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Abstract—Multi-label classification problems exist in many real
world applications where to each example in the dataset can
be assigned a set of target labels. This paper presents a new
two-step method for genetic learning of a fuzzy rule base for
multi-label classification, called IRL-MLC. The first step uses
a genetic algorithm based on an iterative approach to learn a
preliminary rule base where the fitness of each rule depends
on the degree of firing calculated for the set of labels of each
example (positive or negatively) in the dataset. The second step
uses a genetic algorithm to tune weights of each fuzzy rule in
the preliminary rule base where the fitness of each set of weights
is the precision of the multi-label classification. Experiments are
conducted on five multi-label datasets, in biology, multimedia and
text domains, and the proposed method has been compared with
one state-of-art method. Results provide interesting insights into
the quality of the discussed novel method.

Index Terms—Multi-label classification, genetic algorithm, it-
erative approach

I. INTRODUCTION

Multi-label classification (MLC) is a predictive data mining
task which consists of assigning, to each example, a set of
target labels. MLC exists in many real world applications, for
example: images [1], texts [2], video [3], audio [4], among
others.

MLC methods are divided into two groups, problem trans-
formation methods and algorithm adaptation methods. In prob-
lem transformation methods, the MLC problem is transformed
into single-label classification problem and the classification
process follow the single-label classification; in algorithm
adaption methods, a single-label algorithm is modified to
applied on multi-label data. In [5] the authors show a compara-
tive study of most common multi-label classification methods:
copy, copy-weight select-max, select-min, select-random, ig-
nore, binary relevance, label power set and classifier chain,
belong to the group of problem transformation methods; and,
multi-label decision-tree [6], multi-Label k nearest neigh-
bors [7], support vector machine with Heterogeneous feature
kernel [8], ranking support vector machine [9], multi-label tree

based boosting methods [10], multi-label neural networks [11]
and multi-label naive bayesian [12], belong to the group of
algorithm adaptation methods.

Fuzzy Systems (FS) and the most common fuzzy model
called Fuzzy Rule-Base Systems (FRBS) have been success-
fully applied to solve different problems in a variety of
domains; when sufficient amounts of data are available, it is
advantageous to build such systems automatically employing
methodologies from different machine learning paradigms
such as Evolutionary Algorithms (EA). Evolutionary Fuzzy
Systems (EFS) are a successful hybridization between FS
and EA, they integrate both the management of impreci-
sion/uncertainty and inherent interpretability of FRBS, with
the learning and adaptation capabilities of evolutionary opti-
mization [13].

The nature of the multi-label problem is well suited for the
use of FRBS and EFS based algorithms and MLC has been
cited as one of the promissing trends for EFS in [13]. However,
when searching the literature for articles that address the prob-
lem of learning fuzzy systems for MLC problems, the authors
of this article identified that there are not enough efforts being
devoted to the topic. To the best of our knowledge, only two
research works to learning fuzzy rules for MLC were found
and both belong to the problem transformation method group;
the first one was proposed in [14], where the author evaluates
Fuzzy Unordered Rule Induction Algorithm (FURIA) [15] as
the base classifier after using different strategies to transform a
multi-label problem into a different single-label classification
problems; the second one was proposed in [16], where the
strategy Generalized k-Labelsets Ensemble (GLE) [17], which
performs the basis expansion method to train Label powerset
classifier on random k label sets, is used to transform a
multi-label problem into a different single-label classification
problems before to apply FURIA for learning a fuzzy rule
base. No articles could be found in the algorithms adaptation
methods group.

In the last years, our research has focussed on algorithms
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to learn or tune components of FRBS using GA either in the
traditional or multiobjective versions for single-label classifi-
cation [18], [19], [20], [21]. This paper proposes a new method
to learn a Rule Base (RB) for a fuzzy multi-label classifier
using two genetic algorithms (GA). The first GA is based
on the iterative approach where the GA is run several times,
each time generating a single rule for learning a preliminary
RB. The iterative approach has been explored before in our
research [20], [21] and demonstrated to be efficent for the
generation of rule bases. The second GA tunes the preliminary
RB for improving the hamming loss [22] in a single run.

