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Abstract—We present DroTrack, a high-speed visual single-
object tracking framework for drone-captured video sequences.
Most of the existing object tracking methods are designed to
tackle well-known challenges, such as occlusion and cluttered
backgrounds. The complex motion of drones, i.e., multiple
degrees of freedom in three-dimensional space, causes high
uncertainty. The uncertainty problem leads to inaccurate location
predictions and fuzziness in scale estimations. DroTrack solves
such issues by discovering the dependency between object rep-
resentation and motion geometry. We implement an effective
object segmentation based on Fuzzy C Means (FCM). We
incorporate the spatial information into the membership function
to cluster the most discriminative segments. We then enhance the
object segmentation by using a pre-trained Convolution Neural
Network (CNN) model. DroTrack also leverages the geometrical
angular motion to estimate a reliable object scale. We discuss
the experimental results and performance evaluation using two
datasets of 51,462 drone-captured frames. The combination of the
FCM segmentation and the angular scaling increased DroTrack
precision by up to 9% and decreased the centre location error by
162 pixels on average. DroTrack outperforms all the high-speed
trackers and achieves comparable results in comparison to deep
learning trackers. DroTrack offers high frame rates up to 1000
frame per second (fps) with the best location precision, more
than a set of state-of-the-art real-time trackers.

Index Terms—Drone-uncertainty, Real-time, object tracking

I. INTRODUCTION

Drone-related research has been widely pursued over the
past several years. Drones are aerial platforms with advanced
equipment, e.g., high-resolution cameras. They offer low-cost,
safe operations to monitor locations inaccessible to humans.
Classical imagery devices, such as satellite and street-level
cameras, suffer from various limitations such as low resolution
and low detail, respectively. Drones fly at low altitudes and of-
fer a wide field of view to capture high-resolution images and
greater detail. Visual drone applications include topographic
mapping, surveillance, and search and rescue. However, drone-
based video quality is affected by different uncertainties.
Drones’ motion is dependant on multiple situation inputs such
as the weather conditions and structures of tracking locations.

Visual object tracking is a key component of the afore-
mentioned drone applications. It has many challenges, such
as noise, occlusion, cluttered backgrounds, and object varying
features. The intrinsic variability in object’s colour or shape
causes poor tracking predictions. This challenging issue is
caused by the uncertainty of tracking environments’ aspects.

For example, occlusion can occur due to the shadows of
trees and buildings. In addition, drones move with multiple
degrees of freedom in three-dimensional space. This leads to
unexpected changes in the drone and object locations pose
multiple uncertainty and fuzziness issues in the object rotation
and scale. Point tracking algorithms depend on one or more
features, i.e., key-points or corners. An incremental shift may
occur in the tracking location due to the distances between the
correct and predicted tracking points. Thus, the performance
of the existing tracking algorithms is degraded in different
drone-based tracking situations. Moreover, drone-based object
tracking requires real-time tracking. However, most of the
recent trackers utilise deep learning to achieve high-accuracy
tracking regardless of the tracking speed [1]. In this paper,
we propose a robust object tracking algorithm that discovers
the relationship between the object’s visual and geometrical
representations to overcome such challenges in real-time.

The main contribution of this paper is to solve the uncer-
tainty problem in drone-based single object tracking. DroTrack
tackles the impacts of object representation and geometrical
drone motion uncertainties on the tracking location and scale.
Fig. 1 illustrates the different components of our methodology.
The proposed DroTrack makes the following contributions:

• Adaptive feature extraction and optical flow methods that
produce real-time single object tracking.

• A spatial segmentation method that incorporates a Fuzzy
C Means clustering with a CNN transfer learning model.

• A heuristic geometrical method to estimate accurate ob-
ject scales.

• Comprehensive evaluation and benchmark with the base-
line and state-of-the-art trackers using two drone-captured
datasets with 51,462 frames.

