
1st Jing He
Nanjing University of Finance

and Economics
Swinburne University of

Technology
Melbourne, Australia
lotusjing@gmail.com

 2nd Jinjun Chen
Swinburne University of

Technology
Melbourne, Austrialia

jinjun.chen@gmail.com

3rd Guangyan Huang
Deakin University

Melbourne, Austrialia
guangyan.huang@deakin.edu.au

4th Mengjiao Guo
Swinburne University of

Technology
Melbourne, Austrialia

mengjiaoguo0702@gmail.com

5th Zhiwang Zhang
Institue of Information

Technology, Nanjing University
of Finance and Economics

 zzwmis@163.com

6th Hui Zheng
Swinburne University of

Technology
Melbourne, Australia

 hui.zheng@aliyun.com

7th Yunyao Li
Nanjing University of Finance

and Economics
 Nanjing, China

liyunyao1010@163.com

8th Ruchuan Wang
 School of Computer Science,

Nanjing University of Posts and
Telecommunications

Nanjing, China
wangrc@njupt.edu.cn

 9th Weibei Fan
School of Computer Science,

Nanjing University of Posts and
Telecommunications

Nanjing, China
wbfan@njupt.edu.cn

 10nd Chi-Huang Chi
 Software and Computational
Systems Program, Data 61,

CSIRO
 Hobart, TAS, Australia

chihung.chi@data61.csiro.au

11th Weiping Ding
School of Information Science

and Technology, Nantong
University

Nantong, China
dwp9988@163.com

12th Paulo A.de Souza
Griffith University

Nathan, QLD, Australia
paulo.desouza@griffith.edu.au

13th Bin Chen
Ningbo Institue of Materials
Technology and Engineering,
Chinese Academy of Sciences

Ningbo, China
chenbin@nimte.ac.cn

14th Runwei Li
Ningbo Institue of Materials
Technology and Engineering,
Chinese Academy of Sciences

Ningbo,
Chinarunweili@nimte.ac.cn

15th Jie Shang
Ningbo Institue of Materials
Technology and Engineering,
Chinese Academy of Sciences

Ningbo, China
shangjie@nimte.ac.cn

16th André Van Zundert
 Department of Anaesthesia,
Royal Brisbane & Women's
Hospital & University of

Queensland
Brisbane, QLD, Australia

vanzundertandre@gmail.com

Abstract—The topological distance is to measure the
structural difference between two graphs in a metric space.
Graphs are ubiquitous, and topological measurements over
graphs arise in diverse areas, including, e.g. COVID-19
structural analysis, DNA/RNA alignment, discovering the
Isomers, checking the code plagiarism. Unfortunately, popular
distance scores used in these applications, that scale over large
graphs, are not metrics, and the computation usually becomes
NP-hard. While, fuzzy measurement is an uncertain
representation to apply for a polynomial-time solution for
undirected multigraph isomorphism. But the graph
isomorphism problem is to determine two finite graphs that are
isomorphic, which is not known with a polynomial-time solution.
This paper solves the undirected multigraph isomorphism
problem with an algorithmic approach as NP=P and proposes a
polynomial-time solution to check if two undirected multigraphs
are isomorphic or not. Based on the solution, we define a new
fuzzy measurement based on graph isomorphism for topological
distance/structural similarity between two graphs. Thus, this

paper proposed a fuzzy measure of the topological distance
between two undirected multigraphs. If two graphs are
isomorphic, the topological distance is 0; if not, we will calculate
the Euclidean distance among eight extracted features and
provide the fuzzy distance. The fuzzy measurement executes
more efficiently and accurately than the current methods.

Index Terms—Fuzzy measurement, topological structure,
graph isomorphism, undirected multigraph, polynomial-time
solution, permutation theorem, equinumerosity theorem,
multiple vertex/edge adjacency matrix

I. INTRODUCTION

The topological data is one of the most useful information
which a graph could carry. Graph similarity and the related
problem of graph isomorphism have various applications in
big data analytics, data mining, machine learning, pattern
recognition and artificial intelligence [1-15]. Measuring the
similarity in terms of structure is essential for graph matching,

A Fuzzy Theory Based Topological Distance
Measurement for Undirected Multigraphs

978-1-7281-6932-3/20/$31.00 ©2020 IEEE

graph searching, and graph mining. Topological
distance/similarity distance is defined as follows: given two
graphs, their distance/similarity can be recognized as a score
quantifying their structural differences in a metric space. The
range of topological distance is [0, 1], and it satisfies the
triangle inequality. Unfortunately, a measurement of
topological distance is often computationally costly. For
example, the chemical and CKS [1] are NP-hard while they
have important properties. The distance should be zero if and
only if the graphs are isomorphic, and they are capturing
global structural similarities between two graphs. However,
finding an optimal permutation P is notoriously hard [1-15],
graph isomorphism, which is equivalent to determine if there
exists a permutation P s.t. AP = PB, is famously a problem
that is neither known to be in P nor shown to be NP-hard [1-
15] in the past. The most stringent form of exact graph
matching--graph isomorphism, this condition must hold, that
is, all the mapping must be a bijection in both directions.
Graph isomorphism is challenging and critical in many
applications, especially in various scientific areas. To date,
there are no bibliography sources of polynomial-time graph
isomorphism matching algorithms known for the general case
except our recent contributions [16]. Previous isomorphism
algorithms always suffer from the enormous computational
complexity of analysis methods. In our recent works in [16]
based on Permutation Theorem and Equinumerosity
Theorem, undirected simple graph isomorphism has been
approved to be P, which constructs a good fundamental for
this paper.