The evolution process of the first GA starts after three
previous steps: 1) to define uniformly distributed fuzzy sets
for all attributes that describe the examples in the dataset; 2)
to generate an initial population or parent population in the
first iteration where each chromosome represents a fuzzy if-
then rule such that each gene in the chromosome represents
a fuzzy antecedent and the last gen represents a fuzzy rule
class; and 3) to calculate the fitness of each chromosome by
means of the subtraction between the sum of positive degrees
of firing and sum of negatives degree of firing of the rule. The
evolution process (selection, crossover and mutation operators)
generates an offspring population. Next, the current parent
population and the offspring population are merged and the
next parent population is generated by adding the fuzzy rules
with maximum fitness selected from the merged population.
At the end of the evolution process, the best fuzzy rule in the
last parent population is added to the preliminary RB. The first
GA is run a defined number of times which is the number of
rules in the preliminary RB.

The second GA tunes the fuzzy rule weights for improving
the preliminary RB hamming loss. The fitness calculation,
which is the main characteristic of this GA, considers a
threshold for assigning one or more classes to an example.
The threshold is obtained from the average of the sum of firing
degrees of all fuzzy rules for each class. The evolution process
is similar to the first GA with relation to the genetic operators
application and the generation of the next population except
that the chromosomes selected for the next population are the
ones with the lowest fitness values. At the end of the evolution
process, the best chromosome in the last parent population,
which is the best combination of rules weights, is selected and,
these weights, with their corresponding rules in the preliminary
RB, define the final RB.

The next section explains briefly the multi-label classifica-
tion problem. In Section III the proposal of the method to
genetic learning of fuzzy rule bases for multi-label classifica-
tion based on an iterative approach is detailed. Section IV
describes the experiments and discusses the results of the
proposal. Finally, Section V contains conclusions and future
works.

II. MULTI-LABEL CLASSIFICATION

Multi-label learning is a supervised learning paradigm that
recently has been investigated in an increasing number of fields
where it can be applied in domains as mentioned before. All

these applications have in common that, for each example in
the dataset, one or more labels can be assigned, as shows the
example in Table I.

TABLE I
DATASET WITH MULTI-LABEL EXAMPLES

Ex. Atributes (A) Labels (L) Example labels
(E) A1 A2 A3 l1 l2 l3 l4 (Y )
e1 a11 a12 a13 0 0 1 1 Y1 = {L3, L4}
e2 a21 a22 a23 0 0 1 0 Y2 ={L3}
e3 a31 a32 a33 1 1 0 0 Y3 ={L1, L2}
e4 a41 a42 a43 1 0 1 1 Y4 ={L1, L3, L4}

An important task in multi-label learning is the Multi-Label
Classification (MLC). The problem of multi-label classifica-
tion consists in predicting labels for a multi-label dataset D.
Each element of D is a pair Di = (ei, Yi), where ei is an
example of a set of examples E = {ei : i = 1 . . . v} with v
being the number of examples and Yi is a subset of the set
of labels L = {lk : k = 1 . . . q} with q being the maximum
number of labels. Each example ei is described by n attributes
whose values are defined as Aj = {aij : j = 1 . . . g}). For
a multi-label classification problem |Yi| ≥ 2 in, at least, one
element of D.

Methods for MLC can be divided into two groups: problems
transformation methods and algorithms adaptation methods,
both are detailed in subsection II-A and II-B, respectively [23].

A. Problem transformation methods

Problem transformation methods preprocess the dataset to
convert a multi-label data set to a single-label dataset with
the same set of labels. A single-label classifier that outputs
probability distributions over all classes can then be used to
learn a ranking. The class with the highest probability will be
ranked first, the class with the second best probability will be
ranked second, and so on.

The most common transformations methods are simple
transformations (copy, copy-weight, select-max, select-min,
select-random (one of the possible) and ignore), binary rele-
vance, label power set, classifier chain, include labels classifier,
among others [24], [25].

B. Algorithm adaptation methods

Algorithm adaptation methods handle directly the multi-
label classification problem using adaptations of several al-
gorithms, for example, multi-label decision-tree [6], multi-
Label k nearest neighbors [7], support vector machine with
Heterogeneous feature kernel [8], ranking support vector ma-
chine [9], multi-label tree based boosting methods [10], multi-
label neural networks [11] and multi-label naive bayesian [12],
among others.

