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Abstract— Learning FCM models from data without any a 

priori knowledge and expert intervention remains a considerable 

problem. This research study utilizes a fully data-based learning 

method (the glassoFCM) for automatic design of Fuzzy Cognitive 

Maps (FCM) using large ordinal dataset based on the efficient 

capabilities of graphical lasso (glasso) models. Therefore, glasso 

represents its structure as a sparser graph, while maintaining a 

high likelihood, by producing an adjacent weighted matrix, where 

relationships are expressed by conditional independences. By 

minimizing the negative log-likelihood indicates that the model fits 

better to the data under the assumption that the observed data are 

the most likely data. The principle questioning is which of the 

observed concepts is the appropriate to trigger the remaining 

concepts in the map in order to create the glassoFCMs and obtain 

reasonable results. The answer derives from the FCM structure 

analysis based on the strength centrality indices. Moreover, the 

MAX-threshold algorithm based on the FCM scenario analysis is 

proposed in order to prune edges and retrieve sparser graphs. This 

algorithm shrinks the meaningless weights of the FCM, without 

affecting significantly the outcomes in scenario analysis. The 

whole approach was implemented in a business intelligence 

problem of evaluating the attractiveness of Belgian companies.  

Keywords—fuzzy cognitive map; graphical lasso model; MAX-

threshold algorithm; ordinal data; sparser graph;  

I. INTRODUCTION 

FCM can be determined as a fuzzy digraph that describes 
the behaviour of an intelligent system in terms of concepts. 
These concepts are connected by signed and weighted causal 
relationships. Their structure is essential for modelling complex 
systems (utilizing existing knowledge and human experience), 
making decisions/predictions [1]. Through the literature, there 
are many methods of designing FCMs, based either on expert 
knowledge, on historical data or on both of them. The expert-
based FCM construction relies on a group of experts and their 
domain knowledge to assign the concepts and the 

interconnections among them [21]. Generally, the data-based 
FCM structures require historical data for FCM learning, 
although new FCM models are creating from such data [2]. The 
combination of both methods, the Hybrid Learning Methods, 
produces new FCM structures, inheriting the advantages of 
domain knowledge and the use of historical data [2, 20].  

To our knowledge, few studies have approached the data-
driven modelling without expert intervention. In 1998, 
Schneider, Shnaider, Kandel and Chew [3] described a 
distance-based method for constructing FCMs based on 
numerical measurements (data). Each variable is represented by 
a numerical vector which is transformed into a fuzzy set. Then, 
the polarity (positive or negative) and the strength of the 
relations among concepts are defined based on the distances 
between numerical vectors. The distance-based method has 
been applied in many studies using a relatively small number 
(less than 150) of observations [31 - 35]. Nevertheless, 
Dikopoulou, Papageorgiou and Vanhoof [19] reported the main 
limitations of this method when it is applied in larger datasets 
(over 2,900 observations), such as a) the computation of 
complete weighted matrices (all concepts are connected to each 
other) which reduce the interpretability of these graphs and b) 
the calculation of very high weights between concepts (the 
standard deviation is close to zero) which is impossible to make 
decisions and policies with the FCM method. Finally, c) experts 
must decide the direction of causality among concepts to create 
the final weighted matrix. Therefore, this method is classified 
as a semi-automated method because it requires limited human 
intervention. 

Another method to model FCMs from numerical data is 
Structural Equation Modelling (SEM) [10]. In short, SEM is a 
multivariate statistical technique that estimates simultaneously 
series of separate multiple regression equations [27]. It models 
the interrelationships between items with fewer variables 
(called latent factors) by sharing the amount of variance among 



a set of items and the latent variable. Moreover, SEM analyses 
and visualizes the structural relationship between measured 
variables and latent constructs [29]. First, Kang et al. [36] 
proposed the combination of SEM and FCM for relationship 
management in airline service and other studies followed the 
same procedure [37 - 40].  A key problem with much of the 
literature on SEM is a) the requirement of sufficient data to 
model a system since small datasets lead to non-convergence of 
solutions and the inability to estimate parameters and b) the 
under-identification of the model, especially with complex 
systems [30]. Moreover, not all complex problems could be 
explained as a causal view of latent factors [24, 25]. In many 
real problems, a common cause could difficult to acquire 
independent associations with its symptoms that explain their 
emergence and covariance [26]. Some problems are more 
appropriate to be represented as a network that models the most 
important and direct relations among the observed variables. 

In our previous study, the glassoFCM methodology was 
proposed as a combination of glasso algorithm with the FCM 
method to model graphs from large datasets and simulate 
different decision-making scenarios [19]. The first solution of 
glasso investigation was adopted from the Markov Random 
Fields also known as undirected graphical models [9, 11]. This 
new approach based on generalized covariance matrices to 
identify the proper neighbourhood for each node [8, 9]. In order 
to minimize the number of edges, a sparse inverse covariance 
matrix was estimated using a lasso (ℓ1) penalty [5], controlled 
by the Extended Bayesian Information Criterion (EBIC). In the 
previous paper [19], solving the lasso problem, the estimates 
for each edge are combined with an OR-rule and finally, the 
weighted adjacency matrix was defined. The outcome of that 
study indicated that the graphical lasso (glasso) model was 
capable of producing symmetric (𝑝 × 𝑝) undirected weighted 
matrix (W) where p indicates the number of concepts. Due to 
the lack of experts' knowledge, there was no information about 
the direction of the edges. For this reason, it was obtained the 
upper triangular matrix of the observed methods in order to run 
different scenarios. The graphical model determined 
significantly sparser graph with valuable connections, higher 
variability of weights and consequently, reasonable values in 
the FCM scenarios compared to the distance-based method 
[19]. 

