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Abstract—In this paper, we propose a novel ensemble classifier
using an Oriented Fuzzy Local Binary Pattern Encoded Con-
volutional Neural Network (CNN) for acoustic event detection
(AED). The CNN has been widely used to perform acoustic
event detection using a spectrogram image of the acoustic signals.
The efficiency of the CNN depends on representation of the
spectrogram images used during the training process. We propose
the Oriented Fuzzy Local Binary Pattern (OFLBP) that extracts
directional texture features from the spectrogram image by
inspecting neighborhood pixels present at different angles from a
central pixel. The proposed OFLBP technique is capable to deal
with uncertainty present in the spectrogram image. The ensemble
of the trained CNN is performed by a Fuzzy Integral method. The
experiment and results show the proposed method outperforms
to existing AED methods to classify the ESC-50 dataset.

I. INTRODUCTION AND PRIOR WORK

An acoustic event detection (AED) mainly deals with
identification of various events present in an audio stream.
Detection of type of acoustic event plays a vital role in
various applications such as multimedia [1], computer vision
[2], robotics [3], [4] and activity recognition [5]. In a nutshell,
the AED is classified into two categories first is identifica-
tion of the single acoustic event and second is detection of
occurrence of the multiple acoustic events together in the
recorded acoustic signal [6]. The detection of the individual
acoustic event is named as monophonic event detection [6] and
identification of the multiple events is known as polyphonic
event detection [6], [7], [8]. Our major aim in this paper
is to detect the monophonic events. Initially the problem of
AED is well explored using techniques that belong to develop
automatic speech recognition (ASR) systems. The ASR system
involves extraction of multiple features like MFCC [9], FFT
[10], Wavelet transformation [11] and ZCR coefficients [12].
Various methods have been proposed to identify the acoustic
events using the features mentioned above.

The recent advancement of the ASR [13] and increasing size
of sound databases [14], [15] attracts researchers to apply deep
learning methods for the AED. In [16], a deep convolutional
neural network (DCNN) was proposed to identify the acoustic
events. Zhang et al. [17] proposed a CNN based classifier that
takes spectrogram images of the acoustic signals to identify

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

the various acoustic events. In [18], Phan et al. proposed
CNN classifier that incorporates 1-max pooling technique to
identify the acoustic events. Lee et al. [19] proposed the
ensemble of the CNN classifiers to detect the acoustic events in
DCASE challenges dataset. Soo et al. [20] proposed a hybrid
classifier that combines the LTSM and CNN to identify the
acoustic events. The LSTM learns the sequential behavior
of the audio streams and the CNN extracts features from
the spectrogram images of the acoustic signals. The method
yields better accuracy as compared to the conventional LSTM,
DNN and CNN classifiers. Ozer et al. [21] proposed a noise
robust acoustic event detection model that uses the CNN and
spectrogram image features to detect the acoustic events. In
[22], author investigated the performance of the attention based
CNN to identify the acoustic events. In [23] Wang et al.
employed RNN to identify the rare acoustic events in real
life recordings. A novel 1-D convolutional recurrent neural
network (CRNN) [24] was proposed by Wan et al. to detect
the rare acoustic events in the acoustic streams.

Various techniques based on Local Binary Pattern (LBP)
have been proposed to extract the acoustic features from the
spectrogram images to detect the acoustic events [25], [26]. In
[27], author combined temporal features with the LBP features
to detect the acoustic events using the spectrogram images
and the CNN. Majority of the methods mentioned above
directly take the spectrogram images to train the deep learning
models and failed to deal with the uncertainty present in the
spectrogram image caused by noise in the acoustic signal. The
fuzzy local binary pattern (FLBP) [28] is capable to deal with
the uncertainty present in the images and well applied for
the image classification tasks. In this paper the FLBP is used
as a preprocessing tool to suppress the effect of the noise
on the spectrogram images. The FLBP and LBP are capable
to extract many key texture features from the spectrogram
images but failed to extract directional texture features ie. line
features which may play significant role during the pattern
classification in the spectrogram images. In this paper, we
introduced a directional version of the FLBP to extract more
informative features from the spectrogram images.

An ensemble method is a popular machine learning tech-



nique that combines different classifiers to boost the classifi-
cation accuracy. The performance of the ensemble classifier
is generally better than the performance of the individual
classifier. The ensemble of classifiers requires combining the
decision of each classifier through some method like mean or
max voting, weighted or unweighted sum [29]. The ensemble
techniques can be broadly classified based on the factors like
ensemble size, diversity among the individual classifiers, and
the combining methods [30]. The diversity among the individ-
ual classifiers used for the ensemble depends on the training
methodology, nature of input variables, and the architecture of
the classifier.