The method proposed in this paper is an algorithm adaption
method for the genetic learning of a FRBS to address directly
the multi-label classification problem, but it preprocesses a
dataset in in a way similar to the simple transformation copy-
weight, where the weight of each label of example ei is



calculated by 1
|Yi| . An example of that transformation (based

on Table I) is shown in Table II.

TABLE II
SIMPLE TRANSFORMATION: COPY-WEIGHT

Example Labels Weight
(E) (L) W
e1(a) L3 0.5
e1(b) L4 0.5
e2 L3 1.0

e3(a) L1 0.5
e3(b) L2 0.5
e4(a) L1 0.33
e4(b) L3 0.33
e4(c) L4 0.33

Both problem transformation and algorithm adaptation
methods generate a multi-label classifier which should be
evaluated. There are some suitable metrics to evaluate multi-
label classifiers, the subsection II-C detailed the metrics used
in this paper [23].

C. Performance Metrics

1) Hamming Loss: defines as the proportion of labels
whose relevance is incorrectly predicted:

Hamming(Y, P ) =
1

v ∗ q

v∑
i=1

q∑
k=1

[[Yik 6= Pik]] (1)

2) Accuracy: computes the percentage of relevant labels
predicted in the subset formed by the union the returned and
relevant labels:

Accuracy(Y, P ) =

∑v
i=1

∑q
k=1[[Yik = 1 and Pik = 1]]∑v

i=1

∑q
k=1[[Yik = 1 or Pik = 1]]

(2)
3) Precision: , determines the fraction of relevant labels in

the predicted labels:

Precision(Y, P ) =

∑v
i=1

∑q
k=1[[Yik = 1 and Pik = 1]]∑v
i=1

∑q
k=1[[Pik = 1]]

(3)
4) Recall: is the proportion of relevant labels correctly

predicted:

Recall(Y, P ) =

∑v
i=1

∑q
k=1[[Yik = 1 and Pik = 1]]∑v
i=1

∑q
k=1[[Yik = 1]]

(4)

5) F1: is the evenly weighted harmonic mean of Precision
and Recall:

F1(Y, P ) =
2×

∑v
i=1

∑q
k=1[[Yik = 1 and Pik = 1]]∑v

i=1

∑q
k=1([[Yik = 1]] + [[Pik = 1]])

(5)

In all equations above Y is the set of real labels for each
example; Yik is the label value lk of example ei, 1 if the label
lk is assigned to ei, 0 otherwise; P is the set of predicted
labels for the multi-label classifier for each example; Pik is
the label value lk of example ei, 1 if the label lk is predicted
to ei, 0 otherwise; and [[pred]] evaluates to 1 if the predicate
pred is true and 0 otherwise [26].

III. PROPOSED METHOD

This section details the proposed two step method for
learning fuzzy rule bases for multi-label classification, called
Iterative Rule Learning to Multi-label Classification (IRL-
MLC). As mentioned above, the first step uses a GA based
on an iterative approach for learning a preliminary RB; the
second step uses a GA for tuning the weights of fuzzy rules
to improve the precision of the preliminary RB to obtain the
final RB. Each step of the proposed method is detailed below.

A. Learning the Preliminary RB

This step is based on a genetic iterative approach where
each chromosome represents only one fuzzy rule and the GA
is executed several times. At the end of each execution of the
GA, the chromosome with the highest fitness value, which
is the best fuzzy rule, is added to the RB. This process is
repeated until the RB is full. Before each execution of the
GA, the dataset is updated by changing the weights of the
data. The required parameters are the population size ps and
the RB size rbs. Figure 1 shows the flowchart of the genetic
iterative approach.

Fig. 1. Flowchart of Genetic Iterative Approach

Before the genetic learning of preliminary RB, the dataset
is preprocessed by means of calculating label weights of each
example assigning equal weights to each label, such that they
sum up to 1. An example of the preprocessing step is shown
in Table III (based on Table I). Those weights are important
for calculating the fitness of each fuzzy rule for the GA.

TABLE III
PREPROCESS OF DATASET

Ex. Atributes (A) Labels (L)
(E) A1 A2 A3 lw1 lw2 lw3 lw4

e1 a11 a12 a13 0.00 0.00 0.50 0.50
e2 a21 a22 a23 0.00 0.00 1.00 0.00
e3 a31 a32 a33 0.5 0.5 0.00 0.00
e4 a41 a42 a43 0.33 0.00 0.33 0.33



The genetic iterative learning of preliminary RB is based
on the standard GA [27]. Figure 2 shows the flowchart of this
step. The details of each sub-step are described below.