II. RELATED WORK

The main goal of visual object tracking is to discriminate
an object’s area from the background in a sequence of frames.
Tracking concerns the estimation of location and scale of the
object in each frame. There are two main streams for object
tracking methods, based on appearance and motion. Recently,
object tracking has been studied in multiple studies. Much
research is available on fixed camera scenarios, whereas only
limited research focuses on moving camera situations [2].
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Fig. 1. DroTrack includes multiple components for single object tracking, as follows: a) reading the drone-captured video and the bounding box of the object
at the first frame are given; b) detecting the optimal corner(s) to be tracked; c) estimating the optical flow; d) correcting the optical flow performance; e)
segmenting using fuzzy c means clustering; f) using a VGG16 pre-trained model for extracting convolutional features and comparing the similarity between
the feature vectors of the original reference template and the different segments to select the best one; g) calculating the relative angular scaling; and h)
incorporating the outcome of (f) and (g) to produce the final tracking location centre and scale.

There are a few studies dedicated to drone-based object
tracking. The work by [3] utilised feature pyramids and a
median flow tracker for pedestrian detection and tracking. The
work by [4] developed a correlation filter that is adaptively
tuned to recognise the object. The authors in [5] implemented
a multi-object Bayesian filter based on probability hypothesis
density approximation. The implemented multi-object filter
revises the weights of close tracking targets and reduces the
disturbance of clutter. An online drone-based object tracking
controller is developed in [6]. The proposed system tracks
an object of predefined colour without external localisation
sensors or GPS. This system corrected the predicted motion
using a Kalman filter.

On the other hand, deep learning networks have been widely
utilised in various computer vision applications including mov-
ing object tracking [1], [7]. The major problem is the limited
knowledge that available to train the deep networks online to
track objects that was only seen previously in one example.
One possible solution is to train deep CNN for object tracking.
However, the lack of annotated data hinders the training of the
deep CNN. Training an offline CNN using a large set of videos
with tracking ground-truths can solve this issue by transferring
the learned features hierarchies to online tracking. Moreover,
Graph Convolutional Networks are also proposed for object
tracking [8]. The main issue of these methods is to perform
Stochastic Gradient Descent online to adapt the weights of the
network. This requires high computational speed which makes
the tracking unreliable, especially in the drone scenario.

The existing trackers often fail for high-speed objects and
unmodeled drone motion. The directions of such high-speed
objects can easily be changed by 360 degrees. Traditional
trackers are affected by their low-speed tracking, which is not
preferred in drone scenarios. Most existing research in drone-
based tracking depends on either appearance or feature point

Fig. 2. Object locations and scales at two different time-stamps.

detection and tracking. We design our solution to consider new
uncertainties in the drone-based object tracking. To produce an
accurate drone-based object tracker, we propose to enhance the
appearance-based tracking and use the motion characteristics
of the object to calculate its relative scale.

III. PROBLEM FORMULATION AND SCENARIO

We formulate a drone-based tracking problem as follows. A
drone d is tracking a moving o in real time using a camera as
illustrated in Fig. 2. Unlike conventional object tracking using
fixed cameras, a camera mounted on d is moving according to
the motion of d. When d or o moves the distance between them
is altered. This leads to changes in the location and scale of
o in the video frame. We propose to solve these uncertainties
issues using visual and geometrical reasoning. Fig. 2 shows
three different tracking positions of a drone in different time-
stamps. The drone monitors a moving object indicated in light
green. As illustrated, the scale of the moving object is inversely
related to the size of the drone’s field of view. When the
drone flies high and has a wide field of view, the object
becomes smaller. Conversely, the object scale is enlarged if
the drone becomes close. As will be discussed in Section
V, the evaluation of DroTrack is done using two datasets
that involve video segments captured in different environments
with different scene structures and object depths.

We propose to track the object’s location and infer its scale
based on the variation of its visual representation and motion



features. Using a Fuzzy based segmentation methodology
helps to locate the object accurately. The accurate computing
of geometrical relationships between the moving object and
drone allows the tracking framework to ensure correct long-
term tracking.

