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Abstract—The topological distance is to measure the 
structural difference between two graphs in a metric space. 
Graphs are ubiquitous, and topological measurements over 
graphs arise in diverse areas, including, e.g. COVID-19 
structural analysis, DNA/RNA alignment, discovering the 
Isomers, checking the code plagiarism. Unfortunately, popular 
distance scores used in these applications, that scale over large 
graphs, are not metrics, and the computation usually becomes 
NP-hard. While, fuzzy measurement is an uncertain 
representation to apply for a polynomial-time solution for 
undirected multigraph isomorphism.  But the graph 
isomorphism problem is to determine two finite graphs that are 
isomorphic, which is not known with a polynomial-time solution. 
This paper solves the undirected multigraph isomorphism 
problem with an algorithmic approach as NP=P and proposes a 
polynomial-time solution to check if two undirected multigraphs 
are isomorphic or not. Based on the solution, we define a new 
fuzzy measurement based on graph isomorphism for topological 
distance/structural similarity between two graphs. Thus, this 

paper proposed a fuzzy measure of the topological distance 
between two undirected multigraphs. If two graphs are 
isomorphic, the topological distance is 0; if not, we will calculate 
the Euclidean distance among eight extracted features and 
provide the fuzzy distance. The fuzzy measurement executes 
more efficiently and accurately than the current methods. 

Index Terms—Fuzzy measurement, topological structure, 
graph isomorphism, undirected multigraph, polynomial-time 
solution, permutation theorem, equinumerosity theorem, 
multiple vertex/edge adjacency matrix 

I. INTRODUCTION 

The topological data is one of the most useful information 
which a graph could carry. Graph similarity and the related 
problem of graph isomorphism have various applications in 
big data analytics, data mining, machine learning, pattern 
recognition and artificial intelligence [1-15]. Measuring the 
similarity in terms of structure is essential for graph matching, 
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graph searching, and graph mining. Topological 
distance/similarity distance is defined as follows: given two 
graphs, their distance/similarity can be recognized as a score 
quantifying their structural differences in a metric space. The 
range of topological distance is [0, 1], and it satisfies the 
triangle inequality. Unfortunately, a measurement of 
topological distance is often computationally costly. For 
example, the chemical and CKS [1] are NP-hard while they 
have important properties. The distance should be zero if and 
only if the graphs are isomorphic, and they are capturing 
global structural similarities between two graphs. However, 
finding an optimal permutation P is notoriously hard [1-15], 
graph isomorphism, which is equivalent to determine if there 
exists a permutation P s.t. AP = PB, is famously a problem 
that is neither known to be in P nor shown to be NP-hard [1-
15] in the past. The most stringent form of exact graph 
matching--graph isomorphism, this condition must hold, that 
is, all the mapping must be a bijection in both directions. 
Graph isomorphism is challenging and critical in many 
applications, especially in various scientific areas. To date, 
there are no bibliography sources of polynomial-time graph 
isomorphism matching algorithms known for the general case 
except our recent contributions [16]. Previous isomorphism 
algorithms always suffer from the enormous computational 
complexity of analysis methods. In our recent works in [16] 
based on Permutation Theorem and Equinumerosity 
Theorem, undirected simple graph isomorphism has been 
approved to be P, which constructs a good fundamental for 
this paper. 

A. Undirected Multigraph 
A Multigraph, with the counterpart of a simple group, could 

be with multiple edges and several loops. For an undirected 
graph, if there are more than one undirected edge associated 
with a pair of vertices, these edges are called parallel edges, 
as the edges 4 and 9 of graph  in Fig. 1. If there is one edge 
of which has the starting node and the ending node are the 
same node, the edge is called loop, as the edges 1 of graph  in Fig. 1. Suppose there are four undirected multigraphs , , ,  shown in Fig. 1. Multigraphs could have loops 
that allow an edge that connects a vertex to itself.   Graphs 
with parallel edges and/or loops are called a multigraph in this 
paper.  

B. Graph Isomorphism 
Graph  is isomorphic to graph  (denoted by ≅ ) 

if and only if there exists a bijection : ( )  →  ( ) such 
that for any two vertices ,  ∈  ( ), ( , )  ∈  ( ), if 
and only if (  ( ),  ( ))  ∈ ( ). As shown in Figure 1, the 
following two multigraphs  and  are isomorphic. One of 
the vertex correspondences is 1-2, 2-1, 3-6, 4-4, 5-3, 6-5. 

C. Multigraph Isomorphism 
Multigraph isomorphism has opened a wide area of 

extensive research due to its well-known NP-complete nature 
and nondeterministic polynomial-complete [17]. In exact 
graph matching, if there exists a bijective mapping among the 
vertices and edges on them; Thus, each pair of two isomorphic 

graphs share a common structure. A multigraph may also 
contain directed and undirected edges. Multigraphs are more 
generic than simple graphs. The simple graphs usually are not 
rich with multi-edge information, while multigraph permits 
multiple edges/relations between a pair of vertices. And many 
real-world datasets can be modeled as a network with a set of 
nodes interconnected with each other with multiple relations. 
So, the crucial difference is to capture the multi-edge 
information. This problem appears naturally in various 
contexts of DNA and molecule structure [18-20].  In this 
paper, we are addressing a more generic problem (i.e. 
multigraph with undirected edges and unlabeled vertices).  

The contributions of this paper are as follows: 1) we find a 
solution for multigraph isomorphic problems in conditions of 
undirected edges and unlabeled vertices. 2) a fuzzy 
topological distance measurement is also proposed. 