The traditional ensemble methods used for the AED assume
no interaction between the classifiers used for the ensemble.
But this assumption is false when the created ensemble models
are applied to solve the problems related to real-world data
such as the acoustic signals and video streams. The interaction
between the classifiers can be positive or negative. In case of
the positive interaction, all the classifiers strengthen each other
and boost the overall accuracy. On the other side, the negative
interaction degrade the performance of the ensemble classifier
[31]. Fuzzy logic has shown its promising capabilities to
solve various problems using approximate reasoning. Fuzzy
integral (FI) [30] is a well used technique to combine the
classifiers. The ensemble classifiers created by the FI have
shown great performance when applied to solve the problems
from diverse research domains. The fuzzy integral is approach
is distinct from the other ensemble methods as it resolves all
the pitfalls of traditional ensemble techniques as mentioned
above. The fuzzy integral computes the importance of the
individual classifiers to create a highly accurate classifier with
less bias and variance [30]. All the reasons above motivated
us to use the fuzzy integral method for ensemble of the CNN
models.

To the best of our knowledge the FI-based ensemble model
that combines the OFLBP encoded CNN has not been pro-
posed for the AED. Our key contributions in this paper are as
follows: First encoding of the spectrogram images using the
OFLBP to train the CNN and second is the ensemble of the
developed CNN models using the FI technique to improve the
classification accuracy.

The organization of the paper is as follows: Section II
provides a brief introduction of the LBP and FLBP . Section
IIT presents the methodology used to develop the ensemble
classifier using the FI technique and the OFLBP. Section IV
provides details of the experiments and results and finally,
future work and conclusion are presented in section V.

II. PRELIMINARIES
This section explains the brief introduction of the LBP and
FLBP.
A. Local Binary Pattern (LBP)

The local binary pattern (LBP) [32] is the popular feature
extraction technique widely applied in the research domains
such as signal processing and computer vision.
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Computation of the LBP pattern is expressed by Eq.(1) and
Eq.(2). Where Py is a value of neighborhood pixel and P
is a value of central pixel. Dy is a binary code computed
using difference of the central and neighborhood pixel. The
Eq.(2) is a binary weighted summation of the neighborhood
pixels Py of the central pixel Pc. Fig.(1) shows an example
of computation of the LBP code from the image segment of
a size (3*3).

The LBP has limitations, first it fails to capture the line
features of the image in a final presentation of the image used
for the image classification. Second the LBP is sensitive to
noise and unable to capture small changes in neighborhood
pixel values i.e. uncertainty present in the image.

B. Fuzzy Local Binary Pattern (FLBP)

To resolve the shortcoming of the LBP, lakovidis et al.
[28] proposed the FLBP. The FLBP is capable to deal with
the uncertainty present in image. Instead of assigning binary
code as O or 1 directly by comparing the central pixel against
the neighborhood pixels using the Eq.(1), the FLBP computes
degree of membership of the pixel that belong to two fuzzy
sets named as small and greater fuzzy sets. Eq.(3) is used to
calculate the membership of the k*" neighborhood pixel for the
small fuzzy set ;). However, the membership of the greater
fuzzy set pi is computed using Eq.(4). Fig.(2) shows complete
procedure to compute the FLBP with a threshold (T = 5).
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Where P, Pc, T are the k' neighborhood pixel, central pixel
and threshold respectively.

III. METHODOLOGY

This section presents details of the OFLBP and ensemble
of the CNN by the FI method.

A. Oriented Fuzzy Local Binary Pattern (OFLBP)

The OFLBP considers directional neighborhood pixels
while computation of the FLBP. Consideration of directional
neighborhood pixels is helpful to extract more robust texture
features of the image [33] using the FLBP. The OFLBP
identify the directional neighborhood pixels using Eq.(5) and
extracts FLBP using the procedure as mentioned in earlier
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section. The OFLBP creates a pixel matrix of dimension
(9 % 9) and the central pixel is placed at location (5 * 5).
Eq.(5) and Eq.(6) are used to compute the coordinates of
the neighborhood pixels that are present at a different angle
() form the central pixel [33]. Fig.(3) and Fig.(4) show
the locations of the selected directional neighborhood pixels
for the angles # = [0°,30°,60°) and 6 = [90°,120°, 150°]
respectively.
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Where, PY and P/ are the x and y coordinate positions of
the k" neighborhood pixel. P% and P are the x and y
coordinates of the central pixel and |a| is a floor function. If P

denotes number of neighborhood pixels required (In this paper
P=7). Value of j is selected as 4 for the neighborhood pixels
at the indexes O to P-4 and selected as 3 for the neighborhood
pixels with the indexes P-3 to P .