IV. DROTRACK: DRONE-BASED OBJECT TRACKING

DroTrack, the proposed drone-based object tracking
method, has five main components, as showed in Fig. 1, as
follows: 1) adaptive corner detection, 2) fast single-point opti-
cal flow tracking, 3) optical flow relative correction, 4) Fuzzy
C Means based segmentation. 4) angular relative scaling. The
feature-based tracking and intelligent scale estimation offer
very high-speed tracking without compromising its accuracy.
In the following sub-sections, we explain each component.

A. Adaptive Corner Detection Algorithm

A corner is a point-of-interest represented as an image pixel
where any detected edge changes its direction significantly
in two dimensions. Corners offer a better choice for object
tracking. They enable tracking changes in two dimensions
that cannot be detected with other features, such as edges,
where the changes are only in one dimension [9]. DroTrack
detects the strong corners on the first frame (FF) using the
Shi Tomasi method. The best corners are selected based on
their Shi Tomasi parameters (STPs), such as quality level,
minimum distance, a derivative covariation matrix block size
and a maximum number of corners. The Shi Tomasi method is
an extension of the Harris Corner Detector (HCD). The HCD
enables invariance to rotation, scale, illumination variation and
noise. It utilises a local auto-correlation function that employs
small shifts to measure local changes in different directions.
Here, DroTrack focuses on the closest corner(s) to the centre
of the reference template (RT), i.e., the image segment that
falls in the human-annotated bounding box at the first frame.
There maybe one or more closest corners detected inside the
RT. In order to achieve this, we propose an adaptive algorithm
that works recursively to find the CC. The algorithm begins
the corners detection with STPs of high quality, small corner
number, distance threshold and block size. The algorithm
decides either to continue tracking these corner or to tune the
STPs and redo the previous process until the best CC is found
based on two evaluation scores: similarity and distance.

We define a test template to be the area positioned around
the detected corner, with the same width and height of the RT.
In case of multiple corners, the centre of their conve x hull is
used as the template centre. Then we extract the histograms,
i.e., graphical representations of the tonal distribution of the
image pixel intensity values, of both the RT and the test tem-
plate. The similarity ratio (simi.) is computed as a correlation
score between the histograms of the RT and the test template,
both in colours. We use the correlation measured according
to Eq. 1 to compute the correlation ratio between the two
histograms. The score is between 0 and 1 for the lowest and
highest similarities, respectively. If the simi. is below a certain

threshold (α), the algorithm will adapt the feature extraction
parameters to achieve a more fine-grained search.

simi.(H1, H2) =

∑
I(H1(I)− H̄1)(H2(I)− H̄2)√∑

I(H1(I)− H̄1)2
∑
I(H2(I)− H̄2)2

(1)
Where H1 and H2 are the histograms of the RT and test
template, I iterates for each histogram bin, and the H̄ refers
to the histogram mean. The distance between the RT centre
point and the CC coordinates is computed. DroTrack relates
the distance threshold (β) to the object scale. It also requires
the CC to be less distant than the distance-scaled threshold
(β). Using the distance formulas in Eq. 1 and 2 based on the
histogram correlation and Pythagorean theorem, respectively,
the function f in Eq. 3 compares the simi. and dist. for the
given corner. Eq. 3 returns 1 if the corner is selected or 0 to
rerun the algorithm. Here, α and β represent the similarity and
distance thresholds and C is the given corner. The threshold of
the simi. (α) is defined as 0.5 of the histogram similarity and
the dist. (β) is defined as 0.5 of the sum of boundary box’s
height and width.

dist.((x1, y1), (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2 (2)

where, x1, y1 and x2, y2 represent the coordinates of the RT
centre and the given corner, respectively.

f(C) =

{
1, if simi. ≥ α & dist. ≤ β
0, otherwise

(3)

Specifically, the adaptive corner detector uses a set of
minimum and maximum thresholds that are used to match the
simi. and dist. So, the algorithm keeps iterating on the given
threshold range until it meets the simi. and dist.. The Open CV
library implements the Shi Tomasi method with a region of
interest parameter, whereas the proposed adaptive method is
well designed to enhance the performance of the algorithm by
starting at higher quality and with fewer corners. The proposed
algorithm overcomes the limitation of the dependency of
corner-based tracking on the environmental factors.