II. THE COMMON SETTING IN THIS PAPER 
This section is devoted to reviewing some relevant 

concepts. 

A. Vertex and Edge Labeling Method for Multigraph 
Two multigraphs with unique labels are generally taken 

values in positive integer range for subscript of vertices , , … ,   where  is the number of the graph vertices and 
natural number, used only to identify the vertices [16] 
uniquely, we call , , … ,   the vertex label. Similarly, 
two multigraphs with unique labels are generally taken values 
in positive integer range for subscript of edge, , , … ,   where n is the number of the edges of the graph 
and natural number, used only to identify the edges uniquely, 
as , , … ,   are the edge labels [16] shown in Figure 1.  

B. MultiGraph Isomorphism Problem 
Definition 1 Multigraph Isomorphism based on edge 
structure: Two isomorphic multigraphs  and  is a 
bijective mapping , which exists the vertices of  to the 
vertices of  correspondingly. That keeps the "edge 
structure" in the case that there is an edge between vertex  
and vertex  in  if and only if there is an edge between ( ) and ( ) in  [3]. In this paper, we use a vertex and 
edge representation method [16] to label the multigraph. For 
example, in Figure 1, the array of the vertex for  will be 

= , , , , , , and the array of the vertex for  
will be = , , , , , . The array of an edge for  
will be = , , , , , , , ,  and the array of 
an edge for  will be = , , , , , , , , . 

C. Virtual nodes for multigraph 
To handle the loop and parallel edges, especially in the 

multigraph, we build up a virtual node system to identify the 
different edges. For example, we assign four virtual nodes to 
node  as , , , . Node  has three edges 
including one loop, and therefore it will have four virtual 
nodes. Thus, in the vertex adjacency matrix, , = 1 , , = 1, , = 1  shown in Figure 2. For the parallel 



 

edges between node 2 and node 5, we build two pairs of 
virtual nodes as  and   for edge 4, and  and  for 
edge 9 in Figure 3.  

 

III. MULTIPLE VERTEX AND EDGE ADJACENCY MATRIX 
REPRESENTATION METHOD 

A. Vertex adjacency matrix representation method 
The multiple vertex adjacency matrix is a Boolean square 

matrix that represents a finite multigraph. Elements (valued 0 
and 1) in the matrix denote whether pairs of vertices are 
connected with each other or not in the graph. For example, 
in a graph , is adjacent with , ,  and .  The multiple 
node adjacency matrix is a Boolean square matrix, which 
represents a finite multigraph. The elements (valued 0, 1, 2, 
…, n, where n is a non-negative integer) in the matrix denote 
whether pairs of nodes are connected with each other or not 
in the multigraph. For example, in the graph ,  are 
adjacent with , , . Then, in the vertex adjacency 
matrix, = 1 , = 1, = 1 . The virtual node 
representation for loop is shown in Fig. 2. And the virtual 
node representation for parallel edges is shown in Fig. 3. The 
vertex adjacency matrix for node 1 in  is shown in Figure 
4.  

 
 

 (a). Node 1 in . 

 
 

 
 

(b). Four virtual nodes in the vertex adjacency 
matrix. 

Figure 2. Virtual node representation for loop. 
 

 
 
 
 
 

 (a). Parallel edges in . 
 

(b). Two pairs of virtual nodes in the 
vertex adjacency matrix. 

Figure 3. Virtual node representation for parallel edges. 
 

 
 

 

   

 

   

 0 1 0 0 0 0 

 1 0 0 0 0 0 

 0 0 0 0 1 0 

 0 0 0 0 0 1 

 0 0 1 0 0 0 

 0 0 0 1 0 0 

 
Figure 4. Vertex adjacency matrix for Node 1 in  . 

B. Edge adjacency matrix representation method for 
multigraph 

The multiple edge adjacency matrix is a Boolean square 
matrix, which represents a finite multigraph. The elements 
(valued 0, 1, 2, …, n, where n is a non-negative integer) in the 
matrix denote whether pairs of edges are connected with each 
other or not in the multigraph. For example, in the graph , 

 are adjacent with , , , , ,  Then, in the edge 
adjacency matrix, = 1, = 1, = 1, = 1. For 
any parallel edges shown in Figure 5 or loop shown in Figure 
6, we need to count twice in the edge adjacency matrix. The 
edge adjacency matrix for  is shown in Figure 7.  

 
  

 2 
 

Figure 5. Edge adjacency 
matrix for edge 1 as a loop in  

 

   

 0 2 
 2 0 

Figure 6. Edge adjacency matrix for 
edge 4 and 9 as Parallel edges 

between Node 2 and Node 5 in  .  
 

 
             (a).  

 
              (b).   

 
                 (c).   

 
                 (d).   

Figure 1. Four undirected multigraphs , , , . 
 



 

 

   

 

 

 

 

      

Row sum 

for each 

edge 

Squared sum 

of row sum 

of each node 

 2 2 2 0 0 0 0 0 0 6 36 

 2 0 1 1 0 1 0 0 1 6 36 

 2 1 0 1 1 0 0 0 1 6 36 

 0 1 1 0 1 1 0 0 2 6 36 

 0 0 1 1 0 0 1 1 1 5 25 

 0 1 0 1 0 0 1 0 1 4 16 

 0 0 0 0 1 1 0 1 0 3 9 

 0 0 0 0 1 0 1 0 0 2 4 

 0 1 1 2 1 1 0 0 0 6 36 

Sum 44 234 
            

Figure 7. Multiple edge adjacency matrix for Graph . 