Fig. 2. Flowchart of Genetic Iterative Learning of Preliminary RB

1) Determining fuzzy sets for each attribute: For each
attribute the minimum (min) and maximum value (max)

are obtained. After, nFS triangular fuzzy sets are defined
uniformly distributed on the attribute domain, i.e., each fuzzy
set has the same support and they cover all range between
values maximum and minimum.

Figure 3 shows an example with nFS = 5.

Fig. 3. Triangular Fuzzy Sets Uniformly Distributed for an Attribute

In case the attributes are nominal (1 or 0) just a triangular
fuzzy set is defined where the membership function is 1.0 for
value 1 and 0.0 for value 0.

2) Encoding a fuzzy rule: This step uses a decimal encod-
ing with three parts. The first part represents the antecedent
part of the fuzzy rule where each gene represents an index
of a fuzzy set (or linguistic term) for each attribute (value
zero represents a don’t care condition, what means that the
respective attribute does not appear in the rule). The second
part (only one gene) represents the class or consequent of the
fuzzy rule. Finally, the third part (only one gene) represents the
fitness of the fuzzy rule. Figure 4 illustrates the chromosome
representation used in this step.

Fig. 4. Encoding a Fuzzy Rule

3) Size of Preliminary RB: The preliminary rule base size
(rbs) is a parameter of the proposed method.

4) Creating the Initial Population: Before creating the ini-
tial population two parameters must be defined: the population
size (ps) or the number of fuzzy rules in each iteration of the
GA; and, the probability of don’t care condition for each fuzzy
rule (pdc).

The initial population is created by generating the fuzzy
rules one by one. For each fuzzy rule generation, an example
of the training dataset is selected randomly. After that, a
random value is generated and, if it is greater than pdc,
the gene value is defined as the index of the fuzzy set
with the maximum membership degree of the value of the
corresponding attribute of the selected example. If the random
value is less than pdc, value zero is assigned to the antecedent
gene.



Finally, a random index label with weight greater than zero
of the example selected is assigned to consequent of the fuzzy
rule and the fuzzy rule is added to the initial population. If
the selected example doesn’t have weight labels greater than
zero a new random example is selected and all the process is
repeated to generate a new fuzzy rule.

5) Calculating the fitness: The fitness of a fuzzy rule n
(fitness(frn)) is calculated by means of the subtraction
between the positive degree of firing (df(frn)+) and the
negative degree of firing (df(frn)−). A fuzzy rule n is better
that another fuzzy rule m if fitness(frn) > fitness(frm))

fitness(frn) = df(frn)
+ − df(frn)

− (6)

The df(frn)
+ is calculated by summing the degrees of

firing of fuzzy rule n for each example i in the dataset (dfni)
times the label weight of label k of the example i (lwik), if
lwik is greater than zero.

df(frn)
+ =

∑v
i=1 df(frni)× lwik

(if k = cfrn and lwik > 0.0)
(7)

The df(frn)
− is calculated by summing the degrees of

firing of fuzzy rule n for each example i in the dataset (dfni),
if lwik is less than or equal to zero.

df(frn)
− =

∑v
i=1 df(frni)

(if k = cfrn and lwik ≤ 0.0)
(8)

The degree of firing of a rule n for example i ((dfni)) is
the minimum membership degree of the attribute values of
example i to the corresponding antecedents of fuzzy rule n.
antecedent don’t care have value 1.0 as membership degree
to the corresponding antecedent of the fuzzy rule n. A low
negative value is assigned to the fitness of a fuzzy rule with
all antecedents don’t care.

6) Terminating condition of GA: The terminating condition
of GA is the maximum number of iterations ni.

7) Selection operator: The tournament selection [28] is
executed twice to selected two fuzzy rule parents. Each time
ts fuzzy rules are selected randomly and the best fuzzy rule
(depending the fitness) is chosen.

8) Crossover operator: The crossover has 100% of proba-
bility of being applied and is based on the uniform crossover to
create two offspring fuzzy rules. Antecedents and consequent
are copied randomly from the pair of parents fuzzy rules to
two offspring fuzzy rules.