A. Undirected Multigraph
A Multigraph, with the counterpart of a simple group, could

be with multiple edges and several loops. For an undirected
graph, if there are more than one undirected edge associated
with a pair of vertices, these edges are called parallel edges,
as the edges 4 and 9 of graph in Fig. 1. If there is one edge
of which has the starting node and the ending node are the
same node, the edge is called loop, as the edges 1 of graph in Fig. 1. Suppose there are four undirected multigraphs , , , shown in Fig. 1. Multigraphs could have loops
that allow an edge that connects a vertex to itself. Graphs
with parallel edges and/or loops are called a multigraph in this
paper.

B. Graph Isomorphism
Graph is isomorphic to graph (denoted by ≅)

if and only if there exists a bijection : () → () such
that for any two vertices , ∈ (), (,) ∈ (), if
and only if ((), ()) ∈ (). As shown in Figure 1, the
following two multigraphs and are isomorphic. One of
the vertex correspondences is 1-2, 2-1, 3-6, 4-4, 5-3, 6-5.

C. Multigraph Isomorphism
Multigraph isomorphism has opened a wide area of

extensive research due to its well-known NP-complete nature
and nondeterministic polynomial-complete [17]. In exact
graph matching, if there exists a bijective mapping among the
vertices and edges on them; Thus, each pair of two isomorphic

graphs share a common structure. A multigraph may also
contain directed and undirected edges. Multigraphs are more
generic than simple graphs. The simple graphs usually are not
rich with multi-edge information, while multigraph permits
multiple edges/relations between a pair of vertices. And many
real-world datasets can be modeled as a network with a set of
nodes interconnected with each other with multiple relations.
So, the crucial difference is to capture the multi-edge
information. This problem appears naturally in various
contexts of DNA and molecule structure [18-20]. In this
paper, we are addressing a more generic problem (i.e.
multigraph with undirected edges and unlabeled vertices).

The contributions of this paper are as follows: 1) we find a
solution for multigraph isomorphic problems in conditions of
undirected edges and unlabeled vertices. 2) a fuzzy
topological distance measurement is also proposed.

II. THE COMMON SETTING IN THIS PAPER
This section is devoted to reviewing some relevant

concepts.

A. Vertex and Edge Labeling Method for Multigraph
Two multigraphs with unique labels are generally taken

values in positive integer range for subscript of vertices , , … , where is the number of the graph vertices and
natural number, used only to identify the vertices [16]
uniquely, we call , , … , the vertex label. Similarly,
two multigraphs with unique labels are generally taken values
in positive integer range for subscript of edge, , , … , where n is the number of the edges of the graph
and natural number, used only to identify the edges uniquely,
as , , … , are the edge labels [16] shown in Figure 1.

B. MultiGraph Isomorphism Problem
Definition 1 Multigraph Isomorphism based on edge
structure: Two isomorphic multigraphs and is a
bijective mapping , which exists the vertices of to the
vertices of correspondingly. That keeps the "edge
structure" in the case that there is an edge between vertex
and vertex in if and only if there is an edge between () and () in [3]. In this paper, we use a vertex and
edge representation method [16] to label the multigraph. For
example, in Figure 1, the array of the vertex for will be

= , , , , , , and the array of the vertex for
will be = , , , , , . The array of an edge for
will be = , , , , , , , , and the array of
an edge for will be = , , , , , , , , .

C. Virtual nodes for multigraph
To handle the loop and parallel edges, especially in the

multigraph, we build up a virtual node system to identify the
different edges. For example, we assign four virtual nodes to
node as , , , . Node has three edges
including one loop, and therefore it will have four virtual
nodes. Thus, in the vertex adjacency matrix, , = 1 , , = 1, , = 1 shown in Figure 2. For the parallel

edges between node 2 and node 5, we build two pairs of
virtual nodes as and for edge 4, and and for
edge 9 in Figure 3.

III. MULTIPLE VERTEX AND EDGE ADJACENCY MATRIX
REPRESENTATION METHOD

A. Vertex adjacency matrix representation method
The multiple vertex adjacency matrix is a Boolean square

matrix that represents a finite multigraph. Elements (valued 0
and 1) in the matrix denote whether pairs of vertices are
connected with each other or not in the graph. For example,
in a graph , is adjacent with , , and . The multiple
node adjacency matrix is a Boolean square matrix, which
represents a finite multigraph. The elements (valued 0, 1, 2,
…, n, where n is a non-negative integer) in the matrix denote
whether pairs of nodes are connected with each other or not
in the multigraph. For example, in the graph , are
adjacent with , , . Then, in the vertex adjacency
matrix, = 1 , = 1, = 1 . The virtual node
representation for loop is shown in Fig. 2. And the virtual
node representation for parallel edges is shown in Fig. 3. The
vertex adjacency matrix for node 1 in is shown in Figure
4.

 (a). Node 1 in .

(b). Four virtual nodes in the vertex adjacency
matrix.

Figure 2. Virtual node representation for loop.

 (a). Parallel edges in .

(b). Two pairs of virtual nodes in the
vertex adjacency matrix.