(8=0°) (8=30°") (8=60°")

Fig. 3. Neighbors at § = 0, 30,60

B. Convolutional Neural Network (CNN)

The CNN [34] is a popular deep learning technique that has
been extensively applied to solve numerous computer vision
problems. The CNN takes the image as input and learn the
bias and weight parameters to perform the classification. The
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architecture of the CNN is inspired for the visual cortex part
of a human brain. The architecture of the CNN contains an
Input layer, Convolution layer, Pooling layer, Fully Connected
layer, and an Output layer. Fig.(5) shows a basic architecture
of the CNN.

Feature
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Fig. 5. Architecture of Convolutional Neural Network

C. Fuzzy Integral Ensemble (FI)

The major steps of the FI ensemble [30] are as follows:

1) Compute fuzzy densities (g', .., g?) of all the classifiers
using a training accuracy of the classifiers developed to
classify the dataset with k classes as suggested in [30].
In our case we initialized the value of Z=6. Where Z is
the number of developed classifiers.

2) Find the value of \ using Eq.(7) and the fuzzy densities
g% obtained in the previous step.

Z
A+ 1=]]+xg%) (7)
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Where A is real root with a value greater than —1.

3) Create a decision profile matrix (DP) as shown in Eq.(8).
Each entry in DP matrix shows the decision of Z!"
classifier over the given input X for the class K .Here
dz.1(X) is decision of 2!" classifier to classify the input

X in class k.
di1(X) di2X) — digp(X)
don(X) doo(X) —— dog(X)
DP(X) = |d31(X) d3a2(X) —— dsi(X)
dz1(X) dzi(X) —— dzi(X)
3

4) Initialize the values of g(1) = ¢*,1 < z < Z and
recursively compute a value of g(z) by solving Eq.(9).

9(z)=g"+9(z—1)+ Ag°g(z —1),2< 2 < Z (9)

5) Calculate a value of degree of support p% (X) as given
in Eq.(10)

15 (X) = maz ((min (p5(X), g% (2)))

D. Detection of Acoustic Events

(10)

Methodology to identify the acoustic events using the FI
based ensemble classifier is as follows:

1) Initially create the Z set of the OFLBP encoded spec-
trogram images for the given training signals.

2) Instead of using the OFLBP encoded spectrogram im-
ages directly to train the CNN we use a mapping tech-
nique proposed by Levi et al. [35]. The values computed
by the OFLBP method is mapped to 3D metric space
by approximation of the euclidean distance between the
OFLBP codes. This mapping transforms the OFLBP
encoded spectrogram image into a representation that
can be used in the CNN.

3) Train the Z CNN models using the Z set of training data
created in the previous step. Fig.(6) shows the procedure
to train the CNN models.

4) Create the OFLBP encoded spectrogram image of the
test signals and classify the image using the Z trained
CNN classifiers.

5) Use the FI ensemble to identify the acoustic event
present in the given test signal. Fig.(7) shows the proce-
dure to detect the acoustic event in the given test signal.

IV. EXPERIMENTS AND RESULTS

This section presents the experiments and results.

A. Dataset Description

To test the efficacy of the proposed method we selected
a publicly available Environment Sound Classification (ESC-
50) datasets [36]. The dataset contains 2000 recordings of
the 50 different real life environmental sounds. Duration of
each signal is 5 seconds. The signals of the ESC-50 dataset is
further grouped into five major category as shown in Table
I. Fig.(8)-Fig(11) show the spectrogram images of clock,
engine sound, keyboard typing and water drop acoustic signal
present in the ESC-50 dataset.The ESC-50 dataset provides
prearranged files for the 5 fold cross validation thus the
obtained results are directly compared with the baseline and
state-of-the art methods. The spectrogram of the environmental
sound is created using an in-built function of a MATLAB. The
sampling rate of the signal is kept 32kHz and a frame size is
selected as 30 ms with an overlapping window of 50%. The
training of the CNN is performed with a learning rate of 0.01,
50 epochs and Stochastic Gradient Descent (SGD) solver.
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TABLE I
MAJOR CATEGORIES OF ESC-50 DATASET

