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Abstract—The problem of testing goodness-of-fit for k distri-
butions based on fuzzy data is considered. A new permutation
test for fuzzy random variables is proposed. Besides the general
constrution of the test an algorithm ready for the practical use
is delivered. A case-study illustrating the applicability of the
suggested testing procedure is also presented.
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I. INTRODUCTION

Most of statistical procedures are constructed with fairly
specific assumptions regarding the underlying population dis-
tribution. In particular, one of most often used techniques, ap-
plied for comparing several treatments, i.e. analysis of variance
(ANOVA), assumes not only independence of observations
and that all populations are normally distributed but also the
homogeneity of their variances. Obviously, so strong assump-
tions quite often are not satisfied. Unfortunately, ANOVA, like
some other statistical tests is sensitive to violations of the
fundamental model assumptions inherent in its derivation. In
such case distribution-free methods, also called nonparametric,
are very useful. In particular, the Kruskal-Wallis test could
be used for comparing a few independent samples. This test,
unlike ANOVA, requires neither normality nor homogeneity
of variances and that is why it is sometimes called the
nonparametric analogue of one-way analysis of variance.

Real-life data sets often consist of imprecise or vague
observations. In particular, many human ratings based on
opinions or associated with perceptions lead to data that
cannot be expressed in a numerical scale. Such data consist
of intrinsically imprecise or fuzzy elements. Thus, if they also
appear as a realization of some random experiment, we are
faced with random fuzzy variables that cannot be analyzed
by classical statistical methods and require another adequate
approach.

Several approaches have been developed in the literature for
testing statistical hypotheses with fuzzy data. Depending on
the context and whether data are perceived from the epistemic
or the ontic view (see [4]), various test constructions appeared
in the literature (for the overview we refer the reader e.g. to
[8], [9], [12], [13]–[15], [17], [22], [26], [27], [28], [33], [32]).
In particular, the problem of testing the equality of k samples

against the so-called “simple-tree alternative” or “many-one
problem” for fuzzy data based on the necessity index of strict
dominance is considered in [17]. The bootstrap test for the
equality of fuzzy means of k populations can be found in [9],
while [33] contains the bootstrap procedure for testing the
homoscedasticity of k populations.

One may wonder why the nonparametric Kruskal-Wallis
test has not been generalized for fuzzy data. The reason is
that the Kruskal-Wallis test is based on ranks which cannot
be determined for fuzzy samples since fuzzy numbers are not
linearly ordered. However, the Kruskal-Wallis test is actually
the k-sample goodness-of-fit test, since its null hypothesis
states that all k samples under study actually come from the
same distribution (which is equivalent to the statement that all
k populations are identically distributed). Therefore, one may
consider another construction of the k-sample goodness of fit
test, which does not need any ranks. Such construction based
on permutations is suggested in this very contribution.

The paper is organized as follows: in Sec. II we introduce
the notation and recall basic concepts related to fuzzy data
modeling and operations on fuzzy numbers. Sec. III is devoted
to fuzzy random variables. In Sec. IV we propose the general
idea of the k-sample goodness-of-fit permutation test for fuzzy
data. Besides the test construction we deliver testing algorithm
ready for a practical use. Next, in Sec. V we adapt the general
construction of the suggested test for the trapezoidal fuzzy
numbers. Then we present some results of the simulation study
(Sec. VI) and the case study (Sec. VII) with the proposed
test. Finally, conclusions and some indications for the further
research are given in Sec. VIII.

II. FUZZY DATA

A fuzzy number is an imprecise value characterized by a
mapping A : R→ [0, 1] (called a membership function) such
that its α-cut defined by

Aα =

{
{x ∈ R : A(x) > α} if α ∈ (0, 1],

cl{x ∈ R : A(x) > 0} if α = 0,
(1)

is a nonempty compact interval for each α ∈ [0, 1]. Operator
cl in (1) stands for the closure. Thus every fuzzy number is
completely characterized both by its memberschip function
A(x) and by a family of its α-cuts {Aα}α∈[0,1]. Two α-cuts
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are of special interest: A0 = supp(A) called the support
and A1 = core(A) known as the core of fuzzy number A,
respectively.

The most often used fuzzy numbers are trapezoidal fuzzy
numbers (sometimes called fuzzy intervals) with membership
functions of the form

A(x) =


x−a1
a2−a1 if a1 6 x < a2,

1 if a2 6 x 6 a3,
a4−x
a4−a3 if a3 < x 6 a4,

0 otherwise,

(2)

where a1, a2, a3, a4 ∈ R such that a1 6 a2 6 a3 6
a4. Such trapezoidal fuzzy number A is often denoted as
Tra(a1, a2, a3, a4). Obviously, a1 = inf supp(A), a2 =
inf core(A), a3 = sup core(A) and a4 = sup supp(A), which
means that each trapezoidal fuzzy numbers is completely
described by its support and core.