B. Optical Flow Tracking

The selected CC is used to develop the optical flow tracking
method. DroTrack employs the implementation of a sparse
iterative Lucas-Kanade optical flow in pyramids. The optical
flow method takes two consecutive frames, and a set of corner
coordinates belong to the previous frame (PF). In our case,
DroTrack only passes the CC coordinates to the optical flow
method and obtains the new coordinates.

C. Optical Flow Relative Correction

We consider the distance between the CC (the closest corner
or the convex hull centre) and the FF centre point as a
correction margin; see ∆x and ∆y in Eq. 4 and Fig. 1 at
(b). The new coordinates are calculated based on the relative
scale of the new RT; see RTscaleF in Eq. 5.

∆x = FFx − Fx,∆y = FFy − Fy, (4)



RTscaleFF
=
hRTFF

hFF
, RTscaleF =

hRTF

hF
(5)

where h refers to the height.
Thus, the x and y coordinates of corrected point (CP) are

computed as in Eq. 6 and Eq. 7, respectively.

CPx = Fx + ∆x ∗
RTscaleF
RTscaleFF

(6)

CPy = Fy + ∆y ∗ RTscaleF
RTscaleFF

(7)

The relative correction is useful due to the fact that whenever
the object moves away from the camera its size changes and
has different location centre. The output corrected location
centre is used later by the Fuzzy-based segmentation and
geometrical algorithms.

D. Object Segmentation with Fuzzy C-means

In some cases, DroTrack loses tracking of the object due
to the uncertainty or fuzziness of the bounding area around
the object. Therefore, we propose to apply object segmenta-
tion based on a Fuzzy C Means (FCM) methodology. The
conventional FCM is sensitive to the image noise. Basic
FCM algorithm expects the data to have separate clusters
in order to produce accurate membership values. However,
this dependency on the cluster similarity is not suitable for
image data. This is because the neighbour clusters in an image
are highly correlated. Multiple research works harness the
spatial information to overcome the sensitivity issue of FCM.
They simply compute the likelihood that a neighbourhood
pixel belongs to a certain cluster. Then, the spatial likeliness
score is injected into the membership function. We employ the
methodology presented in [10]. They propose to incorporate
the hesitation degree and spatial likeliness in the membership
function calculated as (msh) in Eq. 8.

mshij =
upijh

q
ij

c∑
k=1

upkjh
q
kj

(8)

where mshij represents the membership values of the given
neighbourhood pixel, i and j represent the pixel coordinates,
u is the membership function computed with hesitation score,
h is the spatial function, and p and q control the weights of
the initial membership and spatial functions, respectively. We
then apply morphological transformation methods, including
erosion and dilation, to clean the noise after segmentation. We
decide to segment the search area into n clusters, e.g., 5.

We use a VGG16 [11] network, trained on the ImageNet,
to extract the convolutional features of the clustered segments.
This process offers to transfer the learning of that large dataset
to produce discriminative features vectors. Then, we calculate
the cosine distance between the feature vectors of the original
reference template and each segments as in Eq. 9.

cos simi.(T,S) =
TS

‖T‖‖S‖
=

∑n
i=1 TiSi√∑n

i=1 (Ti)2
√∑n

i=1 (Si)2

(9)

where T and S represent the template and segment feature
vectors, respectively. Fig. 3 shows three different examples of
the FCM based segmentation process. The first row shows a
two-clusters FCM segmentation. This example shows better
bounding box estimation that the one in the second row with
three clusters. The last row comes with five clusters to extract
the sheep from the surrounding grass area. We incorporate the
performances for the relative angular scaling with the FCM
segmentation for the best tracking results.

Fig. 3. Fuzzy C Means based segmentation examples with different cluster
numbers. 1st and 2nd cluster 2 and 3 segments for the same object, and 3rd

clusters 5 segments.