Figure 3. Virtual node representation for parallel edges.

 0 1 0 0 0 0

 1 0 0 0 0 0

 0 0 0 0 1 0

 0 0 0 0 0 1

 0 0 1 0 0 0

 0 0 0 1 0 0

Figure 4. Vertex adjacency matrix for Node 1 in .

B. Edge adjacency matrix representation method for
multigraph

The multiple edge adjacency matrix is a Boolean square
matrix, which represents a finite multigraph. The elements
(valued 0, 1, 2, …, n, where n is a non-negative integer) in the
matrix denote whether pairs of edges are connected with each
other or not in the multigraph. For example, in the graph ,

 are adjacent with , , , , , Then, in the edge
adjacency matrix, = 1, = 1, = 1, = 1. For
any parallel edges shown in Figure 5 or loop shown in Figure
6, we need to count twice in the edge adjacency matrix. The
edge adjacency matrix for is shown in Figure 7.

 2

Figure 5. Edge adjacency
matrix for edge 1 as a loop in

 0 2
 2 0

Figure 6. Edge adjacency matrix for
edge 4 and 9 as Parallel edges

between Node 2 and Node 5 in .

 (a).

 (b).

 (c).

 (d).

Figure 1. Four undirected multigraphs , , , .

Row sum

for each

edge

Squared sum

of row sum

of each node

 2 2 2 0 0 0 0 0 0 6 36

 2 0 1 1 0 1 0 0 1 6 36

 2 1 0 1 1 0 0 0 1 6 36

 0 1 1 0 1 1 0 0 2 6 36

 0 0 1 1 0 0 1 1 1 5 25

 0 1 0 1 0 0 1 0 1 4 16

 0 0 0 0 1 1 0 1 0 3 9

 0 0 0 0 1 0 1 0 0 2 4

 0 1 1 2 1 1 0 0 0 6 36

Sum 44 234

Figure 7. Multiple edge adjacency matrix for Graph .

C. Triple tuple method
Triple Tuple for multigraph has been defined as in a

multigraph G with the number of nodes is N, and the number
of edges is . We create a triple tuple for each edge = (k, ,), where = 1, 2, … , . Note as a starting node and as an ending node are two nodes for edge . For one
node, in order to represent different edges, we create the
different virtual nodes as . The first represents the label
of the node, the second represents the order of the virtual
node. For example, the triple tuples are produced to represent
the finite multigraph shown in Table 1. The general format
of triple tuple for a multigraph is shown in Table 2.

Table 1. The triple tuple of graph .
Edge Node Node

1 11 12
2 12 31
3 13 21
4 32 22
5 23 51
6 33 41
7 52 42
8 43 61
9 34 24

Table 2. Triple tuple in general format.

Edge Node Node
1 1 1
2 2 2
3 3 3
4 4 4
… … …

m-2 (− 2) (− 2)
m-1 (− 1) (− 1)
M

IV. A POLYNOMIAL-TIME UNDIRECTED MULTIGRAPH
ISOMORPHISM ALGORITHM

In this section, we present the algorithm execution process
and analyze the computational complexity of the proposed
isomorphism algorithm. The graph isomorphism algorithm is
based on the Permutation Theorem and Equinumerosity

Theorem [16]. The spatial complexity of the worst case is n^6,
where n is the number of vertices [16] which is shown in the
following pseudocode:
(1) Generate four matrices of vertex adjacency matrix and
edge adjacency matrix for two graphs. (The numbers of nodes
and edges must be equivalent)
(2) Determine if the row sum of vertex adjacency matrix and
edge adjacency matrix of two graphs is a permutation of
another or not by the Permutation Theorem. If not, they are
not isomorphic.
(3) Singular value decomposition of four matrices.
(4) Determine if the eigenvalues of four matrices are
equinumerous or not by Equinumerosity Theorem. If not, they
are not isomorphic.
(5) Compute the maximal linearly independent set of left-
singular vectors and right-singular vectors according to the
multiple eigenvalues for eight matrices and check if they are
equinumerous, if not, they are not isomorphic. If yes, they are
isomorphic.
We rewrite the definition 1 as follows: and are
isomorphic if and only if is a bijective map of , and
is a bijective mapping of . This paper uses our permutation
theorem [16] and equinumerosity theorem to develop a
polynomial-time algorithm for multigraph isomorphism. The
core idea is that we use permutations to act on a structured
object (graph) by rearranging their components (vertex and
edge). The algorithm can check if two vertex sets based on
multiple vertex adjacency matrix and two edge sets based on
multiple edge adjacency matrix are respectively bijective. For
both vertex and edge arrays of row/column sum based on
multiple vertex and edge adjacency matrices, if one array is a
permutation of another, the corresponding two multigraphs
could be isomorphic. The following four graphs as , , ,

 are used as an undirected multigraph example in this paper.
From the observation, we could see that , and are
isomorphic, while , and are not isomorphic.