Due to the selection of the upper triangular matrix to run 
FCM scenarios, the first variable in the matrix is actually the 
transmitter concept. Generally, there are three types of nodes: 
the transmitter, the receiver and the ordinary [21, 13, 11] which 
depend on the out-degree and in-degree indices. The out-degree 
of node 𝑖 is the total number of outgoing edges and is 
determined by the sum of the 𝑖𝑡ℎ column of the adjacency 

matrix, 𝑘𝑖
𝑜𝑢𝑡 = ∑ 𝑎𝑗𝑖

𝑛
𝑗=1 , where 𝑎𝑗𝑖  represents the edge of the 

adjacency matrix. On the other hand, the in-degree of node 𝑖 is 
the total number of ingoing edges and is defined by the sum of 

the 𝑖𝑡ℎ row of the adjacency matrix, 𝑘𝑖
𝑖𝑛 = ∑ 𝑎𝑖𝑗

𝑛
𝑗=1 . 

Transmitter variables have a positive out-degree, 𝑘𝑖
𝑜𝑢𝑡, and zero 

in-degree, 𝑘𝑖
𝑖𝑛. Receiver variables have a positive in-degree, 𝑘𝑖

𝑖𝑛 

and zero outdegree, 𝑘𝑖
𝑜𝑢𝑡. Ordinary variables have both a non-

zero in-degree and out-degree. Therefore, it is crucial to choose 
the appropriate node (transmitter) to be placed in the first 
position of the upper-triangular weighted matrix since it can 

influence the remaining nodes of the glassoFCM model. 
Another principal index of a node is the strength-centrality 
which is defined by the absolute summation of weights of node 

𝑖 and it is formalized as 𝑠𝑖 = ∑ |𝑤𝑖𝑗|𝑛
𝑖,𝑗=1 , where 𝑤𝑖𝑗  represents 

the weighted edge of the weighted adjacency matrix [22]. 

In this study, we apply the glasso with the EBIC 
regularization method to estimate the job-satisfaction FCM 
model directly from a large ordinal dataset (3,262 
observations). Ordinal data is a classification of categorical data 
and it incorporates the rank-ordering operation [28]. In 
addition, ordinal data are used widely by researchers to study 
judgments, feelings or emotions of people. A classic example 
of an ordinal scale on the Likert scale. A Likert scale is usually 
a 5 to 10-point scale with different opinions that fluctuate from 
one extreme to the other, such as Very Bad, Bad, Mediocre, 
Good, Very Good. Consequently, we model a glassoFCM graph 
according to employees’ perspectives using a 5-point Likert 
scale on 10 observed variables. 

Thus, we investigate which is the best order to place the 
observed nodes in the upper-triangular weighted matrix. For 
this reason, we rank the variables according to two instances: i) 
the strength-centrality of each node of the estimated FCM 
model (from the glassoFCM method) and ii) the average values 
of the variables from the initial dataset. First, these rankings are 
compared if they are significantly different using Kendall’s tau 
coefficient (𝜏𝑏) [23]. In order to validate which of these two 
rankings is more consistent with the initial dataset, we will run 
different FCM scenarios (IF-THEN cases) using the reordered 
weighted matrices. The concept values of each scenario after 
the FCM inference procedure are ranked and then, are 
compared with the mean values of the initial dataset filtering 
specific variables with the maximum value according to the 
FCM scenario. Likewise, for these comparisons, we apply 
Kendall’s tau correlation coefficient. Next, for retaining the 
most important weights of the model, a new threshold selection 
algorithm (the MAX-threshold) is proposed which shrinks very 
small weights to zero. Different thresholds are applied in order 
to obtain the appropriate sparser graph that derives 
approximately the same scenarios output values. A number of 
experiments are conducted and the results are validated. Due to 
space limitations, this paper focuses on our pruning algorithm 
and we do not compare the acquired results with other methods. 
In our future works, we plan to optimize the proposed algorithm 
including statistical measurements in order to fully compare 
different models. 

Accordingly, the contribution of this study is two-fold: (a) 
comparing the rankings according to strength-centrality of the 
nodes and mean values of variables and validating after the 
FCM inference procedure using Kendal’s tau correlation 
coefficients and (b) proposing a new algorithm, the MAX-
threshold which shrinks very small weights of the weight 
adjacency matrix to zero, in order to maintain the important 
weights that affect substantially the inference of the FCM. The 
outcomes of this work provide a sparser and meaningful FCM 
model considering the estimated interrelationships among 
concepts. 