If a2 = a3 then A is said to be a triangular fuzzy
number, while if a1 = a2 and a3 = a4 we have a so-
called interval (or rectangular) fuzzy number. The families
of all fuzzy numbers, trapezoidal fuzzy numbers, triangular
fuzzy number and interval fuzzy numbers will be denoted
by F(R), FT (R), F∆(R) and FI(R), respectively. Obviously,
FI(R) ⊂ FT (R), F∆(R) ⊂ FT (R) and FT (R) ⊂ F(R).

To define basic arithmetic operations in F(R) we use natural
α-cut-wise operations on intervals. In particular, the sum of
two fuzzy numbers A and B is given by the Minkowski
addition of corresponding α-cuts, i.e.

(A+B)α =
[

inf Aα + inf Bα, supAα + supBα
]
,

for all α ∈ [0, 1]. Similarly, the product of a fuzzy number A
by a scalar θ ∈ R is defined by the Minkowski scalar product
for intervals, i.e. for all α ∈ [0, 1]

(θ ·A)α = [min{θ inf Aα, θ supAα},
max{θ inf Aα, θ supAα}] .

It is worth noting that a sum of trapezoidal fuzzy num-
bers is also a trapezoidal fuzzy number, namely, if A =
Tra(a1, a2, a3, a4) and B = Tra(b1, b2, b3, b4) then

A+B = Tra(a1 + b1, a2 + b2, a3 + b3, a4 + b4). (3)

Moreover, the product of a trapezoidal fuzzy number A =
Tra(a1, a2, a3, a4) by a scalar θ is a trapezoidal fuzzy number

θ ·A =

{
Tra(θ · a1, θ · a2, θ · a3, θ · a4) if θ > 0,

Tra(θ · a4, θ · a3, θ · a2, θ · a1) if θ < 0.
(4)

Unfortuntely,
(
F(R),+, ·

)
has not linear but semilinear

structure since in general A+ (−1 ·A) 6= 1{0}. Consequently,
the Minkowski-based difference does not satisfy, in general,
the addition/subtraction property that (A+(−1 ·B))+B = A.
To overcome this problem the so-called Hukuhara difference
was proposed. It is defined as follows:

C := A−H B if and only if B + C = A

Although now the desired properties A−HA = 1{0} or (A−H
B) + B = A are satisfied, the Hukuhara difference does not
always exist. Therefore, one should be aware that there are
critical problems with a subtraction in F(R).

To overcome some of the problems associated with the lack
of a satisfying difference, especially in constructing tools for
statistical reasoning based on fuzzy observations, an alternative
approach utilizing metrics defined in F(R) has been developed
[3].

One can define various metrics in F(R) but perhaps the most
often used in statistical context is the one proposed by Gil et
al. [6] and Trutschnig et al. [35]. Let λ denote a normalized
measure associated with a continuous distribution with support
in [0, 1] and let θ > 0. Then for any A,B ∈ F(R) we define
a metric Dλ

θ as follows

Dλ
θ (A,B) =

(∫ 1

0

[
(midAα −midBα)2 (5)

+ θ · (sprAα − sprBα)2
]
dλ(α)

)1/2

,

where midAα = (inf Aα + supAα)/2 and sprAα =
(supAα − inf Aα)/2 denote the mid-point and the radius of
the α-cut Aα, respectively.

Both λ and θ correspond to some weighting. Namely, λ
allows us to weight the influence of each α-cut. In practice,
the most common choice of λ is the Lebesgue measure on
[0, 1]. On the other hand, each particular choice of θ allows
us to weight the impact of the distance between the spreads
(i.e. the deviation in vagueness) of the α-cuts in contrast to
the distance between their mid-points (i.e. the deviation in
location). Here, the most popular choice is θ = 1 or θ = 1

3 .
Using θ = 1 we obtain the following metric

Dλ
1 (A,B) =

(∫ 1

0

[1

2
(inf Aα − inf Bα)2 (6)

+
1

2
(supAα − supBα)2

]
dλ(α)

)1/2

,

weighting uniformly the two squared Euclidean distances and
equivalent to the distance considered e.g. in [5], [11]. On the
other hand, for θ = 1

3 we obtain

Dλ
1/3(A,B) =

√∫ 1

0

(∫ 1

0

[
A

[t]
α −B[t]

α

]2
dt
)
dλ(α), (7)

where A
[t]
α = (1 − t) inf Aα + t supAα, so Dλ

1/3(A,B)
aggregates uniformly the squared Euclidean distances between
the convex combination of points of the α-cuts representing
A and B.

