf. [26]) nor a
representable aggregation function.

A8(x1, ..., xn) =
[

n
√
x1 · ... · xn,

x2
1 + ...+ x2

n

x1 + ...+ xn

]
, (15)

A9(x1, ..., xn) =

[√
x2
1 + ...+ x2

n

n
,
x3
1 + ...+ x3

n

x2
1 + ...+ x2

n

]
(16)

where for A8, A9 it is used the convention 0
0 = 0. A8

and A9 are pos-aggregation functions but they are neither
aggregation functions nor nec-aggregation functions (cf. [26]).

A10(x1, ..., xn) =

[√
x2
1 + ...+ x2

n

n
,

√
x2
1 + ...+ x2

n

n

]
,

(17)
where A10 is a representable aggregation function, a pos-

aggregation function and a nec-aggregation function (cf. [26]).
Moreover, it is also an interval-valued aggregation function
with respect to the linear orders ≤Lex1 and ≤Lex2 (cf. [32]).
Some of these aggregation operators were successfully used
in the binary classification problems for the optimization of
k-NN algorithm in the case of missing values [33].

III. DECOMPOSITION TECHNIQUE IN THE MULTI-CLASS
CLASSIFIERS

In classification the problem of missing values is usually
solved in the following three ways. In the first method the
missing value is treated as a normal value that carries certain
information. However, this approach does not really consider
missing values, because they are treated as normal ones. In the
second approach classification of objects is done only on the
basis of those attributes on which there are no "empty spaces".
This approach requires the creation of specific classifiers that
can classify test objects based only on some attributes. A
typical example of such classifier is a classifier based on
decision rules. It is worth noting, that this type of a classifier
will work much worse if it classifies test objects with missing
values compared to the case when there are no such values in
the test object. The third approach, which seems to be the most
commonly used in practice (cf. [34]), is that when classifying a
test object having empty spaces, before classifying the object,
empty spaces are filled with a specific value determined based
on the training data. This method of data imputation usually
consists in searching for the most frequently occurring value
of a symbolic attribute or the average value of a numerical
attribute. Another method was applied in OvaExpert, one of
the real-life diagnosis support systems for ovarian tumor where
the missing values of attributes were replaced with the whole
intervals representing the given feature (cf. [3], [5], [6], [16]).
This approach proved to be effective to make high-quality
decisions under incomplete information and uncertainty. In our
approach we also consider the so called uncertainty intervals
but they are constructed in another way and they are used in
another step of classification than in the mentioned papers.

Since the biggest problem with the correct classification
of test data (with missing values) will have classifiers using
all conditional attributes, in our experiments we apply a
typical example of such classifier, i.e. the k-nearest neighbors
classifier. The test object data can be classified using the k-
NN method with diverse parameters k. Therefore, a conflict
appears between classifiers that operate on the basis of dif-
ferent k values. In order to resolve this conflict, we suggest
aggregation of the classification results of individual classifiers
(the aggregation methods have been already applied in [3], [5],
[6], [16]).

There are many variants and several parameters that can
be used for the k-NN method (cf. [17], [18], [19]). One of
the most important parameters is the distance used, which can
be chosen in many ways. We apply here only the Euclidean
distance since it is the most commonly applied and it is
suitable for the numerical values that we analyze. Furthermore,
in this contribution we do not study the influence of the
distance on the performance of the classifiers. Other types of
distances (e.g. Manhattan distance) are planned to be applied
in the further development of the experiments.

The aim of the experiments presented in this paper was to
compare numerical modelling with interval-valued modelling.
We compared the performance of multi-class classifiers MM



and MF . In the construction of these multi-class classifiers
we used decomposition method one-vs-all which uses binary
versions of algorithms given in [33]. However, we applied here
more examples of aggregation operators than in [33], and the
algorithms were implemented in Python.

We briefly recall the most important issues connected with
the applied binary classifiers.

A. Construction of the binary classifiers

Binary algorithm BM (cf. Algorithm 1, [33]) is based
on the aggregation of classical k-NN classifiers with the
use of numerical arithmetic mean. Binary algorithm BF (cf.
Algorithm 2, [33]) involves interval-valued aggregation of
uncertainty intervals by individual classifiers where a special
way of coping with missing values was proposed.

Algorithm 1: Binary classifier BM (cf. [33])

Input:
1) training data set represented by decision table

T = (U,A, d), where n = card(U) and l = card(A),
2) collection C1, ..., Cm of k-NN classifiers for different

k, where, e.g., k ∈ {5, 10, 20, 30},
3) test object u.