C. Triple tuple method 
Triple Tuple for multigraph has been defined as in a 

multigraph G with the number of nodes is N, and the number 
of edges is . We create a triple tuple for each edge  = (k, , ), where = 1, 2, … , . Note  as a starting node and   as an ending node are two nodes for edge . For one 
node, in order to represent different edges, we create the 
different virtual nodes as . The first  represents the label 
of the node, the second  represents the order of the virtual 
node. For example, the triple tuples are produced to represent 
the finite multigraph  shown in Table 1. The general format 
of triple tuple for a multigraph is shown in Table 2.  

Table 1. The triple tuple of graph . 
Edge Node Node 

1 11 12 
2 12 31 
3 13 21 
4 32 22 
5 23 51 
6 33 41 
7 52 42 
8 43 61 
9 34 24 

 
Table 2. Triple tuple in general format. 

Edge Node Node 
1 1  1  
2 2  2  
3 3  3  
4 4  4  
… … … 

m-2 ( − 2)  ( − 2)  
m-1 ( − 1)  ( − 1)  
M   

IV. A POLYNOMIAL-TIME UNDIRECTED MULTIGRAPH 
ISOMORPHISM ALGORITHM 

In this section, we present the algorithm execution process 
and analyze the computational complexity of the proposed 
isomorphism algorithm. The graph isomorphism algorithm is 
based on the Permutation Theorem and Equinumerosity 

Theorem [16]. The spatial complexity of the worst case is n^6, 
where n is the number of vertices [16] which is shown in the 
following pseudocode: 
(1) Generate four matrices of vertex adjacency matrix and 
edge adjacency matrix for two graphs. (The numbers of nodes 
and edges must be equivalent) 
(2) Determine if the row sum of vertex adjacency matrix and 
edge adjacency matrix of two graphs is a permutation of 
another or not by the Permutation Theorem. If not, they are 
not isomorphic.  
(3) Singular value decomposition of four matrices. 
(4) Determine if the eigenvalues of four matrices are 
equinumerous or not by Equinumerosity Theorem. If not, they 
are not isomorphic.  
(5) Compute the maximal linearly independent set of left-
singular vectors and right-singular vectors according to the 
multiple eigenvalues for eight matrices and check if they are 
equinumerous, if not, they are not isomorphic. If yes, they are 
isomorphic.  
We rewrite the definition 1 as follows:  and  are 
isomorphic if and only if   is a bijective map of , and  
is a bijective mapping of . This paper uses our permutation 
theorem [16] and equinumerosity theorem to develop a 
polynomial-time algorithm for multigraph isomorphism. The 
core idea is that we use permutations to act on a structured 
object (graph) by rearranging their components (vertex and 
edge).  The algorithm can check if two vertex sets based on 
multiple vertex adjacency matrix and two edge sets based on 
multiple edge adjacency matrix are respectively bijective. For 
both vertex and edge arrays of row/column sum based on 
multiple vertex and edge adjacency matrices, if one array is a 
permutation of another, the corresponding two multigraphs 
could be isomorphic. The following four graphs as , , , 

 are used as an undirected multigraph example in this paper. 
From the observation, we could see that , and  are 
isomorphic, while , and  are not isomorphic.  

V. FUZZY THEORY BASED DISTANCE MEASUREMENT 
BETWEEN TWO MULTIGRAPHS 

In the problem of graph isomorphism, there are two 
conditions of distance: 0 and 1, for every two multigraphs. 
This representation, however, fails to show a real distance 
between two multigraphs.  The real distance could be able to 
display the grade of differences, whose range should be [0,1] 
rather than only 0 and 1. This section, therefore, proposes a 
fuzzy theory-based distance measurement that extends the 
distance of two multigraphs from 0, 1 to [0, 1]. Due to the 
multigraphs that could have infinite edges and nodes, to 
simplify our question, we only focus on the fine measurement 
between two multigraphs with the equivalent number of edges 
and nodes. The isomorphism checking for four graphs are 
shown in Appendix A. The two applications are shown in 
Appendix B. The more detailed steps of the proposed method 
are as follows: 

(1) Generate the triple tuple sets for two multigraphs  
and . If there is an isolated node, remove it. The number of 
isolated nodes must be the same. If not the same, produce that 



 

for graphs  and , they are not isomorphic. After the 
removing of the isolated node, the number of nodes and the 
number of edges must be the same, if not same, produce that 
for multigraphs  and , they are not isomorphic. 

(2) Generate the array of row sum of the multiple vertex 
adjacency matrix for  and  and produce two sets of an 

array as  , . Check if = ; if so, go 

to the next step; if not, products that they are not isomorphic. 

(3) Check if ( ) = ( ) , If so, go to the 

next step; if not, produce that graph  and  are not 
isomorphic.  

(4) Continue to compute until n step and check if ( ) = ( ) . If not, produce the results that 

graph  and  are not isomorphic.  
 
(5) Generate the array of row sum of the multiple edge 

adjacency matrix and produce two sets of an array as  , 

. Compute and check if = ; if so, go 

to the next step; if not, produces that graph  and  are not 
isomorphic.  