Whatever (λ, θ) is chosen, Dλ
θ has some important and

useful properties: it is an L2-type metric in F(R) and it is
translational and rotational invariant, i.e., for all A,B,C,∈
F(R)

Dλ
θ (A+ C,B + C) = Dλ

θ (A,B)

Dλ
θ

(
(−1) ·A, (−1) ·B

)
= Dλ

θ (A,B)



Moreover, (F(R), Dλ
θ ) is a separable metric space, and for

each fixed λ all Dλ
θ are topologically equivalent.

For more details on fuzzy numbers, their types, character-
istics, and approximations we refer the reader to [1].

III. FUZZY RANDOM VARIABLES

When the output of an experiment consists of a random
sample of imprecise data that could be satisfactorily described
by fuzzy numbers we need a model which allow to grasp both
aspects of uncertainty that appear in such data: randomness,
associated with data generation mechanism and fuzziness,
connected with data nature, i.e. their imprecision. To cope with
this problem Puri and Ralescu [31] introduced the notion of a
fuzzy random variable (random fuzzy number).

Definition 1. Given a probability space (Ω,A, P ), a mapping
X : Ω→ F(R) is said to be a fuzzy random variable if for all
α ∈ [0, 1] the α-level function is a compact random interval.

In other words, X is a random fuzzy variable if and only
if X is a Borel measurable function w.r.t. the Borel σ-field
generated by the topology induced by Dλ

θ .
Puri and Ralescu [31] defined also the Aumann-type mean

of a fuzzy random variable X as the fuzzy number E(X) ∈
F(R) such that for each α ∈ [0, 1] the α-cut

(
E(X)

)
α

is equal
to the Aumann integral of Xα or, in other words,(
E(X)

)
α

=
[
E(midXα)−E(sprXα),E(midXα)+E(sprXα)

]
.

(8)
We can also define (see [25]) the Dλ

θ -Fréchet-type variance
V(X) which is a nonnegative real number such that

V(X) = E
([
Dλ
θ (X, E(X))

]2)
(9)

=

∫ 1

0

Var(midXα)dλ(α) + θ

∫ 1

0

Var(sprXα)dλ(α).

Although (8) preserve the main properties known from the
real-valued case one should be aware of the problems typical
for statistical reasoning with fuzzy data. Firstly, as it was noted
in Section II, there are problems with subtraction and division
of fuzzy numbers, so it is advisable to avoid these operations
whenever it is possible. Next source of possible problems is
the lack of universally accepted total ranking between fuzzy
numbers. Moreover, absence of suitable models for the distri-
bution of fuzzy random variables makes the reasoning really
hard. Finally, there are not yet Central Limit Theorems for
fuzzy random variables that can be applied directly in decision
making. All the above mentioned disadvantages impede the
straightforward generalization of statistical methodology well
established in the classical real-valued sample environment,
including test construction, etc. In most cases of the inference
based on fuzzy samples we are not able to find the null
distribution of a test statistic and, consequently, to find the
critical value or to compute the p-value required for making a
decision. One possible way out is to use bootstrap [8], which
has been successfully applied in many test constructions (like
[9], [26], [27], [28], [33], [32]). However, in this paper we
suggest another methodology based on permutations.

IV. K-SAMPLE TEST FOR FUZZY DATA – A GENERAL IDEA

Suppose, we observe independently k fuzzy random sam-
ples, where k > 2, drawn from populations with unknown
distributions function F1, . . . , Fk, respectively, i.e.

X1 = (X11, . . . , X1n1
) ∼ F1

...
...

Xk = (Xk1, . . . , X1nk) ∼ Fk.

Let N = n1 + . . .+ nk denote the total number of available.
observations. We want to verify the null hypothesis that all k
samples come from the same distribution, i.e.

H0 : F1(t) = . . . = Fk(t) for all t ∈ R, (10)

against the alternative hypothesis H1 : ¬H0 that at least two
population distributions differ.

The crucial idea of the proposed test construction is that
the null hypothesis implies total exchangeability of observed
data with respect to groups. Indeed, if H0 holds then all N
available observations may be viewed as if they were randomly
assigned to k groups but they come from the same population.

Let V = X1]. . .]Xk, where ] stands for vector concatena-
tion, so that the k samples are pooled into one, i.e. Vi = X1i

if 1 6 i 6 n1, Vi = X2i if n1 + 1 6 i 6 n1 + n2 and so on
until Vi = Xk,i−(n1+...nk−1) if n1 + . . . nk−1 + 1 6 i 6 N .