V. FUZZY THEORY BASED DISTANCE MEASUREMENT
BETWEEN TWO MULTIGRAPHS

In the problem of graph isomorphism, there are two
conditions of distance: 0 and 1, for every two multigraphs.
This representation, however, fails to show a real distance
between two multigraphs. The real distance could be able to
display the grade of differences, whose range should be [0,1]
rather than only 0 and 1. This section, therefore, proposes a
fuzzy theory-based distance measurement that extends the
distance of two multigraphs from 0, 1 to [0, 1]. Due to the
multigraphs that could have infinite edges and nodes, to
simplify our question, we only focus on the fine measurement
between two multigraphs with the equivalent number of edges
and nodes. The isomorphism checking for four graphs are
shown in Appendix A. The two applications are shown in
Appendix B. The more detailed steps of the proposed method
are as follows:

(1) Generate the triple tuple sets for two multigraphs
and . If there is an isolated node, remove it. The number of
isolated nodes must be the same. If not the same, produce that

for graphs and , they are not isomorphic. After the
removing of the isolated node, the number of nodes and the
number of edges must be the same, if not same, produce that
for multigraphs and , they are not isomorphic.

(2) Generate the array of row sum of the multiple vertex
adjacency matrix for and and produce two sets of an

array as , . Check if = ; if so, go

to the next step; if not, products that they are not isomorphic.

(3) Check if () = () , If so, go to the

next step; if not, produce that graph and are not
isomorphic.

(4) Continue to compute until n step and check if () = () . If not, produce the results that

graph and are not isomorphic.

(5) Generate the array of row sum of the multiple edge

adjacency matrix and produce two sets of an array as ,

. Compute and check if = ; if so, go

to the next step; if not, produces that graph and are not
isomorphic.

(6) Compute and check if () = () . If

not, produce the results that multigraph and are not
isomorphic.
(7) Continue to compute until m step and check if () = () . If not, produce the results that

graph and are not isomorphic. Until the m-th step.
(8) Singular value decomposition of four matrices.
(9) Determine if the eigenvalue of four matrices are
equinumerous by Equinumerosity Theorem. If not, they are
not isomorphic.
(10) Compute the maximal linearly independent set of left-
singular vectors and right-singular vectors according to the
multiple eigenvalues for four matrices and check if they are
equinumerous, if not, they are not isomorphic.

The distance based on Permutation Theorem [16] will
count for 0.5 weight (steps 1 to 7). If two graphs are
isomorphic according to the Equinumerosity Theorem [16]
(steps 8-10), the 0.5 will time 0. Otherwise, the 0.5 will time
the Euclidean distance based on Equinumerosity Theorem
[20]. The mathematical proof is shown in Appendix C.1 and
C.2. Therefore, the range of the topological distance should
be [0, 1]. Topological distance between two multigraphs = Euclidean distance between the original multigraph and another multigraphEuclidean distance two the original multigraph and the zero multigraph .

The value of the topological distance is the membership
value for every pair of two multigraphs. Then, the formula
above is the corresponding membership function. We,
therefore, have the fuzzy sets for every pair of two
multigraphs, as (multigraph , multigraph , membership
value/ topological distance). The representation (multigraph

, multigraph , membership value/ topological distance)

implies how much two multigraphs are isomorphic. It
supplies a strict definition of graph isomorphism. In real
applications, the definition of graph isomorphism will be
flexible and can vary with different conditions of fuzzy sets.

To be more flexible, the membership value can be changed
according to the initial graph isomorphism results. Firstly,
initial membership value is assigned as the topological
distance between two multigraphs; then, we have an initial
fuzzy set for every pair of two multigraphs. Secondly, the
judgments that whether two multigraphs are isomorphic or
not are kept as the initial graph isomorphism results. Thirdly,
we transfer current membership value to new membership
value, that is, Updated membership value as the follows Euclidean distance between the original multigraph and another multigraph −Euclidean distance two the original multigraph and the zero multigraph − ,
where e is an adjustable factor. The adjustable factor e can be
computed by the mean square deviation of the membership
value and the value of isomorphic or not, which represents as
0 or 1, respectively. Finally, we can have satisfying
membership values with user-defined maximal adjustable
factors. The results of four graphs are shown in Appendix A.
Furthermore, a real-time application is shown in Appendix B
example 1 and a large-scale experiments related to COVID-
19 are shown in Appendix B example 2.

VI. CONCLUSION
This paper proposes a fuzzy measurement of the

topological distance between two multigraphs. A polynomial-
time settlement to verify if two multigraphs are isomorphic is
put forward as well. Three new representation methods of a
multigraph as multiple vertex adjacency matrix, and multiple
edge adjacency matrix are proposed. The theoretical
significance of our algorithm is that it offers the complicated
mathematical problem could be addressed in a reasonable
polynomial time which has existed for years. Several practical
purposes could be achieved. In addition, in computer science,
a series of nodes strung together by connections known as
edges is a network; in the real world, the set of social network
users and their interconnections make up a graph are typically
large, with millions of nodes and billions of edges. To
recognize social communities or groups effectively and
efficiently, which is normally onerous to query matches, so
the proposed algorithm can relieve the complexity of
computing. The algorithm can be applied for applications as
quickly as searching chemical databases, performing
fingerprint or facial recognition; is that the same molecule,
fingerprint or face.

REFERENCES
[1] Jose Bento, Stratis Ioannidis, “A family of tractable graph distances.”

https://arxiv.org/abs/1801.04301
[2] Cordella, Luigi P., et al. "Performance evaluation of the VF graph

matching algorithm." Proceedings 10th International Conference on
Image Analysis and Processing. IEEE, 1999.

[3] Cordella, Luigi Pietro, et al. "An improved algorithm for matching
large graphs." 3rd IAPR-TC15 workshop on graph-based
representations in pattern recognition. 2001.