Output: The certainty coefficient representing the
probability of belonging the object u to the
"main class"

1 begin
2 for i := 1 to m do
3 Compute certainty coefficient (”main class”

membership probability) for the given test
object u using the classifier Ci and assign it
to pi

4 end
5 Determine the final certainty coefficient p for the

object u by aggregating (with a use of the
arithmetic mean) the certainty coefficients
p1,...,pm.

6 end

In the case of classifier BM the known method (cf. WEKA
API library, [35], [36]) of coping with missing values was
applied. This mechanism works when calculating the distance
between the values on a given attribute. The difference be-
tween the numerical values of the two objects (only numerical
values occurred in the analyzed data sets) is calculated as
the absolute value of the difference of these values. If both
values of the attributes are given, then the absolute value of
the difference is determined for these values. If both values
of the attributes are missing, then their difference is equal
to 1. If one of the values of attributes is missing and the
other one is equal to v, then the difference is taken as the
value max(v, 1 − v), as a result this difference is as high as
possible. Therefore, we see that when classifying objects by
the classical k-NN method, if the test objects have missing

values of attributes, then it results in a sense in "moving" these
objects from the training objects (without missing values). As
a result, the test object with a large number of missing values
may be too strongly moved away from the training objects and
it can get closer to the training objects from the wrong class.
It makes this object wrong classified. Therefore, we proposed
another method of coping with missing values, i.e. Algorithm
BF (cf. Algorithm 2). In the proposed method in BF , by
randomly filling missing values, we obtain objects that are less
distanced from the proper training objects. Namely, in the case
of algorithm BF the method of determining the uncertainty
interval by single classifiers is applied. This method consists
in the fact that a test object having missing values is classified
by a given k-NN classifier in a specific way. Namely, during
this classification, many classifications of different objects are
actually made, which are constructed based on the test object.
The construction of these objects is based on the fact that
missing values in the object are filled in various ways based
on the values from the training data. The ideal situation here
would be that during the classification procedure, all possible
test objects that can be generated from the given test object
are classified by inserting empty values in all possible ways
of the attribute values from the training data for the given
attribute. The result of each such classification is the certainty
value of belonging to the main class. Thanks to this value,
the uncertainty interval may be computed by determining the
minimum of these values (lower end of the interval) and
the maximum (upper end of the interval). We propose the
Monte Carlo method of choosing the test objects. This method
consists in the fact that in the space of all possible objects
that can be generated for the given test object with missing
values, we select a random sample (the draw being made in
accordance with the distribution of variable). Then, we classify
only objects from this sample and on the basis of the obtained
classification results, we estimate the lower and upper end of
the uncertainty interval. Further details on the construction of
the binary classifier BF may be found in [33].

B. Construction of the multi-class classifiers

We have applied in our experiments the basic decomposition
method i.e. one-versus-all (OVA) technique that transforms
an s-class classification problem, s > 2, into a number of
binary problems. The choice of this technique for the first
step of our study on the multiclass version of the problem
was motivated by the results presented in [1]. On the basis of
the performed experiments, it was stated that decomposition
techniques such as OVA and OVO obtain better classification
results than the multiclass version of the k-NN . However,
no significant differences were found between OVO and OVA
strategies and the original multiclass version of the k-NN . We
applied the OVA technique for both multi-class versions of the
classifiers denoted by MM and MF . In the case of OVA a
binary classifier is used to distinguish between a single class
and the remaining ones. As a result the number of s binary
classifications are needed and a score vector (p1, ...,ps) is
used. The output class is taken from the classifier with the



Algorithm 2: Binary classifier BF (cf. [33])

Input:
1) data set represented by T = (U,A, d),
2) collection C1, ..., Cm of k-NN classifiers, e.g.,

k ∈ {5, 10, 20, 30},
3) fixed parameter r, e.g., r = 10,
4) aggregation function A,
5) test object u

Output: The certainty coefficient representing the
probability of belonging the object u to the
"main class"

1 begin
2 if exists at least one missing value in the object u

then
3 for i := 1 to m do
4 Choose randomly with the Monte Carlo

method r objects u1, ..., ur on the basis of
object u, where any object uj is
constructed as follows, j ∈ {1, ..., r}:

5 begin
6 Copy values of attributes from u to uj ;
7 For each attribute whose value in uj is

missing, replace it with a randomly
selected value from the range of
possible values for this attribute (from
the training data);

8 end
9 Compute certainty coefficient for objects

u1, ..., ur using the classifier Ci and
assign these values to p1, ..., pr;