(6) Compute and check if ( ) = ( ) . If 

not, produce the results that multigraph  and  are not 
isomorphic.   
(7) Continue to compute until m step and check if ( ) = ( ) . If not, produce the results that 

graph  and  are not isomorphic. Until the m-th step.   
(8) Singular value decomposition of four matrices. 
(9) Determine if the eigenvalue of four matrices are 
equinumerous by Equinumerosity Theorem. If not, they are 
not isomorphic.  
(10) Compute the maximal linearly independent set of left-
singular vectors and right-singular vectors according to the 
multiple eigenvalues for four matrices and check if they are 
equinumerous, if not, they are not isomorphic.  

The distance based on Permutation Theorem [16] will 
count for 0.5 weight (steps 1 to 7).  If two graphs are 
isomorphic according to the Equinumerosity Theorem [16] 
(steps 8-10), the 0.5 will time 0. Otherwise, the 0.5 will time 
the Euclidean distance based on Equinumerosity Theorem 
[20]. The mathematical proof is shown in Appendix C.1 and 
C.2.  Therefore, the range of the topological distance should 
be [0, 1].  Topological distance between two multigraphs = Euclidean distance between the original multigraph and another multigraphEuclidean distance two the original multigraph and the zero multigraph . 

The value of the topological distance is the membership 
value for every pair of two multigraphs. Then, the formula 
above is the corresponding membership function. We, 
therefore, have the fuzzy sets for every pair of two 
multigraphs, as (multigraph , multigraph , membership 
value/ topological distance). The representation (multigraph 

, multigraph , membership value/ topological distance) 

implies how much two multigraphs are isomorphic. It 
supplies a strict definition of graph isomorphism. In real 
applications, the definition of graph isomorphism will be 
flexible and can vary with different conditions of fuzzy sets.  

To be more flexible, the membership value can be changed 
according to the initial graph isomorphism results. Firstly, 
initial membership value is assigned as the topological 
distance between two multigraphs; then, we have an initial 
fuzzy set for every pair of two multigraphs. Secondly, the 
judgments that whether two multigraphs are isomorphic or 
not are kept as the initial graph isomorphism results. Thirdly, 
we transfer current membership value to new membership 
value, that is, Updated membership value as the follows Euclidean distance between the original multigraph and another multigraph −Euclidean distance two the original multigraph and the zero multigraph −  , 
where e is an adjustable factor. The adjustable factor e can be 
computed by the mean square deviation of the membership 
value and the value of isomorphic or not, which represents as 
0 or 1, respectively. Finally, we can have satisfying 
membership values with user-defined maximal adjustable 
factors. The results of four graphs are shown in Appendix A. 
Furthermore,  a real-time application is shown in Appendix B 
example 1 and a large-scale experiments related to COVID-
19 are shown in Appendix B example 2.  

VI. CONCLUSION 
This paper proposes a fuzzy measurement of the 

topological distance between two multigraphs. A polynomial-
time settlement to verify if two multigraphs are isomorphic is 
put forward as well. Three new representation methods of a 
multigraph as multiple vertex adjacency matrix, and multiple 
edge adjacency matrix are proposed. The theoretical 
significance of our algorithm is that it offers the complicated 
mathematical problem could be addressed in a reasonable 
polynomial time which has existed for years. Several practical 
purposes could be achieved. In addition, in computer science, 
a series of nodes strung together by connections known as 
edges is a network; in the real world, the set of social network 
users and their interconnections make up a graph are typically 
large, with millions of nodes and billions of edges. To 
recognize social communities or groups effectively and 
efficiently, which is normally onerous to query matches, so 
the proposed algorithm can relieve the complexity of 
computing. The algorithm can be applied for applications as 
quickly as searching chemical databases, performing 
fingerprint or facial recognition; is that the same molecule, 
fingerprint or face.  
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APPENDIX A ARRAYS OF ROW SUM FOR FOUR GRAPHS’ EDGE 
ADJACENCY MATRICES 

APPENDIX B APPLICATIONS  
Example 1: The proposed method can be easily extended 

to the directed/weighted multigraph in [20]. In organic 
chemistry, the problem of whether the molecular structure of 
the faction [21][22] is isomers as follows:  From Figure 8 to 
10, we have three kinds of molecular structure of the faction.  

 
 

Figure 8. The first molecular structure of the organic matter 1 to be 
determined [21, 22]. 

 

 
Figure 9. The second molecular structure of the organic matter 2 to be 

determined [21, 22]. 
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The two arrays of row sums of both vertex and edge adjacency matrix of G1 
and G2 are permutated. The eigenvalue, the maximally independent system of 
left and right singular vector of  the corresponding P multiple eigen value of 
G1 and G2 are equinumerous. The distance between G1 and G2 is zero, say, 
they are isomorphic. The two arrays of row sums of edge adjacency matrix of 
G3 and G4 are not permutable, G3 and G4 are not isomorphic. The distance 

between them is ( ) ( ) = 0.012. 



 

 
 

Figure 10. The third molecular structure of the organic matter 3 to be 
determined [21, 22]. 

 
From Figure 8 to 10, we change the molecular structure into 

the graph format. A single line indicates a covalent bond, a 
double line indicates two covalent bonds, and a circle in the 
benzene ring indicates an aromatic bond, which can be 1.5 
valence. When comparing, the cesium atom is omitted, and 
the above organic matter can be established according to the 
following rules: (1) the covalent bond between C atoms is 
represented by a one-to-one correspondence of undirected 
edges, and the weight is 1 (the weight within the benzene ring 
is 1.5); (2) The covalent bond between a helium atom and the 
other atoms are represented by a directed edge, the direction 
is directed to other atoms, and the weight is the number of bits 
pointed to the atom in the periodic table, i.e., N-7, CL-17, BR- 
35.  