[4] Mendivelso J, Kim S, Elnikety S , et al. "Solving graph isomorphism
using parameterized matching [M], String Processing and Information

Retrieval. " Springer International Publishing, 2013.
[5] Schmidt, Douglas C., and Larry E. Druffel. "A fast backtracking

algorithm to test directed graphs for isomorphism using distance
matrices." Journal of the ACM (JACM) 23.3 (1976): 433-445.

[6] Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., and Ferro, A.
(2013). "A subgraph isomorphism algorithm and its application to
biochemical data. " BMC Bioinformaticss, 14(Suppl 7) :S13.

[7] Ellingham M N, Wormald N C. "Isomorphic factorization of regular
graphs and 3-regular multigraphs." Journal of the London
Mathematical Society, 1988, 2(1): 14-24.

[8] Luo Shifeng, "Digraph’s Isomorphism." Journal of Guangxi
University, 1998-04.

[9] Frank O, Shafie T. "Complexity of families of multigraphs. " JSM
Proceedings, Section on Statistical Graphics, Alexandria, VA:
American Statistical Association, 2012: 2908-2921.

[10] Broersma H, Li X. "Isomorphisms and traversability of directed path
graphs." Discussions Mathematica Graph Theory, 2002, 22(2): 215-
228.

[11] Xie K, Wu W. "An optimization scheme for determining isomorphism
of digraphs or multigraphs. " Journal of Mian yang Normal University,
2013 (5): 18.

[12] Fu J. Linear matching-time algorithm for the directed graph
isomorphism problem. In: Staples J., Eades P., Katoh N., Moffat A.
(eds) Algorithms and Computations. ISAAC 1995. Lecture Notes in
Computer Science, vol 1004. Springer, Berlin, Heidelberg.

[13] Babai, László. "Graph isomorphism in quasipolynomial time
[extended abstract]." ACM Sigact Symposium on Theory of
Computing ACM, 2016:684-697.

[14] McKay, Brendan D. "Practical graph isomorphism." (1981): 45-87.
[15] McKay, B. D. and Piperno, A. (2014). Practical graph isomorphism,

ii. Journal of Symbolic Computation, 60:94–112.
[16] J. He, J. Chen, G. Huang, J. Cao, Z. Zhang, H. Zheng, P. Zhang, R.

Zarei, F. Sansoto, R. Wang, Y. Ji, W. Fan, Z. Xie, X. Wang, M. Guo,
C. Chi, P. Souza, J. Zhang, Y. Li, X. Chen, Y. Shi, D. Green, T. Kersi,
A. Zundert, Polynomial-time algorithm for simple undirected graph

isomorphism, Concurrency and Computation Practice and Experience.
(DOI: 10.1002/cpe.5484)

[17] Balpande, Vijaya, and Anjali Mahajan. "An approach of graph
isomorphism detection based on vertex-invariant." International
Journal of Advanced Studies in Computers, Science and Engineering
4.4 (2015): 1.

[18] Guangwu, Liu, et al. "Algorithm of graph isomorphism with three-
dimensional DNA graph structures." Progress in Natural Science 15.2
(2005): 181-184.

[19] Jonoska, Natasa, Stephen A. Karl, and Masahico Saito. "Three-
dimensional DNA structures in computing." BioSystems 52.1-3
(1999): 143-153.

[20] Jing, He et al. "A polynomial time solution for mixed graph
Isomorpherism." submitted to IEEE transaction on intelligent
computing, 2020.

[21] Feng Li, Tao Lu, "Graph Isomorphism Determination and
Applications, Journal of Fudan University (Natural Science). " 45(4):
480-484, 2006.

[22] Vladimir, Balaz, Vladimir, Kvasnicka and Jiri Pospichal, "Two
Metrics in a Graph Theory Modeling of Organic Chemistry. " Discrete
Applied Mathematics, 35 (1992): 1-19.

[23] Zang Wei, Li Feng, "Isomorphism determination algorithm for
arbitrary graphs: feature vector method, Journal of Computer-Aided
Design and Graphics." 19-2, 2007(2)163-167.

[24] https://blog.csdn.net/Banach_I/article/details/51078451, access at
1/26/2020

[25] DNA Sequencing, https://en.wikipedia.org/wiki/DNA_sequencing
accessed 4/7/2020

[26] COVID-19 DNA sequencing, https://platform.gisaid.org/ accessed
4/7/2020

APPENDIX A ARRAYS OF ROW SUM FOR FOUR GRAPHS’ EDGE
ADJACENCY MATRICES

APPENDIX B APPLICATIONS
Example 1: The proposed method can be easily extended

to the directed/weighted multigraph in [20]. In organic
chemistry, the problem of whether the molecular structure of
the faction [21][22] is isomers as follows: From Figure 8 to
10, we have three kinds of molecular structure of the faction.

Figure 8. The first molecular structure of the organic matter 1 to be
determined [21, 22].

Figure 9. The second molecular structure of the organic matter 2 to be

determined [21, 22].