The rest of the paper is organized as follows: Section 2 
introduces i) the graphical lasso model in order to obtain the 



FCM from 3,262 observed cases, ii) the FCM reasoning 
process, iii) the proposed MAX-threshold algorithm which 
shrinks very small weights to zero and iv) Kendall’s tau 
correlation coefficient. The next section describes the real-
world problem to be addressed. The results of the proposed 
methods have been displayed in Section 4 and the discussion of 
results is described in Section 5. Finally, Section 6 outlines the 
conclusions. 

II. METHODOLOGIES 

A. The Graphical Models 

A Markov Random Field (MRF) or undirected graphical 
model is a network of undirected links indicating conditional 
dependence between two nodes; while, two nodes are 
independent (if there is no edge among them) after conditioning 
on all other variables [6]. Moreover, MRFs are belonging to 
families of probability distributions respecting the structure of 
the symmetric graph G = (V, E). The graph G consists of a group 
of nodes V = {1,2,…p} and edges pairs 𝐸 ⊆ 𝑉 × 𝑉. The set of 
nodes t∈V are connected to the nodes s, 𝑁(𝑠): = {𝑡 ∈ 𝑉|(𝑠, 𝑡) ∈
𝐸} is determined as neighborhood and the graph G consists of 
the collection of all neighborhoods Ns of all s∈ V. Retrieving the 
undirected graphical model from ordinal data, it is necessary to 
estimate the prediction vector X. This indicates the computation 
of the mean of the conditional distribution P(Xs | X\s) of node Xs 
conditioned on all other nodes X\s [8, 9]. In case that Xs is a 
Gaussian random variable, where  = 1, the univariate Gaussian 
distribution with unit variance (4), where the mean  is a linear 
combination of the N(s). 

                       𝑃(𝑋𝑠|𝑋\𝑠) =
1

√2𝜋𝜎
𝑒𝑥𝑝 {−

(𝑋𝑠−𝜇𝑠)2

2𝜎2 }                  (1) 

In case of estimation of MRF networks from multivariate 
Gaussian distributions, Haslbeck and Waldorp [8, 9] generalized 
the covariance matrices. 

A1.    The algorithm of the graphical lasso model 

The steps below, describing the procedure to obtain the 
weighted adjacency matrix directly from ordinal data of 𝑛 
observations and 𝑝 variables. The weight of an edge 𝑤𝑖𝑗  

identifying the strength of the association between two nodes 
after conditioning on all other variables in the network. This 
algorithm is known as a nodewise estimation algorithm [5, 7, 
8]. Parameter 𝜆 is a penalty that governs the sparsity of the 
graph. In practice, 𝜆 is a vector of series of values resulting in a 
series of networks that vary from very dense (𝜆𝑚𝑖𝑛) to very 
sparse (𝜆𝑚𝑎𝑥). A 𝜆𝑚𝑖𝑛 can be chosen by multiplying some ratio 
(0.0001) with the 𝜆𝑚𝑎𝑥  value [4, 8]. 

The Algorithm I estimates the parameters of a joint 

distribution from observations by a series of regressions in the 

Generalized Linear Model (GLM). This signifies that the 

neighborhoods are combined to identify an estimate of graph G 

[18]. Therefore, for every s ∈ V, the negative log-likelihood 

𝐿𝐿(𝜃, 𝑋) and the ℓ1-norm of the parameter vector ‖𝜃‖1 are 

minimized to shrink small parameters exactly to zero: 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃{𝐿𝐿(𝜃, 𝑋) + 𝜆ℵ‖𝜃1‖} (2) 

where ‖𝜃1‖ = ∑ |𝜃𝑗|𝐽
𝑗=1  is the sum of absolute values of the 

parameters 𝜃 of length vector J. Then, a lower bound 𝜏ℵ [14] is 

applied to the size of the parameters in the true model to ensure 

that false and true positive rates for the lasso estimator. For the 

estimation of the joint distribution, the 𝜏𝑛 is defined as: 

𝜏ℵ ≍ 𝑠0
∗√log

𝑝
𝑛⁄ ≤ 𝑠0

∗𝜆ℵ (3) 

where 𝑠0
∗ represents the true number of neighbours. 

Nevertheless, the true parameter 𝜃∗ and consequently, the 

number of 𝑠0
∗ is unknown. Therefore, the estimated number of 

neighbours �̂�0 is replaced with the estimated parameter vector to 

collect the estimated number of neighbours �̂�0 = ‖�̂�0‖. The 

weights among two categorical variables are estimated from the 

pairwise interaction of 𝑘 = 2 order [8]. For instance, the 

estimated weight (�̂�𝑠𝑡) among nodes s and t are derived from 

two parameters, the �̂�𝑠,𝑡 and the �̂�𝑡,𝑠 which are combined using 

the OR-rule (the mean of parameter estimates is calculated). 

Therefore, the final graph is defined for the specific value of 𝜆ℵ. 