The figure is a multigraph and mixed with weighted edges 
and directed edges with 19 vertices and 22 edges. Using the 
method described in this paper, it can be determined that the 
matter 1, 2 and 3 have the different structures, and mater 1 
and 2 are isomorphic, and the three sets of tests take less than 
0.001 seconds (CPU 2.21 GHz - Intel(R) Core(TM) i7-
6650U, 16 GB of RAM), which shows that the proposed 
method is effective. In fact, the organic matter of Figures 8, 9 
are 2, 6-dibromo-4-chloro-1, 3, 5 triazabenzene, and the 
organic matter of figure 10 is 4-dibromo-3-chloro-1, 3, 5 
triazabenzene. The three molecular formula is 
C11H12N5ClBr2, but they have a different molecular structure. 
The topological distance between the given figures is 
0.003383 ( distance = ( ) ). The 
calculated distance opens a new page for organic chemistry in 
terms of chemical distance and reaction distance [23]. 
Example 2: Large data set experiments for DNA sequence 
with COVID-19 
We have conducted the similarity measurement of RNA 
sequences for COVID-19 carried by 4,489 patients [25, 26]. 
The related distance is over 0.9.  
Appendix C.1 Mathematical Proof for Permutation 
theorem [16]. 

To check if two arrays are a permutation of another one 
such as  #1 = {2, 3, 3, 2, 2, 3, 3, 2} and  #2 ={2, 3, 2, 3, 2, 3, 2, 3}. We calculate  (  #1) =  2 +3 + 3 + 2 + 2 + 3 + 3 + 2 = 20 and  (  #2) =  2 +3 + 2 + 3 + 2 + 3 + 2 + 3 = 20,  ∑(  #1) = 2 +3 + 3 + 2 + 2 + 3 + 3 + 2 = 50 and ∑(  #2) = 2 + 3 + 2 + 3 + 2 + 3 + 2 +3 = 50, ∑(  #1) = 2 + 3 + 3 + 2 + 2 + 3 +3 + 2 = 140 and ∑(  #2) = 2 + 3 + 2 + 3 +2 + 3 + 2 + 3 = 140, ∑(  #1) = 2 + 3 +

3 + 2 + 2 + 3 + 3 + 2 = 388 ∑(  #2) = 2 + 3 + 2 + 3 + 2 + 3 + 2 + 3 = 388, ∑(  #1) = 2 + 3 + 3 + 2 + 2 + 3 + 3 +2 = 1100 and ∑(  #2) = 2 + 3 + 2 + 3 + 2 +3 + 2 + 3 = 1100, ∑(  #1) = 2 + 3 + 3 +2 + 2 + 3 + 3 + 2 = 3172 ∑(  #2) = 2 + 3 + 2 + 3 + 2 + 3 + 2 + 3 = 3172,  ∑(  #1) = 2 + 3 + 3 + 2 + 2 + 3 + 3 +2 = 9260 and ∑(  #2) = 2 + 3 + 2 + 3 + 2 +3 + 2 + 3 = 9260, ∑(  #1) = 2 + 3 + 3 +2 + 2 + 3 + 3 + 2 = 27268 and ∑(  #2) = 2 + 3 + 2 + 3 + 2 + 3 + 2 + 3 = 27268. Then 
we check if ∑  #1 =  ∑  #2 , if ∑(  #1) = ∑(  #2)  , if ∑(  #1) = ∑(  #2)  , if ∑(  #1) = ∑(  #2)  , if ∑(  #1) = ∑(  #2)  , if ∑(  #1) = ∑(  #2)  , if ∑(  #1) = ∑(  #2)  , if ∑(  #1) = ∑(  #2) ,  if and only if they are 
equal respectively, we could draw a conclusion that array #1 
is a permutation of array #2. 

Permutation Theorem. Given two natural number sets of 
arrays  and , = { , , … ,  }， = { , , … ,  }, 
If and only if ∑ = ∑ , = , 

= , …, = 
, = ,  ∑ = ∑ ,  

 is a permutation of  and vice versa, where ≥ 1. 
Assertion 4-1: Given two arrays A and B, = , , … a ， = , , …  ，  If and only if ∑ = ∑ , and 

= , = , …, = 
, = ,  ∑ = ∑ ,  

the sequence of the two arrays are bijective and equivalent. 
(where ≥ 1 and is the integer and both  and  ≥ 1 and 
are integers).” 

Mathematical proof for Theorem 4. The “only if” of the 
theorem (necessary condition) is simple because permutation 
array group is bijective. They always have the n equivalent 
arrays as ∑ = ∑ , and = , 

= , …, = 
, = ,  ∑ = ∑ ,  

if two arrays are bijective. The “if” (sufficient condition) 
requires the following three main lemmas from fundamental 
theorem of arithmetic for n = 2. That is, Given two natural 
number sets of arrays   and , = { , }， ={ ,  }, If and only if + = + , and +  =  +  , A is a permutation of B and vice versa. (n = 2 
case) 

If + =   +   and + =   + .  Then (a + a ) =   (b + b )  , +  + 2 =  + + 2 , then we have = .  
If there is any , , ,  equals to 1, n=2 case holds. The 

proof is as follows. Suppose = 1, we have 1 + = +  and 1 + =   + . Thus = , 1 + =+ , 1 + ( − 1) = , ( − 1)( − 1) = 0. 
Therefore, either = 1 or = 1. When = 1, we have 1 + = 1 +  and 1 + =   1 + , = . When 