G
1

Row
sum
for
each
edge

Squared
sum of
row sum
of each
node

G
2

Row
sum for
each
edge

Squared
sum of
row sum
of each
node

G
3

Row
sum
for
each
edge

Squared
sum of
row sum
of each
node

G
4

Row sum
for each
edge

Squared
sum of
row sum
of each
node

6 36

6 36

6 36

6 36

6 36 6 36 6 36 5 25

6 36 6 36 6 36 6 36

6 36 6 36 6 36 5 25

5 25 5 25 5 25 5 25

4 16 4 16 4 16 4 16

3 9 3 9 3 9 4 16

2 4 2 4 2 4 2 4

6 36 6 36 6 36 5 25
S
u
m

44 234
S
u
m

44 234
S
u
m

44 234
S
u
m

42 208

The two arrays of row sums of both vertex and edge adjacency matrix of G1
and G2 are permutated. The eigenvalue, the maximally independent system of
left and right singular vector of the corresponding P multiple eigen value of
G1 and G2 are equinumerous. The distance between G1 and G2 is zero, say,
they are isomorphic. The two arrays of row sums of edge adjacency matrix of
G3 and G4 are not permutable, G3 and G4 are not isomorphic. The distance

between them is () () = 0.012.

Figure 10. The third molecular structure of the organic matter 3 to be
determined [21, 22].

From Figure 8 to 10, we change the molecular structure into

the graph format. A single line indicates a covalent bond, a
double line indicates two covalent bonds, and a circle in the
benzene ring indicates an aromatic bond, which can be 1.5
valence. When comparing, the cesium atom is omitted, and
the above organic matter can be established according to the
following rules: (1) the covalent bond between C atoms is
represented by a one-to-one correspondence of undirected
edges, and the weight is 1 (the weight within the benzene ring
is 1.5); (2) The covalent bond between a helium atom and the
other atoms are represented by a directed edge, the direction
is directed to other atoms, and the weight is the number of bits
pointed to the atom in the periodic table, i.e., N-7, CL-17, BR-
35.

The figure is a multigraph and mixed with weighted edges
and directed edges with 19 vertices and 22 edges. Using the
method described in this paper, it can be determined that the
matter 1, 2 and 3 have the different structures, and mater 1
and 2 are isomorphic, and the three sets of tests take less than
0.001 seconds (CPU 2.21 GHz - Intel(R) Core(TM) i7-
6650U, 16 GB of RAM), which shows that the proposed
method is effective. In fact, the organic matter of Figures 8, 9
are 2, 6-dibromo-4-chloro-1, 3, 5 triazabenzene, and the
organic matter of figure 10 is 4-dibromo-3-chloro-1, 3, 5
triazabenzene. The three molecular formula is
C11H12N5ClBr2, but they have a different molecular structure.
The topological distance between the given figures is
0.003383 (distance = ()). The
calculated distance opens a new page for organic chemistry in
terms of chemical distance and reaction distance [23].
Example 2: Large data set experiments for DNA sequence
with COVID-19
We have conducted the similarity measurement of RNA
sequences for COVID-19 carried by 4,489 patients [25, 26].
The related distance is over 0.9.
Appendix C.1 Mathematical Proof for Permutation
theorem [16].

To check if two arrays are a permutation of another one
such as #1 = {2, 3, 3, 2, 2, 3, 3, 2} and #2 ={2, 3, 2, 3, 2, 3, 2, 3}. We calculate (#1) = 2 +3 + 3 + 2 + 2 + 3 + 3 + 2 = 20 and (#2) = 2 +3 + 2 + 3 + 2 + 3 + 2 + 3 = 20, ∑(#1) = 2 +3 + 3 + 2 + 2 + 3 + 3 + 2 = 50 and ∑(#2) = 2 + 3 + 2 + 3 + 2 + 3 + 2 +3 = 50, ∑(#1) = 2 + 3 + 3 + 2 + 2 + 3 +3 + 2 = 140 and ∑(#2) = 2 + 3 + 2 + 3 +2 + 3 + 2 + 3 = 140, ∑(#1) = 2 + 3 +

3 + 2 + 2 + 3 + 3 + 2 = 388 ∑(#2) = 2 + 3 + 2 + 3 + 2 + 3 + 2 + 3 = 388, ∑(#1) = 2 + 3 + 3 + 2 + 2 + 3 + 3 +2 = 1100 and ∑(#2) = 2 + 3 + 2 + 3 + 2 +3 + 2 + 3 = 1100, ∑(#1) = 2 + 3 + 3 +2 + 2 + 3 + 3 + 2 = 3172 ∑(#2) = 2 + 3 + 2 + 3 + 2 + 3 + 2 + 3 = 3172, ∑(#1) = 2 + 3 + 3 + 2 + 2 + 3 + 3 +2 = 9260 and ∑(#2) = 2 + 3 + 2 + 3 + 2 +3 + 2 + 3 = 9260, ∑(#1) = 2 + 3 + 3 +2 + 2 + 3 + 3 + 2 = 27268 and ∑(#2) = 2 + 3 + 2 + 3 + 2 + 3 + 2 + 3 = 27268. Then
we check if ∑ #1 = ∑ #2 , if ∑(#1) = ∑(#2) , if ∑(#1) = ∑(#2) , if ∑(#1) = ∑(#2) , if ∑(#1) = ∑(#2) , if ∑(#1) = ∑(#2) , if ∑(#1) = ∑(#2) , if ∑(#1) = ∑(#2) , if and only if they are
equal respectively, we could draw a conclusion that array #1
is a permutation of array #2.