Now, let V∗ denote a permutation of the initial dataset V.
More formally, if ν = {1, 2, . . . , N} and πν is a permutation
of the integers ν, then V ∗i = Vπν(i) for i = 1, . . . , N . Then the
first n1 elements of V∗ is assigned to the first sample X∗1, next
n2 elements of V∗ is assigned to the second sample X∗2, etc.,
and the remaining nk elements to X∗k. In other words, it works
like a random assignment of elements into k samples of the
size n1, . . . , nk, respectively. Each permutation corresponds to
some relabeling of the combined dataset V. Please, note that if
H0 holds then we are completely free to exchange the labels
Xij attributed to particular observations.

Since the total number of distinct rearrangements of N
elements, where n1 elements are labeled as X1·, n2 elements
are labeled as X2·, etc., and the remaining nk as Xk· is
multinomial, hence under H0 the probability of each randomly
selected V∗ is

PH0

(
V∗ = (v∗1 , . . . , v

∗
N )
)

=
n1! . . . nk!

N !
. (11)

The next step is to choose a test statistic which is supposed
to discriminate between the null hypothesis and its alternative.
Our test statistic would be based on the comparison of the
sample means. Indeed, the arithmetic mean (average) is rec-
ognized as a suitable measure aggregation operator indicating
the typical output of a sample. Obviously, in the case of
fuzzy sample the mean is also a fuzzy number. If the null
hypothesis holds we expect that due to exchangeability of
observed data between groups all k sample means would not
differ to much from the overall sample mean. On the other
hand, a significant difference between sample means may
indicate that the samples under study come from different



distributions. To measure how much do the sample means
differ we will use a suitable distance.

To be more specific, let Xi = 1
ni

∑ni
j=1Xij denote the

average of observations belonging to sample Xi, where i =

1, . . . , k, while X = 1
N

∑k
i=1

∑ni
j=1Xij stands for the overal

mean of all N available observations.
Then, given V = X1 ] . . . ]Xk, the test statistic is defined

as

T (V) =

k∑
i=1

ni ·Dλ
θ (Xi, X)2, (12)

where Dλ
θ is given by (6).

To decide whether the distance between the observed sample
means is large enough to conclude as significant we need
some knowledge on the null distribution of the test statistic.
As a consequence of elements’ exchangeability in V∗ under
H0 we can estimate the distribution of T by considering all
permutations of the initial dataset V and computing a value
of the statistic T (V∗) corresponding to each permutation.
Substituting given permutation v∗ into (12) we obtain

T (v∗) =

k∑
i=1

ni ·Dλ
θ (x∗i , x)2 (13)

where

x∗i =
1

ni

n1+...+ni∑
j=n1+...+ni−1+1

v∗j .

Obviously, x∗ = 1
k

∑k
i=1 x

∗
i = 1

N

∑N
i=1 v

∗
i = x for any

permutation v∗.
By (11), the null distribution od T is given by

PH0
(T = t) =

#{v∗ : T (v∗) = t}
N !

n1!...nk!

, (14)

where the numerator gives the number of permuations leading
to the desired value of T .

Finally, the p-value of our test is defined as the proportion
of cases when the test statistic values are greater or equal to
the observed experimental value t0 = T (V), i.e.

p-value =
n1! . . . nk!

N !
·
∑

v
∗∈P(v)

1(T (v∗) > t0), (15)

where P(v) is a set of all distinct rearrangements of v.
In practice, the exact distribution of T can be found for

very small N only. Moreover, the numerator calculation for
all cases would be also rather awkward. Therefore, instead
of considering all possible permutations we consider an ap-
proximate distribution obtained by drawing randomly a large
number of samples (permutations) with replacement.

Let M denote a fixed number of drawings. Then the
approximate p-value of our test is given by

p-value ' 1

M

M∑
m=1

1(T (v∗m) > t0), (16)

where M is usually not smaller than 1000.

To sum-up, the proposed permutation goodness-of-fit test
for fuzzy random variables can be performed following Algo-
rithm 1.

Algorithm 1
Require: Fuzzy samples x1 = (x11, . . . , x1n1

), . . . ,xk =
(xk1, . . . , xknk)

Ensure: Test p-value
1: t0 ←−

∑k
i=1 ni ·Dλ

θ (xi, x)2

2: s←− 0
3: Pool the data v = x1 ] . . . ] xk
4: for m = 1 to M do
5: Take a permutation v∗ = (v∗1 , . . . , v

∗
N ) of the pooled

data v
6: l←− 0
7: for i = 1 to k do
8: x∗i ←−

∑l+ni
j=l+1 v

∗
j /ni

9: l←− l + ni
10: end for
11: T ←−

∑k
i=1 ni ·Dλ

θ (x∗i , x)2

12: if T > t0 then
13: s := s+ 1
14: end if
15: end for
16: p-value←− s/M

One can easily notice that the permutations may be divided
into equivalence classes called rearrangements. Within each
equivalence class the only differences between permutations
lie in the arrangement of the observations. Hence, it seems
that instead of permutation test it would be more adequate
to term it the rearrangement test or combinational test, but
the traditional name permutation test is already in a common
usage.