10 Compute min{p1, ..., pr} and assign it to
mini;

11 Compute max{p1, ..., pr} and assign it to
maxi;

12 end
13 Determine the uncertainty interval

[down(u), up(u)] for the object u by
aggregating (with the use of A) the intervals
[min1,max1], ..., [minm,maxm];

14 Determine the final certainty coefficient
p = down(u)+up(u)

2 for the object u;
15 else
16 for i := 1 to m do
17 Compute certainty coefficient (”main class”

membership probability) for the given test
object u using the classifier Ci and assign
it to pi ;

18 end
19 Determine the uncertainty interval

[down(u), up(u)] for the object u by
aggregating (with the use of A) the intervals
[p1, p1], ..., [pm, pm];

20 Determine the final certainty coefficient
p = down(u)+up(u)

2 for the object u;
21 end
22 end

largest positive answer, i.e., argmaxi=1,...,s pi, where pi for
i = 1, ..., s denotes the certainty coefficient returned by the
given algorithm representing the probability of belonging the
object to the "main class" (cf. Algorithm 1 and Algorithm 2).
In some cases, this positive output is not unique and some
tie-breaking techniques are required.
The computational time complexity of the multi-class classifier
MF is not large and the algorithm can be used in practical
applications wherever the k-NN algorithm can be used. If we
assume that the classical k-NN algorithm works in time of
order O(n · l), where n is the number of objects in the set
U , and l is the number of attributes in the set A, then it is
easy to see that the time complexity of the Algorithm MF
(with the binary version given by Algorithm 2) is of order
O(s ·m · r · n · l), where m is the number of classifiers from
the collection C1, ..., Cm, r is the parameter of Monte Carlo
method, s is the number of binary classifications performed.

IV. IMPLEMENTATION DETAILS

The implementation of both MM and MF classifiers was
made in Python language with the usage of its libraries
NumPy, pandas and scikit-learn. In fact the binary versions
of these algorithms, denoted as BM and BF were imple-
mented directly. The only difference is that binary versions of
classifiers in [33] return decision classes and due to the needs
of scikit-learn the present implementations return p, i.e., the
probability of belonging to the main class. The multi-class
versions of both algorithms MM and MF were received by
using scikit-learn’s OneVsRestClassifier class. This class is
intended to transform a binary classifier into multi-class classi-
fier (this class made a previously descripted decomposition of
a multi-class classifier into a number of binary problems). For
each decision class there is trained a binary classifier, which
distinguishes between this class as a main class and all other
classes as a subordinate class. OneVsRestClassifier class holds
the obtained probabilities as a vector and the final decision of
an instance is determined based on it (the vector is normalized
and the decision with maximum probability is chosen).
Since random insert of missing data in each binary algorithm
BF is independent, there is a possibility, especially in small
datasets and for small k that testing object will be "moved"
to different training objects each time (perhaps with different
decision). Due to this fact, it is possible that multi-class MF
decision vector will be a vector of zeros. In such case, which
may be considered a tie, we choose the first decision class.
This approach gives sufficient classification quality results,
however more approaches should be proposed and studied in
the future. To measure performance of both algorithms the
AUC (Area under ROC) was applied. We used a multi-class
extension of the commonly known binary AUC, proposed by
Hand and Till in [37]. This measure was recently implemented
in leading data mining Python library, i.e., scikit-learn [38].
We examined our algorithm on 8 data sets, downloaded
from University of California, Irvine repository UCI [39]. We
provide their full names in UCI repository and a shortcut
name in parentheses if full name is long. The data sets are



the following: Iris, Balance Scale, Vertebral Column (Verte-
bral), Seeds, Wall-Following Robot Navigation Data (Wall-
Following), Breast Tissue, Wireless Indoor Localization (Wifi),
Leaf. Because our approach is intended to work with numerical
data, we have only taken such attributes into consideration. In
some data sets, there is a situation, where there exist multiple
versions of a data set with different number of attributes or
decisions (for example data set may have a multi-class or a
binary decision attribute version). Moreover, in some cases we
reduced the number of objects. Firstly, in order to balance the
unbalanced data. Secondly, to use one validation method for
all data sets (the methods may differ depending on the number
of objects). The experiments were made using stratified k-fold
cross validation.