 

= 1, we have 1 + = 1 +  and 1 + =   1 + , = . Therefore, n = 2 case holds.  
If  , , ,  is a positive integer and larger than 

1, according to the fundamental theorem of arithmetic,  , , ,  either is a prime number itself or can be 
represented as the product of prime numbers; moreover, this 
representation is unique, up to (except for) the order of the 
factors. Then =       ⋯  ⋯ =    ⋯  ⋯ , where =     ⋯  , = ⋯ ,   =     ⋯  , =  ⋯ ,                                                                                                                                                              
where  and  are prime. Assume that  ( ≠ 0) and n 
are integers. We say that m could be divided by  if  is a 
multiple of , namely, if there exists an integer parameter  
such that = . If m divides , it can by represented as  
| . The order of the factors will not affect the results. We 
have  | , then  |     ⋯  ⋯ .  
divides at least one of ; then if we rearrange , we could 
have  | . Because  is prime, factors are 1 or ; then 
we have =  . Now remove it from both sides of the 
equation.     ⋯  ⋯ =    ⋯  ⋯ . 

Repeat the previous proof.  divides at least one of ; 
then if we rearrange , we have  | . Because  is prime, 
factors are 1 or ; then we have =  . Then we remove 
it from both sides of the equation.     ⋯  ⋯ =    ⋯  ⋯ . 

Continue this process until all of  and  are removed. If 
all of  are removed, the left side of the equality is 1, so there 
is no left . Similarly, if all of  are removed, the right side 
of the equality is 1. The number of  is equal to . Then we 
have proved,  =     ⋯  ⋯ =    ⋯  ⋯ , all of  and  are prime, = , = , rearrange , we have  =  , =   , =  , ⋯   =   ⋯, = , 
thus =  and  = , because  and  are 
commutative, and   and  are commutative. There could 
be  =    and  = , Then the set of  and  is a 
permutation of the set of   . 

Next, we will prove the uniqueness of this condition. That 
is, there exists a quaternary and quadratic system of equations 
(1) as 

 
+ =  + + =  +                                           (1) 

is a system of two equations involving the four variables , , , , where all variables are natural numbers. A 
solution to this system of integer equations is an assignment 
of values to the variables such that all the equations are 
simultaneously satisfied. Two solutions to the system above 
are given by: 

solution set A: =  =                                       (2) 

                                                                                                                       

solution set B: =  =   ∪  is either solution A or solution B, which is a solution of 
(1). since it makes all two equations valid. The word "system" 
indicates that the equations are to be considered collectively, 
rather than individually87. Because + =  + , − = − , then we have ( − )( + ) =( − )( + ) . Because  +  =  + , then − = − .  

If (2) is not unique, there must exist another four , , , , holds (1), but belong to ∪   = ̅  ∩  . 
Suppose k is a integer (k≠ 0),  because ( + ) + ( −

)= ( + ) + ( − ), then we could construct =+ , =  − , =  + , =  − , where ≠ , ≠ , ≠ , ≠ . + =  +  
holds. Because ( ) + ( ) =  ( + ) + ( − ) = + + 2 + 2 − 2  and( ) + ( ) = ( + ) + ( − ) =  + + 2 + 2 − 2 . 
To make ( ) + ( ) = ( ) + ( ) , we must have  + + 2 + 2 − 2 = + + 2 + 2 −2 , and then − = − . Because − = −

, then we have = , and then − = − , = .  could be equal to ,  and this result is in a 
contraction since ̅  ∩  . Therefore, the initial assumption 
as (2) is not unique must be false. Thus, n = 2 case is 
approved.  

Therefore, Theorem 4 where n = 2 has been proved. Our 
mathematically proof with ≥ 3 is proved by the following 
induction-based method.  

Questions for n = 3, n = 4, …., and =  for extended 
permutation theorem.  

When  = 3, if and only if + + = + + , + + = + + , and + + = + + , the set of , ,   is a 
permutation of the set of , , .  

When  = 4, if and only if + + + = ++ +   and + + + = + + + , + + + = + +  +
, and + +  + = + + +
, the set of , ,    ,  is a permutation of the set of , , , .       =  is established, if and only if + +  + ⋯+ = + +  + ⋯+  and + + +⋯+ = + + + ⋯+ , …, ++ + ⋯+ = + + + ⋯+ the 

set of , ,  ,⋯  is a permutation of the set of , ,  ,⋯ , .  
Mathematical Proof: Let ( − 1) be the statement of 

permutation theorem, we give a proof by induction on N.  
Base case. The statement holds for n = 1 and n = 2. (1) 

is easily seen to be true, and (2) is true by the above-
mentioned proof when n = 2.  

Inductive Step. The following steps will show that for any − 1 ≥ 0 that if ( − 1) holds, then also ( ) holds. 
This can be done as follows. Assume the induction 
hypothesis that ( − 1) is true (for some unspecified value 
of − 1 ≥ 2), that is, if and only if + +  + ⋯+



 

= + +  + ⋯+  and + + +⋯+ = + + + ⋯+ , …, ++ + ⋯+ = + + + ⋯+ , the set of , ,  ,⋯  is a 
permutation of the set of , ,  ,⋯ , .   