Permutation Theorem. Given two natural number sets of
arrays and , = { , , … , }， = { , , … , },
If and only if ∑ = ∑ , = ,

= , …, =
, = , ∑ = ∑ ,

 is a permutation of and vice versa, where ≥ 1.
Assertion 4-1: Given two arrays A and B, = , , … a ， = , , … ， If and only if ∑ = ∑ , and

= , = , …, =
, = , ∑ = ∑ ,

the sequence of the two arrays are bijective and equivalent.
(where ≥ 1 and is the integer and both and ≥ 1 and
are integers).”

Mathematical proof for Theorem 4. The “only if” of the
theorem (necessary condition) is simple because permutation
array group is bijective. They always have the n equivalent
arrays as ∑ = ∑ , and = ,

= , …, =
, = , ∑ = ∑ ,

if two arrays are bijective. The “if” (sufficient condition)
requires the following three main lemmas from fundamental
theorem of arithmetic for n = 2. That is, Given two natural
number sets of arrays and , = { , }， ={ , }, If and only if + = + , and + = + , A is a permutation of B and vice versa. (n = 2
case)

If + = + and + = + . Then (a + a) = (b + b) , + + 2 = + + 2 , then we have = .
If there is any , , , equals to 1, n=2 case holds. The

proof is as follows. Suppose = 1, we have 1 + = + and 1 + = + . Thus = , 1 + =+ , 1 + (− 1) = , (− 1)(− 1) = 0.
Therefore, either = 1 or = 1. When = 1, we have 1 + = 1 + and 1 + = 1 + , = . When

= 1, we have 1 + = 1 + and 1 + = 1 + , = . Therefore, n = 2 case holds.
If , , , is a positive integer and larger than

1, according to the fundamental theorem of arithmetic, , , , either is a prime number itself or can be
represented as the product of prime numbers; moreover, this
representation is unique, up to (except for) the order of the
factors. Then = ⋯ ⋯ = ⋯ ⋯ , where = ⋯ , = ⋯ , = ⋯ , = ⋯ ,
where and are prime. Assume that (≠ 0) and n
are integers. We say that m could be divided by if is a
multiple of , namely, if there exists an integer parameter
such that = . If m divides , it can by represented as
| . The order of the factors will not affect the results. We
have | , then | ⋯ ⋯ .
divides at least one of ; then if we rearrange , we could
have | . Because is prime, factors are 1 or ; then
we have = . Now remove it from both sides of the
equation. ⋯ ⋯ = ⋯ ⋯ .

Repeat the previous proof. divides at least one of ;
then if we rearrange , we have | . Because is prime,
factors are 1 or ; then we have = . Then we remove
it from both sides of the equation. ⋯ ⋯ = ⋯ ⋯ .

Continue this process until all of and are removed. If
all of are removed, the left side of the equality is 1, so there
is no left . Similarly, if all of are removed, the right side
of the equality is 1. The number of is equal to . Then we
have proved, = ⋯ ⋯ = ⋯ ⋯ , all of and are prime, = , = , rearrange , we have = , = , = , ⋯ = ⋯, = ,
thus = and = , because and are
commutative, and and are commutative. There could
be = and = , Then the set of and is a
permutation of the set of .

Next, we will prove the uniqueness of this condition. That
is, there exists a quaternary and quadratic system of equations
(1) as

+ = + + = + (1)

is a system of two equations involving the four variables , , , , where all variables are natural numbers. A
solution to this system of integer equations is an assignment
of values to the variables such that all the equations are
simultaneously satisfied. Two solutions to the system above
are given by:

solution set A: = = (2)

solution set B: = = ∪ is either solution A or solution B, which is a solution of
(1). since it makes all two equations valid. The word "system"
indicates that the equations are to be considered collectively,
rather than individually87. Because + = + , − = − , then we have (−)(+) =(−)(+) . Because + = + , then − = − .

If (2) is not unique, there must exist another four , , , , holds (1), but belong to ∪ = ̅ ∩ .
Suppose k is a integer (k≠ 0), because (+) + (−

)= (+) + (−), then we could construct =+ , = − , = + , = − , where ≠ , ≠ , ≠ , ≠ . + = +
holds. Because () + () = (+) + (−) = + + 2 + 2 − 2 and() + () = (+) + (−) = + + 2 + 2 − 2 .
To make () + () = () + () , we must have + + 2 + 2 − 2 = + + 2 + 2 −2 , and then − = − . Because − = −

, then we have = , and then − = − , = . could be equal to , and this result is in a
contraction since ̅ ∩ . Therefore, the initial assumption
as (2) is not unique must be false. Thus, n = 2 case is
approved.

Therefore, Theorem 4 where n = 2 has been proved. Our
mathematically proof with ≥ 3 is proved by the following
induction-based method.

Questions for n = 3, n = 4, …., and = for extended
permutation theorem.

When = 3, if and only if + + = + + , + + = + + , and + + = + + , the set of , , is a
permutation of the set of , , .

When = 4, if and only if + + + = ++ + and + + + = + + + , + + + = + + +
, and + + + = + + +
, the set of , , , is a permutation of the set of , , , . = is established, if and only if + + + ⋯+ = + + + ⋯+ and + + +⋯+ = + + + ⋯+ , …, ++ + ⋯+ = + + + ⋯+ the

set of , , ,⋯ is a permutation of the set of , , ,⋯ , .
Mathematical Proof: Let (− 1) be the statement of

permutation theorem, we give a proof by induction on N.
Base case. The statement holds for n = 1 and n = 2. (1)

is easily seen to be true, and (2) is true by the above-
mentioned proof when n = 2.