TABLE I
DATASETS INFORMATION

UCI data Objects Attributes Classes

Iris 150 4 3

Balance Scale 625 4 3

Vertebral 310 6 3

Seeds 210 7 3

Wifi 2000 7 4

Wall-Following 5456 24 4

Breast Tissue 106 10 6

Leaf 340 7 30

Preprocessing of data sets details (cf. [40], [41], [42]) are
as follows:
• Iris - all conditional attributes and all objects were taken.
• Balance Scale - all conditional attributes and all objects were
taken.
• Vertebral - a three decision classes version was chosen (also
binary version exists), all conditional attributes and all objects
were taken.
• Seeds - all conditional attributes and all objects were taken.
• Wifi - all conditional attributes and all objects were taken.
• Wall-Following - the 4 conditional attributes version was
taken; for all decision classes we randomly selected 200
objects, so we have chosen 800 objects in total.
• Breast Tissue - all conditional attributes were chosen (except
of id) and all objects were chosen.
• Leaf - this data set contains color photos and their binarized
versions (not for all classes). It is worth to mention that
description of the data set claims that it contains 40 different
classes. It is true that there is 40 classes of color photos.
However, in fact there is 30 classes in csv file, which is equal
to number of binarized photos classes. We have chosen all
attributes and all objects.
The source code in Python and steps to reproduce results can
be found in [43].

V. DISCUSSION ON THE RESULTS

The first expected conclusion is that the increase of the
level of missing values resulted in the decrease of classification

quality measured by AUC. However, the classification method
MF always gave better classification results than the method
MM in the case of appearance of missing values. The level
of missing values was: 0, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4,
0.5 (for example, if the parameter was 0.2, then 20% of
the missing values was randomly entered into every attribute
column). In Table II we present only some of the levels of
missing values and some of the data sets. The full results can
be found in [44].

The observed results were justified with the use of statisti-
cal tests in the Statistica program [45]. Using the pairwise
Wilcoxon test it can be noticed that there are statistically
significant differences in the distribution of the average values
of AUC obtained for the algorithm MF and MM (p =
0.01729). Pearson correlation coefficient (related to the further
results with linear regression), determined for both methods,
proved with the level of p < 0.0001 the negative correlation
between the missing values and the values of AUC (Kendall
rank correlation coefficient and Spearman’s rank correlation
coefficient were also applied with similar results).

Moreover, we considered the linear regression of changes
in the average AUC values depending on the levels of missing
values (cf. Figure 1). The linear correlations proved to be
very strong. We proved that the gradients of the lines are
equal. The test has shown that on the level of p < 0.01 such
equality holds. Moreover, the straight line for the algorithm
MF lies statistically significantly above the straight line for
the algorithm MM . Therefore, the applied tests proved that
there are statistically significant changes between the MF
method and the MM method. Since the experiments for each
data set were repeated 10 times, we report in the tables also
the standard deviation ([44]). The values of standard deviation
are small (particularly for the method MF ) which means that
the results of experiments are stable. In Figure 1, the values
of standard deviation for both methods are depicted by dashed
lines.

Fig. 1. Changes in average AUC depending on the levels of missing values

We also performed further analysis with respect to the



aspect of dependency/independency of experiments in the
context of amount of missing values. Treating the experiments
of extracting samples of missing values from the data sets
as dependent experiments in the case of MF , using the
Friedman test, we obtained statistically significant differences
in the average level of AUC depending on the missing values
(p < 0.00001). In this case, by comparing each two samples,
for two different amounts of missing values, we always get
statistically significantly different AUC (p < 0.00001 with
Bonferroni correction) for each comparison. Similar results
were obtained for the method MM . Namely, in the case
of MM using the Friedman test we obtained statistically
significant differences in the level of average AUC depending
on the missing values (p < 0.00001). For the method MM ,
comparing each two samples, for two different amounts of
missing values (except for the missing values 0, 4 and 0, 5,
with p = 0, 1), we get statistically significant differences
in the level of AUC for each comparison (p < 0, 0003
with Bonferroni correction). Additionally, the analysis for
both methods was performed with respect to the number of
neighbors k. The analysis for the case k = 2, 4 and k = 3, 5,
performed separately for each case, gave similar results to the
general case (without distinguishing parameters k) discussed
above. Furthermore, the performance of the method MF with
respect to the specific parameters for this method, i.e., the type
of an aggregation applied and the parameter r, was analyzed.
It turned out that a choice of an aggregation function may
increase the performance of the classifier (with respect to
the data set and the level of missing values) but these are
not statistically significant changes. Statistically significant
results for the method BF (involving interval modelling but
other data sets) were obtained for some aggregation operators
(cf. [33]). The aggregation operator A6, and next A2, A3