Next, the Extended Bayesian Information Criterion (EBIC) is 

applied to estimate the fit of the model into the data: 

𝐸𝐵𝐼𝐶𝛾(�̂�) = −2𝐿𝐿(𝜃) + �̂�0 log 𝑛 + 2𝛾�̂�0 log 𝑝 (4) 

where 𝛾 is a tuning parameter (0 ≤ 𝛾 ≤ 1) which controls 

the sparsity of the graphs [12]. As the number of 𝛾 increases, the 

sparser the graph will be. However, Foygel and Drton [12] have 

proven that if 𝛾 fluctuating between 0 and 0.25 then the false 

positives will be decreased, without increasing the false 

negatives. According to Haslbeck and Waldorp [8], the 

computational complexity of algorithm I is 𝒪(𝑝 log(2 ∙ 𝑝)). 

Algorithm I: Graphical lasso model with EBIC 

regularization via Neighborhood Regression 

Input n × p dataset, vector λℵ of 100 values,  

Output A sparse weighted matrix W (p × p) 

Step 1: For each λℵ 

 Step 2: For each s ∈ V  

Step 3: Solve the lasso problem in Equation 2  

Step 4: Threshold the estimates at τℵ (Equation 3) 

Step 5: Aggregate interactions with several 

parameters into a single edge-weight 

End For 

Step 6: Combine the edge-weights with the OR-rule 

Step 7: Define the graph G based on the zero/nonzero 

pattern in the combined parameter vector 

Step 8: Calculate the EBIC in Equation 4. 

End For 

Step 9: Choose the G that minimizes EBIC 

Step 10: END 



The R package ‘mgm’ [9] is used to perform the weighted 

adjacency matrix (Table I) that described in Section III. In order 

to visualise the graphs, ‘qgraph” [15] is applied to the weighted 

adjacency matrix derived from the mgm function. 

B. Fuzzy Cognitive Maps (FCMs) 

Fuzzy Cognitive Maps are fuzzy graph structures which can 
be presented as an associative single-layer neural network [1]. 
They describe particular domains using nodes (concepts) and 
directed edges, which represent the causal relationships 
between the concepts. Each of FCM’s edges is associated with 
a weight value that reflects the strength impact between the 
relevant concepts. Each of FCM’s edges is associated with a 
weight value that reflects the strength impact between the 
relevant concepts. This value is usually normalized in the 
interval [–1, 1]. Thus, each node quantifies a degree to which 
the corresponding concept in the system is active at each 
iteration step. 

For the FCM reasoning process, values of the concept Ci at 

time-step 𝓉 are represented by the state vector 𝐶𝑖
𝓉  and 𝑤𝑗𝑖  is the 

causal weight connecting the 𝐶𝑗 cause with the 𝐶𝑖 effect. The 

state of the whole fuzzy cognitive map could be described by 
the state vector 𝐶𝓉=[𝐶1

𝓉,…, 𝐶𝑝
𝓉], which represents a point within 

a fuzzy hypercube I𝑝 = [0, 1]𝑝 that the system achieves at a 
certain point. The whole system with an input vector 𝐶0 
describes a time trace within a multidimensional space 𝐼𝑝, 
which can gradually converge to an equilibrium point, or a 
chaotic point or periodic attractor within a fuzzy hypercube. In 
general, a scenario assists people to identify different 
alternatives of the future state. Therefore, the scenario at the 
initial state vector can be accomplished with either all concepts 
or a subset of concepts being activated depending on the 
problem. Consequently, different policy scenarios are 
determined to estimate the inference of the system [1] 
answering the “what – if” conditions. 

Equation (5) expresses the modified inference rule where 
concepts consider their past values and the corresponding 
weights when performing the inference process. 

𝐶𝑖
(𝓉+1)

= 𝑓 (𝐶𝑖
(𝓉)

+ ∑ 𝑤𝑗𝑖 ∙ 𝐶𝑗
(𝓉)

𝑁

j≠i

) (5) 

Another modified updating rule in Equation (6) was the 
rescale inference to avoid the conflicts emerging in the case of 
non-active concepts. 

𝐶𝑖
(𝓉+1)

= 𝑓 ((2𝐶𝑖
(𝓉)

− 1) + ∑ 𝑤𝑗𝑖 ∙ (2𝐶𝑗
(𝓉)

− 1)

𝑁

j≠i

) 

 

(6) 

The iteration stops when a limit vector is reached, i.e., when 
𝐶𝓉 = 𝐶𝓉−1 or when 𝐶𝓉 − 𝐶𝓉−1 ≤ 𝑒 where e is a residual (most 
applications is equal to 0.001). 

We have been implemented in R programming language the 
‘fcm’ package [17] to estimate the inference of the Fuzzy 
Cognitive Map and accomplish the scenario analysis. This 
open-source package is available in CRAN and provides the 
opportunity to everyone to run different scenarios in their 
weighted matrices using the fcm.infer function. Six different 
inference rules (kosko, modified-kosko, rescale and the 
clamped versions of these rules) and four threshold functions 
(bivalent, trivalent, sigmoid and hyperbolic tangent) are 
provided. (For further information of how the function fcm.infer 
works, including some examples, visit the official CRAN 
website https://cran.r-project.org/web/packages/fcm/vignettes/ 
vignettes.html or the github webpage https:// github.com/ 
LiaDD/Fuzzy-Cognitive-Maps-FCMs) 