Permutation tests, like the bootstrap, require extremly lim-
ited assumptions. Bootstrap tests usually rely on assumption
that successive observations are independent. Permutation tests
require only exchangeability (i.e., under the null hypothesis we
can exchange the labels on the observations without affecting
the results). Obviously, if the observations in a sample are
independent and identically distributed then they are exchange-
able.

There are two advantages of the permutation tests over
the bootstrap tests. Firstly, permutation test are often more
powerful than their bootstrap counterparts (see [10]). Secondly,
permutation test are exact if all permutation are considered,
while bootstrap tests are exact only for very large samples.
Moreover, asymptotically permutation tests are usually as
powerful as the most powerful parametric tests (see [2]).

However, one should remember that permutation tests are
tools specialized for comparing distributions, whereas boot-
strap tests are oriented on comparison between parameters.
The bootstrap can also provide a reliable confidence intervals
and standard errors estimators, beyond mere p-values delivered
by permutation tests.



For more information on classical permutation tests we refer
the reader to [10], [30],

V. GOODNESS-OF-FIT TEST FOR TRAPEZOIDAL DATA

In this section we adapt the general idea of the permutation
goodness-of-fit test proposed in Section IV for trapezoidal
data. Obviously, one may ask why do we restrict our attention
to this subfamily of fuzzy numbers. Actually, it has been
noticed by many researchers that trapezoidal (or triangular)
fuzzy numbers are most common in various applications
mainly because they are both easy to handle and have a
natural interpretation (see [1], [29]). As noted in [24]: “the
problems that arise with vague predicates are less concerned
with precision and are more of a qualitative type; thus they
are generally written as linearly as possible. Normally it is
sufficient to use a trapezoidal representation, as it makes it
possible to define them with no more than four parameters”.
Moreover, even if the original data set consists of fuzzy
numbers which are not trapezoidal one often approximates
them by such fuzzy numbers before further processing. One
may ask why to consider a trapezoidal approximation and
not simplify objects under study as much as possible, i.e. to
defuzzify them. However, it is widely known that defuzzifying
data too early we lose too much information and it is much
better to process fuzzy information as long as possible. This
is the case why we are looking for simplification to avoid
difficulties in computation on the one hand and we do not
want to simplify too much on the other hand. It seems that
the trapezoidal approximation is a reasonable compromise
between these two opposite tendencies (see, e.g., [16], [21],
while for the broad collection of approximation algorithms
satisfying various requirements we refer the reader to [1]).
Finally, assuming trapezoidal fuzzy data we may express our
permutation goodness-of-fit test in a closed analytic form.

Firstly, let us notice that the required formula (6) for the
distance reduces meaningfully if we restrict our attention to
trapezoidal fuzzy numbers. Indeed, for any α ∈ [0, 1] the α-cut
of A = Tra(a1, a2, a3, a4) is given by

Aα =
[
a1 + (a2 − a1)α, a4 − (a4 − a3)α

]
. (17)

Therefore, we easily obtain that

midAα =
1

2
(inf Aα + supAα) (18)

=
a1 + a4

2
+
(a2 + a3

2
− a1 + a4

2

)
α

= mid supp(A) +
(
mid core(A)−mid supp(A)

)
α

= mid0A+
(
mid1A−mid0A

)
α

and

sprAα =
1

2
(supAα − inf Aα) (19)

=
a4 − a1

2
+
(a3 − a2

2
− a4 − a1

2

)
α

= spr supp(A) +
(
spr core(A)− spr supp(A)

)
α

= spr0A+
(
spr1A− spr0A

)
α,

where mid0A and mid1A denote the midpoint of the support
and core of A, respectively, while spr0A and spr1 stand for
the spread of the support and core of A, respectively.