E. Relative Angular Scaling

DroTrack updates the object scale based on its recent motion
features. Here, scale refers to the size of the current tracking
template area in relation to the previous template.

The new scale is dependent on its distance from the drone
camera. Since the utilised datasets do not have camera param-
eters, DroTrack computes the new scale in two-dimensional
projection. The motion model; i.e., speed and direction, are
calculated between the coordinates of the centre locations in
the previous and current frames. When the object moves up in
the image; i.e., has a negative change of the coordinate y, the
scale is relatively reduced. Moving closer to the drone camera;
i.e., having a high y value, the scale is enlarged. In order
to make the scaling algorithm more accurate, we relate the
scale ratio to the motion angle. The more vertical the object’s
direction is, the higher the scale ratio it has. For example,
if an object is moving vertically at π

2 or −π
2 from the drone

camera, its scale is at the highest possible ratio. However, if
the moving angle becomes low, the scale ratio will be small.

Fig. 4 shows the concept of the proposed relative angular
scaling algorithm. We feed the algorithm with the current and
previous templates as well as the motion angle (θ). The angle
between the coordinates x,y in the two templates is calculated
using the two-argument atan2. The atan2 computes the angle



Fig. 4. The angular relative scaling zones and their constraints. The ∆x and
∆y refer to the differences in the coordinates between the two frames.

between the positive x-axis of a plane and the coordinates x,
y on it according to Eq. 10.

θ((x1, y1), (x2, y2)) = atan2(y2 − y1, x2 − x1) ∈ (−π, π)
(10)

The frame F is divided into four zones that are sliced from the
coordinates of the current location centre. In the case that ∆y,
i.e., the difference in the coordinate y between the two frames
is negative, two zones are defined as −π

2 < angle < 0 and
−π < angle < −π

2 . For the positive case, ∆y, 0 < angle < π
2

and π
2 < angle < π. The red arrows in Fig. 4 point

up and down to the negative and positive scaling in each
zone, respectively. The template scale is computed as its
height over the height of the current frame F. The relative
ratio is calculated as the ratio between the current frame y
coordinate and the previous one. Based on the fact that the
scale is relatively dependent on the motion angle, the algorithm
computes the new relative scale under one of seven conditions,
as in Eq. 11. In the initial case, the algorithm returns the
previous RT (PRT) scale when there has been no change in the
previous motion model. Two cases are directly scaled-down
and -up for angle −π

2 and π
2 , respectively. The other four cases

include two cases when the ∆x > 0 are normalised with their
angle over π2 , and two when ∆x < 0. The latter two cases have
inverse directions. Therefore, they are first subtracted from 180
and normalised over π

2 .

RT =



PRT → ∆x ∧∆y = 0;
PRT ∗ Scale → θ = π

2 ∨ θ = −π
2 ;

PRT ∗ Scale ∗ θ
π/2 → ∆x > 0 ∧ θ > 0;

PRT ∗ Scale ∗ θ
π/2 → ∆x > 0 ∧ θ < 0;

PRT ∗ Scale ∗ π−θπ/2 → ∆x < 0 ∧ θ < 0;

PRT ∗ Scale ∗ π−θπ/2 → ∆x < 0 ∧ θ > 0;

(11)

The experimental results showed that the angular method
is effective for scale adaptation. Since the object motion

is projected in two dimensions, the algorithm can capture
accurate scale changes regardless of the object direction.

V. EXPERIMENTAL RESULTS AND EVALUATIONS

The proposed DroTrack algorithm is implemented in Python
using standard methods for feature extraction and optical flow
in the OpenCV library. Fig. 1 highlights the work-flow and
the inter-relationships among the DroTrack components.