C. The proposed MAX-threshold algorithm 

In this study, the MAX-threshold algorithm is proposed in 
order to obtain a sparser as possible weighted matrix retaining 
only the important higher weights. This algorithm utilizes a 
tuning parameter 𝜗 (theta) that is important to be set to control 
the sparsity of the graph without affecting significantly the 
values of scenarios in FCM. The tuning parameter 𝜗 ranged 
from 𝜗𝑚𝑖𝑛 to 𝜗𝑚𝑎𝑥 and it is responsible to shrink smaller weights 
of the initial weighted adjacency matrix exactly to zero. 
Furthermore, the values of 𝜗 could be set manually, in respect 
of the following assumptions, 𝑤𝑚𝑖𝑛 ≤ 𝜗𝑚𝑖𝑛 < 𝑤𝑚𝑎𝑥  and 
𝑤𝑚𝑎𝑥 > 𝜗𝑚𝑎𝑥 > 𝑤𝑚𝑖𝑛 , where 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥  defined as the 
minimum and the maximum weight in the weighted matrix 𝑊, 
respectively. 

Algorithm II: The MAX-threshold 

Input W, ϑmin, ϑmax, δ, μ 

Output A sparser weighted matrix W′ 

Step 1: Set ϑ = ϑmin 

Step 2: Apply condition test  

           while ϑ ≤ ϑmax do 

Step 3: Apply threshold ϑ to the weighted matrix. The 

algorithm cuts-off the weights of the matrix W that are lower 

than ϑ. The updated weighted matrix is stored in W′. 

Step 4: Run the FCM using the activation vector C of the 

selected scenario and the weighted matrix W′. Save the 

outcome Cϑ. 

Step 5: Compare the outputs of the concepts’ values Ci of 

current (ϑ) and previous run (ϑ − μ). 

              If |Ci
ϑ| − |Ci

ϑ−μ
| ≤ ±δ then 

                     ϑ ← ϑ + μ 

                     go to Step 2 

             else 

                     go to END 

             end if 

Step 6: END 



For the first run, the algorithm sets the threshold parameter 
𝜗 equal to 𝜗𝑚𝑖𝑛 (Step 1). Next, weights 𝑤𝑖𝑗  that have been 

estimated lower than 𝜗 (𝑤𝑖𝑗 < 𝜗) are removed from the 

weighted matrix W (Step 3). Afterwards, the FCM scenario is 
performed using the fcm.infer function [17] from the fcm R 

package (Step 4). The output values of the concepts (𝐶𝑖
𝜗, 𝑖 =

1,2, … , 𝑝) are compared to the corresponding output values 

(𝐶𝑖
𝜗−𝜇

) of the previous weighted matrix using the same 

activation vector (Step 5). If the difference of every concept in 

the state vector 𝐶𝑖
𝜗 and previous state vector (𝐶𝑖

𝜗−𝜇
) is lower 

than 𝛿 (delta; 𝛿 is a residual which it is set equal to 0.01) then 
the threshold is increased by 𝜇 (me). Moreover, the increment of 
μ is somewhat arbitrary depending on the values of weights and 
the researcher’s decision. Nevertheless, the default value of μ is 
0.005. The algorithm terminates when one of the two 
assumptions will occur. First, if the threshold 𝜗 will be higher 
than the maximum threshold (𝜗𝑚𝑎𝑥) as Step 2 indicates and 
second if the differences of the concepts’ values between current 
and previous state (or run) are higher than 𝜇 (Step 5). 

D. Kendall’s tau (𝜏𝑏) correlation coefficient 

Kendall’s tau correlation coefficient [23] is a non-parametric 
measure of statistical associations (−1 ≤ 𝜏𝑏 ≤ 1) between 
columns of ranked data and it is defined as: 

𝜏𝑏 = 
𝑛𝑐 − 𝑛𝑑

√(
𝑛(𝑛 − 1)

2
− ∑

𝑡𝑖(𝑡𝑖 − 1)
2𝑖 ) ∙ (

𝑛(𝑛 − 1)
2

− ∑
𝑢𝑗(𝑢𝑗 − 1)

2𝑗 )

 
(7) 

Where 𝑛 is the data size, 𝑛𝑐 represents the number of 
concordant pairs which are the number of observed ranks below 
a particular rank which are larger than that particular rank, 𝑛𝑑 
denotes the number of concordant pairs which are the number of 
observed ranks below a particular rank which are below than that 
particular rank, 𝑡𝑖 is the number of tied values in the ith group of 
ties for the first quality and 𝑢𝑗 is the number of tied values in the 

jth group of ties for the second quality. If there is an absence of 
association between the observed variables then the correlation 
coefficient 𝜏𝑏 returns zero value, if the rankings are identical 
then the 𝜏𝑏 equals to one (positive perfect correlation) and if the 
𝜏𝑏 equals with minus one (negative perfect correlation) indicates 
that the rank of one variable is increased while the rank of the 
second variable decreased. 