obtained the best results (with statistically significant values)
with respect to the respective level of missing value. It seems
that the reason for non-obtaining statistically significant results
with respect to the aggregation operator in the multi-class case
is the decomposition method applied here for the multi-class
classification. The significance of single results of the binary
classifiers and aggregation operators are declining. If it comes
to the parameter r, there are statistically significant changes
between the average values of AUC (analysis of variance
and the non-parametrical Kruskal-Wallis test were considered
with p < 0.002 in both cases). In order to perform pairwise
comparison with respect to considered values of r we applied
post-hoc test with Bonferroni correction. For r = 2 the values
of AUC are statistically smaller than that of r = 5 and r = 10
(with p < 0.03 in both cases). It may be explained by the
role of r in the method F , where it was used to determine
the uncertainty intervals. For a small number of r the domain
knowledge reflected by the interval may be lacking stability.
The increase of r was the advantage but it is enough to increase
r to the reasonable value. The post-hoc test with Bonferroni
correction has shown that there are no statistically significant
changes between values r = 5 and r = 10.

To sum up, the presented method MF has advantages

and disadvantages. The main advantage is good classification
result but the choice of the aggregation operator to obtain the
best result depends on the data set and the level of missing
values. Moreover, the presented algorithm MF is dedicated
for numerical attributes. In its present form it is not suitable
for categorical attributes.

TABLE II
SELECTED RESULTS

Level Parameters, algorithms and their highest AUC
of
missing Dataset k, r, agg MF k MM
values

Iris (3,5), 2, A1 0.997 (3,5) 0.997
Balance (3,5), 2, A6 0,742 (2,4) 0,736
Vertebral (2,4), 2, A5 0,877 (2,4) 0,875

0.0 Seeds (3,5), 2, A1 0,986 (3,5) 0,986
Wifi (3,5), 2, A9 0,996 (3,5) 0,996
Wall (3,5), 2, A1 0,908 (3,5) 0,908
Breast (3,5), 2, A6 0,885 (3,5) 0,881
Leaf (3,5), 2, A5 0,930 (3,5) 0,929
Iris (3,5), 10, A6 0,997 (2,4) 0.910
Balance (3,5), 10, A1 0,768 (3,5) 0,726
Vertebral (3,5), 2, A8 0,871 (2,4) 0,722

0.1 Seeds (2,4), 5, A6 0,983 (3,5) 0,943
Wifi (3,5), 10, A2 0,992 (3,5) 0,930
Wall (3,5), 10, A3 0,913 (3,5) 0,816
Breast (3,5), 2, A6 0,895 (3,5) 0,771
Leaf (3,5), 10, A5 0,849 (3,5) 0,739
Iris (2,4), 10, A1 0,978 (3,5) 0,766
Balance (3,5), 5, A6 0,733 (2,4) 0,681
Vertebral (3,5), 10, A5 0,841 (3,5) 0,652

0.3 Seeds (2,4), 5, A6 0,969 (3,5) 0,858
Wifi (3,5), 10, A7 0,964 (3,5) 0,789
Wall (3,5), 10, A1 0,876 (3,5) 0,656
Breast (3,5), 5, A5 0,780 (3,5) 0,746
Leaf (3,5), 5, A6 0,629 (2,4) 0,599
Iris (2,4), 10, A1 0,933 (3,5) 0,774
Balance (2,4), 10, A1 0,685 (3,5) 0,649
Vertebral (2,4), 10, A4 0,770 (3,5) 0,560

0.5 Seeds (3,5), 5, A2 0,895 (3,5) 0,853
Wifi (2,4), 10, A1 0,885 (2,4) 0,708
Wall (2,4), 10, A1 0,794 (2,4) 0,583
Breast (3,5), 10, A8 0,729 (3,5) 0,635
Leaf (3,5), 5, A5 0,579 (2,4) 0,553

VI. CONCLUSIONS

In this contribution it was considered the problem of missing
values in the data sets. An effective method of dealing with
missing values was proposed. It was proved that interval mod-
eling and aggregation methods allow to obtain a much slower
decrease of the multi-class classification quality comparing to
the simple aggregation method of k-NN classifiers. In the
case of interval modelling it was shown that diverse interval-
valued aggregation operators enable to choose the one which
is the most suitable for a given data set and a level of missing
values. For the future work we plan to develop our algorithm
for multi-class classification in the case of missing values with
other decomposition methods or generally other methods of
multi-class classification. Moreover, we would like to adjust
our algorithm to the wider range of attribute types.
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