Datasets We used two publicly released datasets: DTB70
[2] and UAV123 [12]. The two datasets consist of 51,462
frames. The datasets are of high diversity and captured in
multiple environments. For examples, see Fig. 1 and 7. These
datasets cover more difficulties and uncertainties aspects that
are not found in the traditional tracking datasets such as VOT
[13]. The datasets include both translation and rotation camera
motions. The results show that this dataset is challenging
for conventional tracking algorithms. They also cover highly
challenging cases in both short-term and long-term occlusion.
The datasets contain different moving object types, such as
humans, animals, cars, boats, birds and drones. This offers
different levels of degree of freedom for the motion. Objects
like cars and boats can only translate or rotate, whereas
humans and animals, birds and drones have a higher degree of
freedom. The datasets outdoor scenes are in various situations,
including significantly varied backgrounds. These challenging
motion characteristics cause object deformation, leading to
more difficult object tracking.

Evaluation metrics To evaluate DroTrack, we computed
the success overlap and centre location error. The intersection
over union (IoU) is used to compute the success plots and the
precision thresholds for the centre location errors. The IoU is
an evaluation metric used to measure the tracking accuracy.
IoU is computed for each frame using the predicted boundary
box and the ground truth box. The precision score is calculated
with a set of thresholds of centre location for each frame
prediction. The trackers are ranked using the area under the
curve (AUC) metric for the success plot and the representative
precision at the threshold of (ε = 20 and 100) for the precision
plot. All the reported results are in one-pass evaluation (OPE).

Ablation study We first run two versions of DroTrack (with
the angular module only), on the DTB70 dataset, with and
without the algorithm for the relative correction (rc) of the op-
tical flow. The experimental results show that the rc algorithm
improved the precision (ε = 100) score from 0.62 to 0.75 and
the IoU from 0.21 to 0.25. For even faster tracking, we imple-
mented DroTrack in two different modes using full-size (fs)
and half-size (hs) frames. The results show that reducing the
frame size to half decreased the tracking computational costs.
However, the tracking success overlap and precision scores are
slightly degraded. Table I lists the results of the ablation study
of the DroTrack versions. Using the rc algorithm with the fs
mode produces the best centre location precision (ε = 20) /
(ε = 100) and the best IoU success overlap score. With an
average of 206 fps, it enables these accurate results at real-
time speeds. The DroTrack version without the rc in the hs
mode results in very high speed tracking, with 1033 fps. Fig. 5



TABLE I
COMPARISON RESULTS BETWEEN THE PROPOSED DROTRACK VERSIONS

USING THE DTB70 DATASET.

Tracker P.100 P.20 IoU Time fps
DroTrack rc fs 0.75 0.41 0.25 0.0048 206
DroTrack rc hs 0.67 0.35 0.23 0.0012 840
DroTrack fs 0.63 0.36 0.21 0.0036 275
DroTrack hs 0.62 0.34 0.20 0.0010 1033

Note: rc refers to using the relative correction algorithm. fs and hs refer to
using the full- and half-sizes of the given frames.

shows the significance of the proposed framework. It illustrates
the performance precision of DroTrack using only the Fuzzy-
based segmentation in comparison to the geometrical angular
scaling. It also shows how DroTrack enhance the FCM based
results by adding the proposed geometrical angular method.
In the following experiments, we show the three different
versions of DroTrack, i.e., DroTrack-FCM based, DroTrack-
Angular, DroTrack (having both), in comparison to the state-
of-the-art trackers.

Fig. 5. DroTrack precision of using FCM, angular geometry of for the utilised
two datasets.

TABLE II
BENCHMARKING ON THE DTB70 DATASET.

Tracker P.100 P.20 Dist. IoU fps
CSRT [14] 0.80 0.53 95 0.35 31
SiamFC [1] 0.86 0.72 69 0.51 3.6
MOSSE [15] 0.22 0.16 579 0.10 2692
ADNet [16] 0.25 0.12 356 0.09 0.2
Boosting [17] 0.55 0.34 184 0.22 25.8
TLD [18] 0.44 0.25 254 0.16 5.2
KCF [19] 0.14 0.11 656 0.08 800
MIL [20] 0.68 0.43 131 0.27 21
Median Flow [21] 0.47 0.33 255 0.23 187
DroTrack-FCM (Ours) 0.74 0.44 124 0.25 38.6
DroTrack-Angular (Ours) 0.75 0.41 94 0.27 206
DroTrack (Ours) 0.77 0.43 86 0.29 65

Colours note: 1st, 2nd, 3rd, and 4th ranks.