Using the induction hypothesis, the permutation theorem 
as ( − 1) can be written to: if and only if + +  + ⋯+ = + +  + ⋯+  and ++ + ⋯+ = + + + ⋯+

, …, + + + ⋯+ =+ + + ⋯+ , there must exist a 
permutation matrix , where …  = … . For …    00 1 =…    =…   , where 00 1  is a 
square binary matrix that has exactly one entry of 1 in each 
row and each column and 0s elsewhere. Because + +  + ⋯+ = + +  + ⋯+  and + +  + ⋯+ = + +  + ⋯+ , then we 
have =  , thus, …    00 1 = … . Then, the set of , ,  ,⋯  is a permutation of the set of , ,  ,⋯ , . Therefore, P(N) is true, that is, if and only 
if + +  + ⋯+ = + +  + ⋯+  and + + + ⋯+ = + + + ⋯+

, …, + + + ⋯+ = + + + ⋯+ , the set of , ,  ,⋯  is a permutation 
of the set of , ,  ,⋯ , . Thereby it shows that indeed 
P(N) holds. Since both the base case and the inductive step 
have been performed by mathematical induction, the 
statement P(N) holds for all natural number N.  
Appendix C.2 Mathematical Proof for Equinumerosity 
theorem. 
1. SINGULAR VALUE DECOMPOSITION OF 
VERTEX ADJACENCY MATRIX AND EDGE 
ADJACENCY MATRIX 

To check if two arrays are equinumerous, we need to know 
how many elements are equal in one array. For example, 
Array 1#= [1, 1, 2, 2, 2, 3, 3, 3, 3] and Array 2#= [4, 4, 5, 5, 
5, 6, 6, 6, 6]. There are two elements as [1, 1], [4, 4], three 
elements [2, 2, 2], [5, 5, 5], and four elements [3, 3, 3, 3], [4, 
4, 4, 4] are equal. The corresponding format in term of 
equinumerosity is then rewritten as: Array 1#= [21, 22, 31, 32, 
33, 41, 42, 43, 44] and Array 2#= [21, 22, 31, 32, 33, 41, 42, 
43, 44]. They are equinumerous.  

Let A be a real symmetric matrix of n*n, so there is a 
singular value decomposition such that = ∗,  is an ∗  unitary matrix, Σ is an ∗  real diagonal matrix, ∗is 
a conjugate transpose of , and is also an ∗  unitary 
matrix. The element ,  on the diagonal of  is the singular 
value of . For singular values ranging from large to small, 
Σ can be uniquely determined by A, of course, U and V 

cannot be determined. A non-negative real number  is a 
singular value of  only if there are  unit vectors  and 

 unit vectors  as follows: = σ  and ∗ = σ , where 
 and  are the left and right singular vectors of , 

respectively. For the above singular value decomposition: = ∗. The elements on the diagonal of the matrix  are 
equal to the singular values of . The columns of  and  
are the left and right singular vectors, respectively. 
Therefore, the above definition of SVD states: 
- A set of orthogonal bases U consisting of the left 

singular vectors of  can always be found in . 
- A set of orthogonal bases V consisting of the right 

singular vector of  can always be found at . 
Without loss of generality, the columns of  and the rows 

of ∗ are defined and used in this paper, which are called left 
and right singular vectors in this paper. 

Definition 2 P-multiple eigenvalue. An -th order matrix 
has  eigenvalues. If there are  eigenvalues are the same, 
then these  eigenvalues are called  multiple eigenvalues.  

Definition 3 A maximally independent vector set. It is 
defined as: Let  be a vector group, if it satisfies: (1) , 

, … ,  is linearly independent; (2) if any other vector in 
the space can be expressed as a linear combination of 
elements of a maximal set--the basis , , … , . Then 
A set of vectors is maximally linearly independent if 
including any other vector in the vector space would make 
it linearly dependent. 

Definition 4 A maximally independent vector system. 
Under the linear transformation, the maximally linear 
independent subset has been transferred to have only one 1 
and others is 0. The current format of the original vector set is 
called the maximally independent vector system. 

Property 5 [24] Let A be a real symmetric matrix. There 
exist an orthogonal symmetric matrix  and a diagonal matrix 

 such that = , where the diagonal element of  is 
the eigenvalue of  and the column vector of  is the 
eigenvector of . 
 Proof: By mathematical induction, it is obviously true for 
first-dimension square matrices. Suppose the above 
proposition be true for a square matrix with the dimension of − 1. Then for the  dimension square matrix , it 
obviously has at least one eigenvalue , and the eigenvector 
corresponding to λ is , and  is extended to a set of the 
orthogonal basis of , and arranged into a matrix =[  …  ]. Then there is =           00       (here = = 0, =  ) . Whereas  is a real 
symmetric matrix of dimension − 1, the orthogonal matrix 

 is assumed such that =          0…0      , then 1          00                00      1           00      =          0…0      . Let  be an 

orthogonal symmetric matrix, = 1           00      . Since the 

eigenvalues of  and  are the same, the eigenvalues 
 of  are also the eigenvalues of . Finally, it is only 



 

necessary to prove that the column vector of  is the 
eigenvector of . Set = [  … ] and substitute =          0…0      , then [  … ] =[       … ], compared with each other,  is the 
eigenvector of . 
2. EQUINUMEROSITY THEOREM  