S.No. Category
1 Animals
2 Natural soundscapes & water sounds
3 Human, non-speech sounds
4 Interior/domestic sounds
5 Exterior/urban noises

TABLE I
DIFFERENT MODELS DEVELOPED FOR AED

Model Description
M1 CNN model trained with OFLBP
encoded images with 6 = 0°
M2 CNN model trained with OFLBP
encoded images with § = 30°
M3 CNN model trained with OFLBP
encoded images with § = 60°
M4 CNN model trained with OFLBP
encoded images with = 90°
M5 CNN model trained with OFLBP
encoded images with 6 = 120°
M6 CNN model trained with OFLBP
encoded images with 6 = 150°
M7 FI ensemble of
M1, M2, M3, M4, M5, M6

B. Model Description

Total seven models were developed to examine the perfor-
mance of the proposed method. Table II shows the details
of all the seven models. Table III shows details of the
architecture of the CNN model used to classify the envi-
ronmental sounds. Later the six different CNN models M1,
M2, M3, M4, M5 and M6 are developed using the set of
OFLBP images created with the six different values of angle
(6) = [0°,30°,60° 90°, 120°, 150°]. The models M1 to M6
are ensemble using the FI technique to create the model M7.
In our case we selected the value of parameter T as 2 while the
computation of OFLBP features from the spectrogram images.

C. Results

Table IV shows the accuracy achieved by the seven models
to detect the environmental sounds present in the SEC-50
dataset. The model M1 6§ = 0° shows the lowest accuracy of
84.53%. The ensemble model M7 shows the highest accuracy
of 90.03%. The models M2, M3, M4, M5 and M6 show the
accuracy of 86.61%, 85.91%, 84.69%, 88.27% and 86.89%
respectively. We also compared the results of models M1-
M6 using traditional ensemble techniques. The ensemble of
models M1-M6 using max vote rule attains the accuracy of
84.15%, however the accuracy of the same models using mean
vote rule yields the accuracy of 83.58%.

The baseline accuracy of KNN, SVM and random forest is
32.20%, 39.60% and 44.30% respectively.

TABLE III
DETAILS OF TRAINING OF CNN

Number of | Activation | Max -Pooling
Filters Function Filter

(2.2)

Layer Filter Size Dropout

Convolutional
Layer
Convolutional
Layer
Convolutional
Layer
Convolutional
Layer
Convolutional
Layer
Fully
Connected Layer - - relu - 0.5
(4096)
Fully
Connected Layer - - relu - 0.5
(4096)
Sofmax Layer
5 Classes

(11,11) 9 relu

(5,5) 256 relu (2,2)

(3,3) 384 relu -

(3,3) 384 relu -

(3,3) 256 relu

The fuzzy integral-based ensemble model (M7) yields high-
est accuracy among all the developed models and state of
the art methods to classify the ESC-50 dataset as shown in
the Table IV. It is clear from the Table IV that the OFLBP
encoding of the spectrogram image efficiently deals with the
uncertainty present in the spectrogram image and provides
more useful features to train the CNN. The ensemble of the
CNN using fuzzy integral technique enhances the accuracy of
the classification of acoustic events.

TABLE IV
ACCURACY OF DEVELOPED MODELS AND STATE OF THE ART METHODS
S.No. Model Accuracy(%)
1 Ml 84.53
2 M2 86.61
3 M3 85.91
4 M4 84.69
5 M5 88.27
6 M6 86.89
7 M7 90.03
8 Hardik et al [37] 86.50
9 Yuji et al. [38] 84.90
10 Kumar et al. [39] 83.50
11 Baseline KNN [36] 32.20
12 Baseline SVM [36] 39.60
13 Baseline Random Forest [36] 44.30
14 Ensemble Using Max Vote Rule 84.15
15 Ensemble Using Mean Vote Rule 83.58

V. CONCLUSION

In this paper we proposed the FI-based ensemble classifier
that combines the decision of multiple OFLBP encoded CNNs
to detect the desired acoustic event. The OFLBP efficiently
extracts useful directional texture features from the directional
neighbor pixels and also capable to deal with the uncertainty
present in the spectrogram image of the acoustic signal. The
experiments and results indicate the proposed method shows
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better accuracy as compared to conventional classifiers used
to perform the acoustic event detection.

In future we would like to extend our work to detect the
acoustic events in overlapping acoustic signals.
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