Quantitative and Qualitative Benchmark We compare
DroTrack with nine state-of-the-art and baseline trackers,
including CSRT [14], ADNet [16], SiamFC [1], MIL [20],
kernelised correlation filters (KCF) [19], Median Flow [21],
Boosting [17], MOSSE [15] and TLD [18]. The implemen-
tations of these trackers are found in OpenCV package and
at the GitHub platform. All the benchmarking experiments
were done using one CPU of Intel Core i7-3635QM and 8 GB
SDRAM. We compare three versions of DroTrack, including
1) the DroTrack with FCM, 2) DroTrack with Angular scaling,
and 3) DroTrack with both FCM and Angular scaling. Tables
II and III show the mean IoU and precision, and fps for
DroTrack and the other trackers. The scores are highlighted

in these tables in different colours: green for 1st rank, blue
for 2nd rank, red for 3rd rank, and orange for 4th rank. Fig.
3 shows the benchmarking results on the four datasets. The
four columns compare: the IoU, Precision (ε = 20), Precision
(ε = 100), and tracking (fps). Table II and Fig. 6 (b) show
the benchmarking results using the DTB70 dataset. DroTrack
ranks second (out of 10) for the average distance and third for
all other experiments. Using the FCM produces good Precision
results (ε = 20&100) where it ranks fourth and fifth. DroTrack
with the angular method achieves better distance average and
tracking speed. The combination of the two algorithms ranks
second in terms of the distance average and comes better than
using each method separately. Here, DroTrack outperforms
all the high-speed trackers and achieves promising results in
comparison to deep learning trackers. It has 0.29, 0.73 for
mean and lowest IoU; 0.43 and 0.77 for the Precision; and
206 and 65 fps for the tracking speed. Table III and Fig. 6 (d)
highlight the experimental benchmarking results utilising the
UAV-Benchmark-S dataset. DroTrack ranks second and fourth
in the average of the error distance with 82 for the combination
version and 93 for the angular one, respectively. The deep
learning SiamFc comes better than DroTrack with a distance
error of 75. However, DroTrack still outperforms other deep
learning trackers such as CSRT and ADNet. Moreover, the
average tracking speed of DroTrack is high with 47, 383 (3rd

rank), and 80 fps in the three versions. However, the IoU
comes lower with only 0.24 and 0.62. However, DroTrack
here is still better than all the other high-speed trackers.

Fig. 6 (a) and 6 (c) show polar radar charts comparing the
three version of DroTrack with the benchmarking trackers. The
charts represent the results in terms of precision, IoU, time
and tracking speed. The figures show how real-time trackers
produce low accuracy and high speeds. In contrast, deep
learning-based trackers have high accuracy and low speeds.
Here, DroTrack balances the performance between accuracy
and speed. In terms of accuracy, DroTrack outperforms all the
real-time trackers and compete with the deep learning ones.
For the tracking speed, DroTrack outperforms all the deep
learning trackers.

TABLE III
BENCHMARKING ON THE UAV-BENCHMARK-S DATASET.

Tracker P.100 P.20 Dist. IoU fps
CSRT [14] 0.78 0.65 89 0.35 36.3
SiamFC [1] 0.86 0.77 75 0.48 3.6
MOSSE [15] 0.29 0.19 463 0.10 2750
ADNet [16] 0.49 0.40 236 0.24 0.4
Boosting [17] 0.73 0.55 112 0.29 41
TLD [18] 0.27 0.15 298 0.09 8
KCF [19] 0.25 0.24 482 0.15 1089
MIL [20] 0.66 0.45 131 0.21 21.9
Median Flow [21] 0.53 0.44 250 0.23 271
DroTrack-FCM (Ours) 0.60 0.44 188 0.15 47.0
DroTrack-Angular (Ours) 0.64 0.43 93 0.22 382.8
DroTrack (Ours) 0.72 0.48 82 0.24 80

Colours note: 1st, 2nd, 3rd, and 4th ranks.