III. Data DESCRIPTION 

In this paper, a large dataset of 3,262 responses was used to 
assess the job attractiveness of Belgian companies. Attracting 
potential candidates is a significant issue in the recruitment 
process since it involves how companies compete for often 
scarce skills in the labor market. Therefore, a 10-item 
questionnaire on scale 1 (strongly disagree) to 5 (strongly 
agree) was developed in which employees from Informatics & 
Consulting sector were evaluating their preference associated 
with job satisfaction. The variables (V1 to V10) are defined as: 
"V1: Competitive salary package", "V2: Prospects/career 
opportunities", "V3: Pleasant working environment ", "V4: 
Offers long-term job security ", "V5: Good balance (private life 

& work)", "V6: Financially sound", "V7: Offers interesting jobs 
(job description)", "V8: Offers good quality of training", "V9: 
Strong management", "V10: Deliberately handles the 
environment and society". An example of a question is “When 
I am looking for a job position, the job that offers good quality 
of training is important”. From this survey, the preference of 
participants from different gender, age, education and activity 
were evaluated, in order to analyze the employees’ reasoning, 
when they are applying for a job position. 

IV. RESULTS  

In this section, the weighted matrix derived from the lasso 
graphical models and the corresponding visualization graph is 
presented. Since the upper triangular matrix of the weighted 
matrix is used for scenario analysis, the variables are prioritized 
according to i) the strength-centrality indices [22] obtained 
from the weighted matrix and ii) the average of variables 
obtained from the initial dataset. Moreover, the scenarios 
outputs are validated and the ordinal associations are compared 
to Kendall's tau coefficient (𝜏𝑏) [23]. Finally, the proposed 
MAX-threshold is applied to the initial weighted matrix, in 
order to obtain sparser maps that do not affect significantly the 
results of the FCM’s scenarios. 

A. Results of graphical lasso model 

In this sub-section, the function mgm (from the R package 
mgm) [9] has been applied to a real dataset in order to define 
relations among the observed variables associated with the job 
attractiveness in Belgium. The symmetric weighted adjacency 
matrix is estimated directly from ordinal data using the lasso 
graphical model with EBIC regularization technique. The edge 
weights can be interpreted as the strength of conditional 
dependence between two variables (Table I).  

TABLE I.    THE SYMMETRIC WEIGHTED ADJACENCY MATRIX USING MGM 

METHOD (THE UPPER TRIAGULAR MATRIX IS HIGHLIGHTED). 

 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 

V1 - 0.341 0.052 0 0 0.023 0.133 0.098 0.055 0 

V2 0.341 - 0.089 0.179 0 0.051 0.218 0.106 0.093 0 

V3 0.052 0.089 - 0.067 0.140 0 0.169 0.017 0.113 0.145 

V4 0 0.179 0.067 - 0.226 0.243 0 0.044 0 0.040 

V5 0 0 0.140 0.226 - 0.025 0 0.019 0 0.146 

V6 0.023 0.051 0 0.243 0.025 - 0 0 0.300 0.006 

V7 0.133 0.218 0.169 0 0 0 - 0.356 0.061 0 

V8 0.098 0.106 0.017 0.044 0.019 0 0.356 - 0.084 0.079 

V9 0.055 0.093 0.113 0 0 0.300 0.061 0.084 - 0.149 

V10 0 0 0.145 0.040 0.146 0.006 0 0.079 0.149 - 

B. Results of Rankings and Scenario analysis 

The rankings of variables (Table II) are accomplished 
according to two cases: i) the strength-centrality that derived 
from the symmetric weighted matrix (Table I) and ii) the mean 
values of each variable that are derived from the dataset. It is 
important to mention that the order of variables differs according 
to Table II and the visualization of these graphs displayed in 
Fig.1. Nodes that are depicted closer together are strongly 
related. Hence, thicker edges determine stronger relations, while 
positive and negative relations are represented by black and red 
connections, respectively. Both models were designed by the 



lasso regularization technique (Section III), using as input the 
same dataset. A large number of scenarios were conducted for 
different initial values of concepts for the observed glassoFCM 
structures. 

TABLE II.    THE UPPER TRIANGULAR MATRIX OF WEIGHTED ADJACENCY 

MATRIX USING THE GLASSO ALGORITHM. 

Var Strength Rank     Mean Rank 

V1 0.703 7     3.206 4 

V2 1.077 1     3.199 5 

V3 0.792 6     3.044 9 

V4 0.800 5     3.246 2 

V5 0.557 10     3.088 8 

V6 0.648 8     3.384 1 

V7 0.936 2     3.141 6 

V8 0.804 4     3.106 7 

V9 0.854 3     3.225 3 

V10 0.565 9     2.888 10 

𝛕𝐛.531,  𝐩 = .156 

Correlation is significant at the 0.01** and 0.05* level. 

 
(a) 

 
(b) 

  Future   Stability   Comfort 

Fig. 1 Graph visualizations of two glassoFCM models estimated from the 

graphical lasso regularization. The orderings of the nodes are based on the 

strength centrality indices Fig.1(a) and the average values of the dataset 

Fig.1(b). The size of each node is different according to the rank place as Table 
II displays. 