9) Mutation operator: The mutation operator is performed
on each offspring fuzzy rules with a mutation probability (mp).
In the mutation process a randomly generated fuzzy set index
is set to each antecedent of the offspring fuzzy rule with
a probability mpa. The consequent of offspring fuzzy rule
doesn’t suffer a mutation process.

10) Calculating the fitness of offspring population: The fit-
ness of the offspring fuzzy rules, mutated or not, is calculated
based on equation 6 before it is added to the population Ot.

11) Reaching the size of offspring population: The evolu-
tion process is repeated until the number of fuzzy rules in the
offspring population Ot is equal to ps.

12) Generating the new population: After the size of off-
spring population is equal to ps, the population Ot is merged
to current population Pt and the ps best fuzzy rules, of the
merged population, are selected to generate the next population
Pt.

13) Selecting the best fuzzy rule: When the maximum
number of iterations ni is reached the best fuzzy rule frb of
the last population Pt is selected and added to the preliminary
RB.

14) Updating the dataset: When the best fuzzy rule frb
is added to the preliminary RB the dataset is updated before
the next execution of the GA begins. The update is performed
on lwik where index k is equal to the consequent or class of
added fuzzy rule (cfrb). The new lwik is equal to previous
lwik minus the degree firing of the added fuzzy rule with the
example i. The dataset update is a kind of punishment on
the examples that are covered by the last rule generated, so
that a different fuzzy rule, covering a different subset of the
examples is able to be generated in the next GA execution.

lwik = lwik − df(frbi)
(if k = cfrb)

(9)

For example, based on Table III, Table IV shows how some
of the label weights with index k = 3 are decreased after a
fuzzy rule with cfrb = 3 was added to the preliminary RB.

TABLE IV
UPDATED DATASET WITH k = cfrb = 3

Ex. Atributes (A) Labels (L)
(E) A1 A2 A3 lw1 lw2 lw3 lw4

e1 a11 a12 a13 0.00 0.00 0.50 0.50
e2 a21 a22 a23 0.00 0.00 0.94 0.00
e3 a31 a32 a33 0.5 0.5 0.00 0.00
e4 a41 a42 a43 0.33 0.00 0.28 0.33

All the sub-steps detailed above are repeated until the
population size of preliminary RB srb has been reached.

B. Tuning the Preliminary RB
This step is based on a standard GA where each chromo-

some represents a set of fuzzy rule weights, a weight for each
fuzzy rule in the preliminary RB, and a threshold used to
define the predicted labels for each example. Figure 5 shows
the flowchart of this step. The details of each sub-step are
described below.

1) Encoding a set of fuzzy rule weights: This step uses a
decimal encoding for a chromosome with three parts. The first
part represents the fuzzy rule weights part where each gene
represents a weight for each fuzzy rule in the preliminary RB
(rbs). The second part (only one gene) represents the threshold
used to define the predicted labels for each example. Finally,
the third part (only one gene) represents the fitness of the set
of fuzzy rule weights represented in the chromosome. Figure 6
illustrates the chromosome representation used in this step.



Fig. 5. Flowchart of Genetic Tuning of Preliminary RB

2) Creating the initial population: Before creating the
initial population, the population size (pst) or number of set
of fuzzy rule weights in each iteration of GA must be defined.
The initial population is created by randomly generating the
sets of fuzzy rule weights one by one (minimum and maximum
value are 0.0 and 1.0 respectively). For each chromosome, a
random threshold value is assigned to threshold part. The first
fuzzy rule weights in the initial population has the value 1.0

Fig. 6. Encoding a Fuzzy Rule Weights

for each weight and the value 0.0 for the threshold.
3) Calculating the fitness: The fitness of a set of fuzzy rule

weights z is calculated by means of the hamming loss between
the real labels and predicted labels using the RB obtained
in the previous step and the respective rules weights in the
chromosome for each example. The calculus of Hamming loss
is defined in Equation 1 (hl(frwz)).

An important calculation in this step is how to define the
predicted labels for each example. First, the degree of each
label k for the example i (dik) is calculated by summing the
firing degrees of each fuzzy rule n for example i (df(frni))
times the fuzzy rule weight z (frwz) where k is equal to the
consequent of rule n (cfrn).

dik =
∑rbs

n=1 df(frni)× frwz

(if k = cfrn)
(10)

Second, the percentage degree of each label k for example
i (pdik) is calculated by dik divided by the sum of each dik
for all k labels.

pdik =
dik∑q
k=1 dik

(11)

Finally, a label k is assigned to an example i if the pdik is
greater than the threshold value.