Fig. 7 shows a sample of 12 frames with the predicted
template rectangle for each tracker. The results show the



Fig. 6. (a) Radar charts benchmarking on the DTB70. (b) Benchmarking results of the IoU, Precision (ε = 20) and (ε = 100), and tracking speed fps, for
the DTB70 dataset. (c) Radar charts benchmarking on the UAV-benchmark-S. (d) Benchmarking results of the IoU, Precision (ε = 20) and (ε = 100), and
tracking speed fps, for the UAV-benchmark-S dataset.

accurate position and scale of DroTrack predictions. In many
cases, such as in frames b, d, h, i, and j, the other trackers
produce erroneous scales larger than the actual ones. The drone
motion and scene illumination distract the trackers. However,
the proposed Fuzzy segmentation and angular relative scale
algorithms enable accurate DroTrack results. DroTrack’s per-
formances support this interpretation, by having low centre
location errors (e.g. Precision scores) from the ground truth
and consistent IoU and precision results. This low error and
consistency prove the superiority of DroTrack. In the scene
j, however, DroTrack’s scale prediction is not accurate. This
inaccurate prediction is due to the high similarity between the
bounding box and the surrounding area. Specifically, is this
scene (j), the tracked sheep is surrounded by multiple sheep.
Therefore, the FCM based segmentation was not successful.
However, the motion correction algorithms lead DroTrack to
better locate the centre tracking than the other trackers in (j).

In most scenes, DroTrack seems to estimate smaller scales;
however, in scene k, DroTrack has a relatively large-scale.
The vertical drone motion on the moving object seems to vary
the object depth significantly. In this case, if the drone moves
high up from the object, the object scale will be decreased.
However, the stationary nature of the object projection in
two dimensions will prevent DroTrack from generating a
better scale estimation. Therefore, it worth as future work to
investigate DroTrack’s sensitivity to the object’s motion and
try to overcome the challenge of lacking the scene depth.

Computational performance To compare computation
time, the tracking speed columns in Fig. 6 (b) and 6 (d) and
Tables II and III summarise the averages of the execution time
periods and the FPS (fps) for each tracker. The MOSSE tracker
has the best average time followed by the KCF and half-size
version of DroTrack. DroTrack-Angular is always faster than
the other two variations. In the combined version, sometimes,



Fig. 7. Sample frames for tracking results.

the FCM segmentation process is skipped due to the poor
outcome. Therefore in some cases, the speed of the combined
version comes faster than the FCM based one. Although the
deep learning-based trackers, such as SiamFC achieves better
IoU than DroTrack, they cannot be implemented in real-
time drone scenarios. SiamFC only processed 3.5 fps and the
ADNet takes more than three seconds to process one frame. In
addition to having the promising success overlap and location
centre precision, DroTrack offers high frame rates of more than
1000 fps. This high computational speed is due to the adaptive
components of DroTrack. DroTrack starts with a high level of
quality and a low number of corners to decrease the tracking
time. Tracking one optimal corner contributes to the real-time
performance of DroTrack. This shows the superiority of using
DroTrack for high-speed real-time tracking.

VI. CONCLUSION

We have introduced a novel drone-based single object track-
ing algorithm, called DroTrack. We described the dependency
between the object motion model and the visual projection
model. A Fuzzy C Means based segmentation algorithm was
utilised to solve the visual uncertainty issues. An angular
relative scaling algorithm was also developed to manage object
scale variations. The performance of DroTrack is promising
in comparison to the state-of-the-art and baseline trackers. In
future work, the DroTrack scale algorithm should be enhanced
to overcome the problem of the missing object depth. Although
DroTrack outperforms the high-speed trackers and achieves
promising results in comparison to deep learning trackers, new
methods for reference template update can be considered as
future work for further improvement.
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