For each one of the estimated weighted matrices, we present 
only some representative results of rankings, considering three 
different scenarios. In Scenario I the transmitter concept (the 
concept that stands in the first place) is activated; 𝑉2 = 1 
(strength rank) and 𝑉6 = 1 (Mean rank), respectively. In 
scenario II and (ii), two concepts are activated 𝑉2 =  𝑉6 = 1; 
while in scenario III and (iii) the three first concepts are 
activated, 𝑉2 = 𝑉7 = 𝑉9 = 1 and 𝑉6 = 𝑉9 = 𝑉4 = 1, 
respectively. The column “Filter.mean” obtains the rankings 
after filtering the values. 

TABLE III.    COMPARING THE RANKINGS OF FCM SCENARIOS (STRENGTH – 

FILTER.MEAN) AND (MEAN- FILTER.MEAN) USING THE KENDALL’S TAU COEFF. 
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V2 1 1 1 1 1 1 V6 1 1 1 1 1 1 

V7 3 3 4 4 1 1 V9 3 3 4 6 1 1 

V9 8 6 8 6 1 1 V4 2 2 3 5 1 1 

V8 4 7 5 7 5 5 V1 10 4 10 3 10 4 

V4 5 5 6 5 9 7 V2 4 6 1 1 4 7 

V3 6 8 7 8 7 8 V7 9 5 5 4 9 5 

V1 2 2 3 3 4 4 V8 8 7 6 7 8 6 

V6 7 4 1 1 6 6 V3 7 9 9 8 7 9 

V10 10 10 10 10 8 10 V5 6 8 7 9 6 10 

V5 9 9 9 9 10 9 V10 5 10 8 10 5 8 

𝝉𝒃 

𝒑 

. 667∗ 

. 012 

. 786∗∗ 

. 006 

. 714∗ 

. 024 

𝝉𝒃 

𝒑 

. 111 

. 677 

. 214 

. 458 

−.524 

. 099 

 Correlation is significant at the 0.01** and 0.05* level (2-tailed). 

C. Results of the proposed MAX-threshold 

Different thresholds values are applied to the glassoFCM 
model (Fig. 1a) in order to shrink very small weights to zero and 
obtain an appropriate sparser graph. The validation of these 
thresholds is accomplished from the consistency of the output 
values in FCM scenarios. The minimum change among the 

current (𝐶𝜗) and previous (𝐶𝜗−𝜇) vector of concepts’ values 
depend on residual 𝛿 = 0.01 (Section III). Thus, the minimum 
and maximum tuning parameters are set as 𝜗𝑚𝑖𝑛 = 0.01 and 
𝜗𝑚𝑎𝑥 = 0.09, respectively. Additionally, the increment of the 
threshold 𝜗 is set equals to 0.01 (𝜇 = 0.01).  

TABLE IV.    THE INCREMENT OF MAX-THRESHOLD IN FCM SCENARIO 

 Scenario Analysis after MAX-threshold 

 𝝃 0 <0.01 <0.02 <0.03 <0.04 <0.05 <0.06 

V2 1 1 1 1 1 1 1 

V7 1 1 1 1 1 1 1 

V9 0.575 0.575 0.575 0.575 0.575 0.575 0.575 

V8 0.710 0.710 0.710 0.710 0.710 0.710 0.710 

V4 0.596 0.596 0.596 0.596 0.596 0.588 0.588 

V3 0.639 0.639 0.636 0.636 0.636 0.636 0.636 

V1 0.731 0.731 0.731 0.731 0.731 0.731 0.726 

V6 0.575 0.575 0.575 0.570 0.570 0.568 0.543 

V10 0.552 0.551 0.551 0.551 0.551 0.547 0.547 

V5 0.553 0.553 0.549 0.547 0.547 0.545 0.545 

Edges 32 31 29 27 27 25 22 

Density 71.1% 68.9% 64.4% 60.0% 60.0% 55.6% 51.1% 



Table IV demonstrates the increment of the threshold in the 

weighted matrix where the variables are placed according to the 

higher strength indices (Section IV.B). Furthermore, Table IV 

shows which threshold affects the output values of the selected 

scenario (the activated concepts are 𝑉2 = 𝑉7 = 1). 

V. DISCUSSION OF RESULTS 

Table I presented the weighted adjacency matrix estimated 
from the graphical lasso algorithm. Each node was 
corresponded to a variable associated with the job satisfaction 
problem, as described in Section II. All weights in the weighted 
matrix were signed as positive and varied between 𝑤𝑚𝑖𝑛 =
0.006 and 𝑤𝑚𝑎𝑥 = 0.356; while, 36 of 90 edges were estimated 
as zero, indicating that there was no relation between the 
relevant nodes. For instance, according to Table I, employees 
in the Informatics sector consider that there was no association 
between “Good balance between private life & work (𝑉5)” and 
“Offers interesting jobs (𝑉7)”. Thus, 17 edges have been 
distinguished as very-very low (𝑤𝑖𝑗 < 0.1), 12 links as low 

(0.1 ≤ 𝑤𝑖𝑗 < 0.25) and 3 edges as a medium.  