Assume that ` = λ is the Lebesgue measure on [0, 1] and
A,B ∈ FT (R). Then, substituting (18) and (19) into (6) we
obtain the following formula for the distance Dλ

θ between
trapezoidal fuzzy numbers

D`
θ(A,B) =

[(
mid0A−mid0B

)2
+
(
mid1A−mid1B

)2
3

+

(
mid0A−mid0B

)(
mid1A−mid1B

)
3

+ θ

(
spr0A− spr0B

)2
+
(
spr1A− spr1B

)2
3

+θ

(
spr0A− spr0B

)(
spr1A− spr1B

)
3

]1/2

. (20)

Now, we are able to perform our data analysis. Let x =
(x1, . . . , xn) and y = (y1, . . . , ym) denote realizations (i.e.
actual observations) of the fuzzy random samples X =
(X1, . . . , Xn) and Y = (Y1, . . . , Ym), respectively. Further on
we assume that all our imprecise observations are modeled
by trapezoidal fuzzy numbers, i.e. xi ∈ FT (R) for each
i = 1, . . . , n and yj ∈ FT (R) for each j = 1, . . . ,m.

By (3) and (4) it is obvious that the arithmetic mean of
trapezoidal fuzzy numbers is also a trapezoidal fuzzy number.
Indeed, the sample mean of trapezoidal observations is com-
pletely described by averages of the lower and upper bounds
of the supports and cores of observations. Thus, consequently,
the mid-point of the support of the sample mean is equal to
the average of the mid-points of supports of observations,
i.e. mid0x = mid0x and similar results hold for the core
mid1x = mid1x and both with respect to the radii of the
support and core, i.e. spr0x = spr0x and spr1x = spr1x.

Therefore, given aforementioned observations x =
(x1, . . . , xn) and y = (y1, . . . , ym) of the two fuzzy random
samples and assuming that all observations are trapezoidal
fuzzy numbers, i.e. xi, yj ∈ FT (R) for i = 1, . . . , n and
j = 1, . . . ,m, the value of our test statistic (12) can be
calculated using the following formula

t0 = T (v) =

k∑
i=1

ni ·D`
θ(xi, x)2, (21)

where, by (20)

D`
θ(xi, x) =

[(
mid0xi −mid0x

)2
+
(
mid1xi −mid1x

)2
3

+

(
mid0xi −mid0x

)(
mid1xi −mid1x

)
3

+ θ

(
spr0xi − spr0x

)2
+
(
spr1xi − spr1x

)2
3

+θ

(
spr0xi − spr0x

)(
spr1xi − spr1x

)
3

]1/2

. (22)



Next, we take M permutations of v = x1 ] . . . ] xk and
split each permutation v∗m into k parts of size n1, . . . , nk,
respectively, such that v∗m = x∗1 ] . . . ] x∗k, where x∗i =
(x∗i1, . . . , x

∗
ini

), i = 1, . . . , k, we compute the desired averages
x∗i and substitute them into (22) instead of xi to obtain
D`
θ(x
∗
i , x). Finally, following (16), we will be able to compute

the p-value of our test, i.e.

p-value =
1

M

M∑
m=1

1

( k∑
i=1

ni ·D`
θ(x
∗
i , x)2 > t0

)
. (23)

In the case of triangular fuzzy numbers, i.e. xi,j ∈ F∆(R)
for all j = 1, . . . , ni and j = 1, . . . , k, the formula for distance
(22) simplifies into

D`
θ(xi, x) =

[(
mid0xi −mid0x

)2
+
(
mid1xi −mid1x

)2
3

+

(
mid0xi −mid0x

)(
mid1xi −mid1x

)
3

+θ

(
spr0xi − spr0x

)2
3

]1/2

.

Obviously, we have even more simplification for intervals, i.e.
for xi,j ∈ FI(R) for all j = 1, . . . , ni and j = 1, . . . , k, we
obtain

D`
θ(xi, x) =

[(
mid0xi −mid0x

)2
+
θ

3

(
spr0xi − spr0x

)2]1/2

.

VI. SIMULATIONS

Some simulations were conducted to illustrate the behavior
of the proposed test.

To generate fuzzy samples from a trapezoidal-valued fuzzy
random variable X = Tra(ξ1, ξ2, ξ3, ξ4), where ξ1, ξ2, ξ3, ξ4
are real-valued random variables such that ξ1 6 ξ2 6 ξ3 6 ξ4,
the following characterization appears to be useful (see [27],
[34]): c = 1

2 (ξ3 + ξ2) = mid1X , s = 1
2 (ξ3 − ξ2) = spr1X ,

l = ξ2 − ξ1 and r = ξ4 − ξ3. Hence, conversely, we have
Tra〈c, s, l, r〉 = Tra(c− s− l, c− s, c+ s, c+ s+ r).

Thus, in our study we generated fuzzy observations
xij by simulating the four real-valued random variables
〈cij , sij , lij , rij〉 with the last three ones random variables in
each quartet being nonnegative. In particular, we generated
trapezoidal-valued fuzzy random variables using the following
real-valued random variables: cij from the normal distribution
and sij , lij , rij from the uniform or chi-square distribution.