4) Terminating condition of GA: The terminating condition
of GA is the maximum number of iterations nit.

5) Selection operator: The tournament selection is exe-
cuted twice. Each time, tst sets of fuzzy rule weights are
selected randomly and the best one (the one with the lowest
Hamming loss) is chosen.

6) Crossover operator: The crossover has 100% of proba-
bility of been applied and is based on the simulated binary
crossover (SBX) to create an offspring fuzzy rule weights
(considering the minimum and maximum values). The thresh-
old value suffer the SBX too.

7) Mutation operator: The mutation operator is performed
on an offspring fuzzy rule weights with a mutation proba-
bility (mpt). In the mutation process a random weight of
the offspring fuzzy rule weights is changed to a random
value between 0.0 and 1.0 with a probability mpt wth. The
threshold value doesn’t suffer a mutation process.

8) Calculating the fitness of offspring population: The
fitness of a chromosome, mutated or not, is calculated based
on equation 1 and is detailed in sub-step III-B3.

9) Reaching the size of offspring population: The evolution
process is repeated until the number of fuzzy rule weights in
the offspring population Ot is equal to pst.



10) Generate the new population: After the size of off-
spring population is equal to pst, the population Ot is merged
to current population Pt and the pst best fuzzy rule weights, of
merged population, are selected to generate the next population
Pt.

As mentioned above, the evolution process is repeated until
the number of iterations nit is reached. The final set of fuzzy
rule weights and the threshold value are the best set of fuzzy
rule weights and threshold value in the last population Pt.

Finally, the final RB consists of three elements: all fuzzy
rules obtained in the learned preliminary RB, the fuzzy rule
weights and the threshold value obtained from the tuning pro-
cess of the preliminary RB. The source code of the proposed
method IRL-MLC is available on github (username: Edward-
Hinojosa-Cardenas, project: IRL-MLC).

The next section presents the results obtained by the pro-
posed method on two benchmark databases.

IV. EXPERIMENTAL ANALYSIS

The proposed method IRL-MLC has been tested on five
benchmark datasets for evaluation: yeast, scene, corel5k, enron
and medical. The datasets came from biology, multimedia
and text domains and were obtained from KEEL multi-label
dataset repository [29]. The specifications of the datasets are
given in Table V: number of attributes (#Attributes - R=Real
- N=Nominal), number of examples (#Examples), number of
labels (#Labels).

TABLE V
MULTI-LABEL DATASET SPECIFICATIONS

Name Domain #Attributes #Examples #Labels
yeast biology 103 (R) 2417 14
scene multimedia 294 (R) 2407 6
corel5k multimedia 499 (N) 5000 374
enron text 1001 (N) 1702 53
medical text 1449 (N) 978 45

The parameters for each step of the proposed method IRL-
MLC, detailed in section III, are shown in Table VI.

TABLE VI
PARAMETERS OF PROPOSED METHOD IRL-MLC

Parameters of the genetic learning of preliminary RB (step 1)
Number of fuzzy sets with real attributes (nFS) 5
Number of fuzzy sets with nominal attributes (nFS) 1
Preliminar rule base size (rbs) 400
Population size (ps) 200
Probability of don’t care conditions (pdc) 0.9
Number of iterations of genetic algorithm (ni) 500
Number of fuzzy rules in tournament selection 2
Mutation probability (mp) 0.2
Parameters of the genetic tuning of preliminary RB (step 2)
Population size (pst) 100
Number of iterations of genetic algorithm (nit) 1000
Number of fuzzy rule weights in tournament selection (tst) 2
SBX crossover (α) 0.5
Mutation probability (mpt) 0.1
Mutarion probability for each weight and threrhold (mpt wth) 0.1

The results obtained by the proposed method IRL-MLC on
the five datasets mentioned above for the five metrics defined

in section II-C are given in Table VII. For the first metric
(Hamming Loss), lower values indicate better results and for
the other metrics (Accuracy, Precision, Recall and F1) higher
values indicate better results. The experiments were run using
10-fold cross validation and standard deviation is shown in
parenthesis.