For accomplishing FCM scenarios, first, it was necessary to 
transform the symmetric weighted matrix graph (Table I) to 
asymmetric in order to derive the glassoFCM graphs. Due to the 
lack of experts' knowledge, there was no information related to 
the direction of the edges between the relevant nodes. For this 
reason, it was obtained the upper triangular matrix which in fact, 
the first variable of this matrix triggered the remaining variables 
when it was activated. We were searching for the proper 
variables to activate the remaining variables or in other words 
for the appropriate ranking of nodes to insert in the upper 
weighted matrix. As was already reported, the rankings of the 
observed variables (Table II) were performed according to i) the 
centrality strength derived from the symmetric weighted matrix 
of Table I and ii) the mean values of each variable that were 
derived from the dataset. A Kendall's tau-b correlation was run 
to determine the relationship between strength-centrality 
ranking towards mean ranking. The 𝜏𝑏 correlation indicates that 
there was a moderate, positive relationship that was not 
statistically significant (𝜏𝑏 = .531, 𝑝 = .156). 

Afterwards, two new glassoFCM models were created 
regarding strength-centrality and mean values. It was essential 
to highlight that despite the reordering of the variables, the 
weights between the relevant nodes were invariable. The 
correspondent graphs of the upper triangular matrices were 
illustrated in Fig.1(a) and Fig.1(b). Furthermore, Fig.1(a) and 
Fig.1(b) were presented the clusters determined by the K-means 
method. To estimate the clusters of variables using the k-means 
method, “cluster” R package [16] had been applied to the 
dataset. Three clusters were estimated: future (green color): V1, 
V2, V7, V8, stability (pink color) V4, V6, V9 and comfort (blue 
color) V3, V5, V10. Next, different FCM scenarios were 
accomplished using the fcm.infer function (‘fcm’ R package 
[17]) to identify which of the weighted matrices were the most 
preferable and most consistent to the dataset. The validation 
derives from the dataset in which the variables (that were 
activated in FCM scenarios) were ‘filtered’ with the highest 
values (‘5’) and the mean values of the inactive variables were 
calculated. The results of scenarios and the ‘filtered means’ were 
ranked and compared using Kendall’s tau (𝜏𝑏) coefficient (Table 

III). The similarities between Strength and Filter.mean were 
statistically higher and significant (𝜏𝑏 > .677, 𝑝 ≤ .024) 
comparing to Mean and Filter.mean (−.524 ≤ 𝜏𝑏 ≤
.214, .099 ≤  𝑝 ≤ .677). This signifies that the reordering 
based on Strength centrality indices was more consistent with 
the original dataset. 

As was previously stated, the glassoFCM model was based 

on lasso regularization which estimates 17 very-very low 

weights (Table I). Therefore, it was necessary to investigate 

which of these weights would not cause significant differences 

in the output of the FCM simulation if they shrunk to zero. In 

this regard, the MAX-threshold was applied to one scenario to 

demonstrate how the algorithm works. Therefore, in this 

scenario, the first two variables were activated (𝑉2 = 𝑉7 = 1). 

The initial upper triangular weighted matrix was determined to 

calculate the output of the lasso graphical model in which the 

variables were ordered by the strength-centrality indices. The 

density of the graph without trimming the edges was 71.1% 

(Table IV) and the total number of non-zero edges was 32. As 

the proposed algorithm increases the threshold 𝜗, the density 

was gradually decreased. In this example, the algorithm stops 

when 𝜗 minimizes the weights of the weighted matrix under 

0.06 (Table IV) because the difference of the concept 𝑉6 was 

higher than residual (δ = 0.01), |V6
0.06| − |V6

0.05| > ±δ. 

Consequently, the appropriate graph that was not significantly 

influenced the results of FCM scenario was determined with a 

density of 55.6% or 25 non-zero edges (a 15.5% decrease of 

density from the initial FCM). In other words, for the observed 

FCM, the weights under 0.05 were removed (set equal to zero in 

the weighted matrix) since they did not significantly change the 

output values of the system. For reasons of simplicity, the final 

threshold (the final graph density’s decrement) would be 

determined as the minimum threshold was satisfied for all 

accomplished scenarios. 

VI. CONCLUSION 

To sum up, this paper contributed to the existing literature 
by presenting an automatic data-driven learning approach, the 
glassoFCM method to retrieve sparser Fuzzy Cognitive Maps 
directly from large ordinal dataset using the graphical lasso 
algorithm. Reordering the variables according to strength 
centrality indices, the produced glassoFCM structure derived 
from the upper triangular weighted matrix provided a 
meaningful FCM model considering the estimated 
interrelationships among concepts, indicating better planning 
and decisions. Moreover, the main contribution of this study 
was the proposed MAX-threshold algorithm which was able to 
shrink spurious edges to zero without affecting significantly the 
values of FCM scenarios in the initial weighted matrix. The aim 
of the proposed algorithm was to obtain the FCM structure in 
which as few connections as possible were selected to 
parsimoniously explain different decisions. Moreover, the 
proposed MAX-threshold algorithm could be useful in complex 
systems of hundreds of concepts by pruning meaningless 
weight edges. This indicates that fewer edges among concepts 
could perform decisions through FCM scenarios. Even the 
results of this research study are useful, further work is needed 



to exploit graph-based methods for automatic FCM design from 
large categorical data sets. 
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