We examined the proposed permutation test with respect
to its type 1 error. Therefore, 10 000 simulations of the test
performed on three independent fuzzy samples comming from
the same distribution were generated at the significance level
0.05. In each test M = 1000 permutations were drawn. Then
empirical percentages of rejections under H0 were determined.
The results both for equal and nonequal sample sizes are
gathered in Tables I and II, respectively.

It is seen that the empirical type 1 error of the proposed
test seems to be stable and is close to the preassumed level.
It becomes a little more liberal for large sample sizes.

TABLE I: Empirical percentages of rejections under H0 for
equal sample sizes n1 = n2 = n3 = n.

n percentage of rejections
10 4.87
15 4.78
20 4.88
50 5.20

100 5.31

TABLE II: Empirical percentages of rejections under H0 for
unequal sample sizes

(n1, n2, n3) percentage of rejections
(10, 15, 20) 5.06
(10, 20, 10) 5.01
(20, 50, 100) 4.96
(50, 50, 100) 5.11

VII. ILLUSTRATIVE EXAMPLE

The Gamonedo cheese is a kind of a blue cheese produced
Asturias, Spain (see, e.g., [7]). It experiences a smoked process
and later on is let settle in natural caves or a dry place. Keeping
the quality of a cheese, due to its sensitivity and complexity,
requires a solid tasting system. Usually, the experts (or tasters)
express their subjective perceptions about different character-
istics of the cheese, like visual parameters (shape, rind and
appearance), texture parameters (hardness and crumbliness),
olfactory-gustatory parameters (smell intensity, smell quality,
flavour intensity, flavour quality and aftertaste) and an overall
impression of the cheese.

So far, the experts (tasters) provide an ordinal number rang-
ing from 1 to 7 to describe their perceptions about different
cheese characteristics. However, recently some of the tasters
were proposed to express their subjective perceptions about
the quality of the Gamonedo cheese by using trapezoidal fuzzy
numbers. These fuzzy sets were determined in the following
way: the set of values considered by the expert to be fully
compatible with his/her opinion led to α = 1-cut, while the
set of values that he/she considered to be compatible with
his/her opinion at some extent (i.e., the taster thought that
it was not possible that the quality was out of this set) led
to α = 0-cut of a fuzzy number. Then these two α-cuts
were linearly interpolated to get the trapezoidal fuzzy set
representing exppert’s personal valuation.

Some statistical analyses of fuzzy data obtained in this way
for the Gamonedo cheese quality inspection was performed
by Ramos-Guajardo and Lubiano [33] and Ramos-Guajardo
et al. [32]. In particular, some considerations based on the
bootstrap generalization of the Levene test for k variances are
given in [33]. On the other hand, a construction of robust
summary measures for the fuzzy opinions of tasters and their
applicability to the sensory evaluation of the Gamonedo cheese
can be found in [32].

Here we utilize some data given in [32] to compare the opin-
ions of the three experts about the overall impression of the
Gamonedo cheese (the trapezoidal fuzzy sets corresponding to
their opinions are gathered in Table III).



Thus we have three independent fuzzy samples of sizes
n1 = 40, n2 = 38 and n3 = 42, comming from the unknown
distributions F1, F2 and F3, respectively. Our problem is to
check whether there is a general agreement between these
experts. To reach the goal we verify the following null
hypothesis

H0 : F1 = F2 = F3,

stating there is no significant difference between experts’
opinions, against H1 : ¬H0 that their opinions on the cheese
quality differ.

TABLE III: Sample of the opinions of Expert 1, 2 and 3
concerning the overall impression of the Gamonedo cheese
(see [32])

Opinion Expert 1 Expert 2 Expert 3
1 (65, 75, 85, 85) (50, 50, 63, 75) (60, 63, 67, 72)
2 (35, 37, 44, 50) (39, 47, 52, 60) (53, 58, 63, 68)
3 (66, 70, 75, 80) (60, 70, 85, 90) (43, 47, 54, 58)
4 (70, 74, 80, 84) (50, 56, 64, 74) (70, 76, 83, 86)
5 (65, 70, 75, 80) (39, 45, 53, 57) (54, 60, 65, 70)
6 (45, 50, 57, 65) (55, 60, 70, 76) (76, 80, 83, 86)
7 (60, 66, 70, 75) (50, 50, 57, 67) (65, 68, 73, 80)
8 (65, 65, 70, 76) (65, 67, 80, 87) (77, 80, 86, 90)
9 (60, 65, 75, 80) (50, 50, 65, 75) (76, 80, 85, 90)