TABLE VII
RESULTS OF THE PROPOSED METHOD IRL-MLC

Dataset Hamming Loss Accuracy Precision Recall F1

yeast 0.215
(0.004)

0.400
(0.008)

0.724
(0.019)

0.471
(0.010)

0.570
(0.009)

scene 0.113
(0.010)

0.502
(0.035)

0.707
(0.032)

0.634
(0.030)

0.668
(0.031)

corel5k 0.010
(0.000)

0.012
(0.003)

0.320
(0.069)

0.012
(0.003)

0.023
(0.006)

enron 0.058
(0.002)

0.146
(0.015)

0.688
(0.040)

0.157
(0.017)

0.255
(0.023)

medical 0.012
(0.001)

0.631
(0.036)

0.780
(0.024)

0.767
(0.039)

0.774
(0.028)

The performance of the proposed method IRL-MLC is
compared with a state-of-art method called Online Sequential
Multi-label Extreme Learning Machine (OSML-ELM) intro-
duced in [30], based on the performance metrics mentioned
above. The comparison results are given in Table VIII. For
each metric, the best result is highlighted in bold and the
difference between the results of the two mentioned methods
is in the last column.

TABLE VIII
COMPARISON OF THE PROPOSED METHOD IRL-MLC AND OSML-ELM

METHOD

Dataset Metric IRL MLC OSML-ELM Difference

yeast

Hamming Loss 0.215 0.206 0.009
Accuracy 0.400 0.493 -0.093
Precision 0.724 0.693 0.031
Recall 0.471 0.580 -0.109
F1 0.570 0.632 -0.062

scene

Hamming Loss 0.113 0.098 0.015
Accuracy 0.502 0.610 -0.108
Precision 0.707 0.630 0.077
Recall 0.634 0.580 0.054
F1 0.668 0.632 0.036

corel5k

Hamming Loss 0.010 0.009 0.001
Accuracy 0.012 0.060 -0.048
Precision 0.320 0.175 0.145
Recall 0.012 0.063 -0.051
F1 0.023 0.093 -0.070

enron

Hamming Loss 0.058 0.049 0.009
Accuracy 0.146 0.404 -0.258
Precision 0.688 0.640 0.048
Recall 0.157 0.461 -0.304
F1 0.255 0.536 -0.281

medical

Hamming Loss 0.012 0.011 0.001
Accuracy 0.631 0.713 -0.082
Precision 0.780 0.760 0.020
Recall 0.767 0.740 0.027
F1 0.774 0.750 0.024

The proposed method IRL-MLC obtained better results
than OSML-ELM method in nine of twenty five performance



metrics. It should also be noted that the proposed method
presents, in addition to what was possible to conclude based on
numerical metrics, an advantage over the method considered
in the comparisons, which is to allow the understanding of
the generated rules. The results show that the approach used
in this article is promising, since the proposed method presents
a performance similar to that of the method considered in the
comparisons, which is a state-of -the-art method. The results
also suggest that the continuity of research in the direction
adopted here will be beneficial for the multi-label classification
area, an area that presents many challenges and open problems,
which motivate investments in research.

V. CONCLUSIONS

This paper detailed a new method for genetic learning of
fuzzy rule bases for multi-label classification called IRL-MLC,
one of the few algorithm adaptation method based on fuzzy
rules and EFS in the state-of-art. The proposed method is
divided into two steps. The first step is based on an iterative
genetic learning, where a GA is run a number of times, for
each time adding the best fuzzy rule to a preliminary RB; this
step shows a novel if-then fuzzy rule fitness for multi-label
classification problem based on the rule degree of firing with
each example in the dataset. The second step is based on GA
to tune the preliminary RB and defines the fuzzy rule weights
and threshold value; this step shows a novel way to assign a
set of labels to each example. The final RB is formed by the
all fuzzy rules in the preliminary RB, all fuzzy rule weights
and threshold value. Finally, the results show that the proposed
method is competitive with another state-of-art method.

Future research work directions include: to use other types
of evolutionary algorithms like multi objective evolutionary
algorithms (NSGA-II, SPEA2, PESA-II, MOEA/D, among
others) to considerer an interpretability objective with some
interpretability indexes; to use membership function tuning to
allow MFs to present the real distribution of data; to use the
proposed method on other types of datasets; and, to compare
the proposed method with other state-of-art methods.
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