Property 6 [23][24] There must be  corresponding 
linearly independent eigenvectors for the  eigenvalues λ of 
the vertex adjacency matrix and edge adjacency matrix. 
(Eigenvalue of the multiplicity of  a real symmetric matrix 
has exactly  linearly independent eigenvector) 

Proof: Lemma 1: For the general matrices, there are at 
most  linearly independent eigenvectors corresponding to  
eigenvalues. For a certain eigenvalue , there are  linearly 
independent eigenvectors. The following proves that ≤ . 
For them, using Schmidt's method to obtain m  orthogonal 

eigenvectors , , … , , | | = =  …=  . Extend it to 

get a set of orthogonal basis , , … , ， , … , , and = [ , , … , ， , … , ]. Then =  00       (It 
can be seen from the form of this matrix that the eigenvalue λ 
is at least  dimensions). Since  and  have the same 
eigenvalue, the dimension of the eigenvalue  of A is ≥ . 
Thus Lemma 1 is proved. According to the algebra theorem, 
the total number of algebraic multiples of the th-dimensional 
equation roots is , so the sum of the number of all linearly 
independent eigenvectors to each eigenvalue ≤ , and 
property 5 proves that there is n independent eigenvector for 
the real symmetric matrices. That is, in the above inequality, 
the equal sign holds. The condition that the equal sign is true 
if there are exactly  linearly independent eigenvectors 
corresponding to -multiple eigenvalues. 

Combining definitions 2, 3, 4 and property 5, 6,  it is proved 
that the rank of the maximally linearly independent subset  ∗ / ∗  of left/right singular vector corresponding to the 

-multiple eigenvalue is . 
All of two graphs satisfied the permutation theorem as 

above must have ∗ ∗ = ∗ ∗ , and = , =
, then = , = ， = , thus =

. 
Property 7 Two graphs are isomorphic, if the eigenvalue 

sequences of the vertex adjacency matrix and edge adjacency 
matrix are equinumerous. 

Lemma 2 Two sequences satisfying the permutation 
theorem must be equinumerous. Nevertheless, the two 
equinumerous sequences do not necessarily have the 
permutation relations. 

Property 8 [23][24] The two graphs satisfying the 
permutation theorem must have the equinumerous 
eigenvalues. 

Equinumerosity Theorem. The two graphs are isomorphic, 
if and only if the eigenvalues of the two graphs’ vertex and 
edge adjacency matrices are equinumerous, and the 
maximally linearly independent vector systems of the left and 

right singular vectors corresponding to the -multiple 
eigenvector are equinumerous. 

To approve Equinumerosity theorem, the following 
Lemma is put forward. Lemma 3 [23][24] ∗  and ∗  are 
the right singular vector set for  multiple eigenvalues for 
graph  and , respectively. For the elementary row 
interchange operation matrix exchange matrix , if there exist ∗ , and = , then  is invertible. 

Proof: Rank ( )=Rank( )=Rank( )= ≥Rank( ), 
according to the matrix theory, = 
Rank( )=Rank( ) ≤ min(Rank( ), Rank( )), so 
Rank( ) ≥ , because of ≥ Rank( ), then rank( )= , 
therefore  is invertible. 

Lemma 4 [23][24] There exist the row interchange 
matrix , and ∗    and ∗  satisfies =  if and only 
if they are equinumerous. Similarly, there exists the column 
interchange matrix , and ∗    and ∗  satisfies =  
if and only if they are equinumerous. 

Proof: The necessary proof is obvious. For sufficient proof. 
From definition 8, both the vector set  and  are 
corresponding to the equinumerous sequence , then = Π =  , =  Π =  , so =  . , 

 ( 1 ≤ ≤ ), both , and  are row interchange 
operation matrix, then = ,  then = ,  it is still 
the elementary row interchange matrix. Then the sufficient 
proof is completed.  

Lemma 5 Equinumerosity theorem for graph isomorphism. 
If  and  have the equinumerous eigenvalue, and there 

exist the elementary row interchange matrix ∗  which 
satisfies: for every eigenvalue  (multiplicity of ) in  and 

, the corresponding right singular vector set ∗( )  and ∗( ) , 
there exist the square matrix ∗( )  and  ( ) ( ) = ( ) , 
for every eigenvalue  (multiplicity of ) in  and , the 
corresponding left singular vector set ∗( )  and ∗( ) , there 
exist the square matrix ∗( )  and  ( ) ( ) = ( ) . Then 
two graphs are isomorphic. 

Proof: Both  and  are similar to the diagonal matrix ∧ (the element at the diagonal is the eigenvalue sequence). 
Suppose there are  different eigenvalue. Then, 
 = ( ( ), … , ( ) ) ⋅∧⋅ ( ( ), … , ( ))   … (3) 
 = ( ) , … , ( )  ⋅∧⋅ ( ) , … , ( ) = ( ( ) ( ), … , ( ) ( )) ⋅∧⋅( ( ) ( ), … , ( ) ( )) ( ) … (4) 

From Lemma 3, ( ) is invertible; then ( ) ( ) could be 
the  linearly independent eigenvector of , substitute ( ) in 
(1) by ( ) ( ) , then: = ( ( ) ( ), … , ( ) ( )) ⋅∧⋅( ( ) ( ), … , ( ) ( ))  … (5) 

Put (5) into (4), and = . If left singular vector set 
also applies, then = . Under the same principle, for 
edge adjacency matrix = , therefore two graphs 
are isomorphic. Both Permutation and Equinumerosity 
Theorem have laid the foundations for the algorithm in this 
paper. 