10 (55, 60, 66, 70) (50, 55, 64, 70) (70, 76, 80, 85)
11 (60, 65, 70, 74) (39, 46, 53, 56) (50, 51, 55, 64)
12 (30, 46, 44, 54) (19, 29, 41, 50) (43, 47, 51, 58)
13 (60, 65, 75, 75) (40, 47, 52, 56) (50, 55, 60, 64)
14 (70, 75, 85, 85) (54, 55, 65, 76) (65, 67, 73, 80)
15 (44, 45, 50, 56) (59, 65, 75, 85) (65, 70, 75, 80)
16 (51, 56, 64, 70) (50, 52, 57, 60) (50, 55, 60, 65)
17 (40, 46, 54, 60) (60, 60, 70, 80) (65, 70, 75, 80)
18 (55, 60, 65, 70) (50, 54, 61, 67) (74, 80, 85, 90)
19 (80, 85, 90, 94) (40, 46, 50, 50) (46, 50, 55, 60)
20 (80, 84, 90, 90) (44, 50, 56, 66) (50, 57, 64, 70)
21 (65, 70, 76, 80) (60, 64, 75, 85) (65, 74, 80, 84)
22 (75, 80, 86, 90) (54, 56, 64, 75) (55, 58, 64, 70)
23 (65, 70, 73, 80) (50, 50, 60, 66) (65, 73, 80, 85)
24 (70, 80, 84, 84) (44, 46, 55, 57) (54, 57, 62, 70)
25 (55, 64, 70, 70) (59, 63, 74, 80) (73, 80, 85, 90)
26 (64, 73, 80, 84) (49, 50, 54, 58) (54, 60, 65, 70)
27 (50, 56, 64, 70) (55, 60, 70, 75) (50, 55, 60, 64)
28 (55, 55, 60, 70) (44, 47, 53, 60) (65, 74, 80, 84)
29 (60, 70, 75, 80) (19, 20, 30, 41) (40, 47, 53, 60)
30 (64, 71, 80, 80) (40, 44, 50, 60) (46, 50, 57, 64)
31 (50, 50, 55, 65) (50, 50, 59, 66) (55, 60, 65, 74)
32 (50, 54, 60, 65) (50, 53, 60, 66) (50, 57, 63, 70)
33 (65, 75, 80, 86) (50, 52, 58, 61) (40, 47, 53, 60)
34 (50, 55, 60, 66) (60, 65, 72, 80) (65, 70, 76, 80)
35 (40, 44, 50, 50) (50, 50, 55, 60) (55, 60, 65, 70)
36 (70, 76, 85, 85) (30, 34, 43, 47) (70, 74, 83, 90)
37 (44, 50, 53, 60) (19, 25, 36, 46) (60, 66, 74, 81)
38 (34, 40, 46, 46) (53, 63, 74, 80) (64, 70, 75, 80)
39 (40, 45, 51, 60) (40, 44, 51, 56)
40 (84, 90, 95, 95) (35, 40, 46, 50)
41 (35, 44, 50, 55)
42 (66, 70, 75, 85)

Substituting data from Table III into formula (21) we obtain
t0 = 2259.436. Then, after combining samples and generating
M = 10 000 random permutations we have obtained the
p-value of 0.0011. Hence, assuming the typical 5-percent
significant level we may conclude that there is no general
aggreement between experts’ opinion on the overal impression

Fig. 1: Empirical null distribution of the permutation
goodness-of-fit test with red vertical line indicating the value
of the test statistic.

of the Gamonedo cheese. In Figure 1 one can find the
empirical null distribution of the permutation goodness-of-fit
test with red vertical line indicating the value t0 of the test
statistic.

VIII. CONCLUSIONS

Hypothesis testing with samples which consist of fuzzy
numbers generated by fuzzy random variables is neither easy
nor straightforward. Till now tests based on the bootstrap were
mainly developed and used in this area. Another approach
for constracting statistical tests for the aforementioned data
was proposed in this paper. Namely, the k-sample permutation
goodness-of-fit for fuzzy data was developed. Moreover, some
simulation studies and the case study dedicated to fuzzy rating
problem were performed. Although the results obtained seem
to be promissing, further research including power studies and
a comparison with other tests are intended in the nearest future.

REFERENCES

[1] A. I. Ban, L. Coroianu and P. Grzegorzewski, “Fuzzy Numbers: Ap-
proximations, Ranking and Applications,” Polish Academy of Sciences,
Warsaw, 2015.

[2] P. M. Bickel and W. R. Van Zwet, “Asymptotic expansion for the power
of distribution-free tests in the two-sample problem,” Ann. Stat., vol. 6,
pp. 987–1004, 1170–1171, 1987

[3] A. Blanco-Fernández, M. R. Casals, A. Colubi, N. Corral, M. Garcı́a-
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