Inductive Step. The following steps will show that for any − 1 ≥ 0 that if (− 1) holds, then also () holds.
This can be done as follows. Assume the induction
hypothesis that (− 1) is true (for some unspecified value
of − 1 ≥ 2), that is, if and only if + + + ⋯+

= + + + ⋯+ and + + +⋯+ = + + + ⋯+ , …, ++ + ⋯+ = + + + ⋯+ , the set of , , ,⋯ is a
permutation of the set of , , ,⋯ , .

Using the induction hypothesis, the permutation theorem
as (− 1) can be written to: if and only if + + + ⋯+ = + + + ⋯+ and ++ + ⋯+ = + + + ⋯+

, …, + + + ⋯+ =+ + + ⋯+ , there must exist a
permutation matrix , where … = … . For … 00 1 =… =… , where 00 1 is a
square binary matrix that has exactly one entry of 1 in each
row and each column and 0s elsewhere. Because + + + ⋯+ = + + + ⋯+ and + + + ⋯+ = + + + ⋯+ , then we
have = , thus, … 00 1 = … . Then, the set of , , ,⋯ is a permutation of the set of , , ,⋯ , . Therefore, P(N) is true, that is, if and only
if + + + ⋯+ = + + + ⋯+ and + + + ⋯+ = + + + ⋯+

, …, + + + ⋯+ = + + + ⋯+ , the set of , , ,⋯ is a permutation
of the set of , , ,⋯ , . Thereby it shows that indeed
P(N) holds. Since both the base case and the inductive step
have been performed by mathematical induction, the
statement P(N) holds for all natural number N.
Appendix C.2 Mathematical Proof for Equinumerosity
theorem.
1. SINGULAR VALUE DECOMPOSITION OF
VERTEX ADJACENCY MATRIX AND EDGE
ADJACENCY MATRIX

To check if two arrays are equinumerous, we need to know
how many elements are equal in one array. For example,
Array 1#= [1, 1, 2, 2, 2, 3, 3, 3, 3] and Array 2#= [4, 4, 5, 5,
5, 6, 6, 6, 6]. There are two elements as [1, 1], [4, 4], three
elements [2, 2, 2], [5, 5, 5], and four elements [3, 3, 3, 3], [4,
4, 4, 4] are equal. The corresponding format in term of
equinumerosity is then rewritten as: Array 1#= [21, 22, 31, 32,
33, 41, 42, 43, 44] and Array 2#= [21, 22, 31, 32, 33, 41, 42,
43, 44]. They are equinumerous.

Let A be a real symmetric matrix of n*n, so there is a
singular value decomposition such that = ∗, is an ∗ unitary matrix, Σ is an ∗ real diagonal matrix, ∗is
a conjugate transpose of , and is also an ∗ unitary
matrix. The element , on the diagonal of is the singular
value of . For singular values ranging from large to small,
Σ can be uniquely determined by A, of course, U and V

cannot be determined. A non-negative real number is a
singular value of only if there are unit vectors and

 unit vectors as follows: = σ and ∗ = σ , where
 and are the left and right singular vectors of ,

respectively. For the above singular value decomposition: = ∗. The elements on the diagonal of the matrix are
equal to the singular values of . The columns of and
are the left and right singular vectors, respectively.
Therefore, the above definition of SVD states:
- A set of orthogonal bases U consisting of the left

singular vectors of can always be found in .
- A set of orthogonal bases V consisting of the right

singular vector of can always be found at .
Without loss of generality, the columns of and the rows

of ∗ are defined and used in this paper, which are called left
and right singular vectors in this paper.

Definition 2 P-multiple eigenvalue. An -th order matrix
has eigenvalues. If there are eigenvalues are the same,
then these eigenvalues are called multiple eigenvalues.

Definition 3 A maximally independent vector set. It is
defined as: Let be a vector group, if it satisfies: (1) ,

, … , is linearly independent; (2) if any other vector in
the space can be expressed as a linear combination of
elements of a maximal set--the basis , , … , . Then
A set of vectors is maximally linearly independent if
including any other vector in the vector space would make
it linearly dependent.

Definition 4 A maximally independent vector system.
Under the linear transformation, the maximally linear
independent subset has been transferred to have only one 1
and others is 0. The current format of the original vector set is
called the maximally independent vector system.

Property 5 [24] Let A be a real symmetric matrix. There
exist an orthogonal symmetric matrix and a diagonal matrix

 such that = , where the diagonal element of is
the eigenvalue of and the column vector of is the
eigenvector of .
 Proof: By mathematical induction, it is obviously true for
first-dimension square matrices. Suppose the above
proposition be true for a square matrix with the dimension of − 1. Then for the dimension square matrix , it
obviously has at least one eigenvalue , and the eigenvector
corresponding to λ is , and is extended to a set of the
orthogonal basis of , and arranged into a matrix =[…]. Then there is = 00 (here = = 0, =) . Whereas is a real
symmetric matrix of dimension − 1, the orthogonal matrix

 is assumed such that = 0…0 , then 1 00 00 1 00 = 0…0 . Let be an

orthogonal symmetric matrix, = 1 00 . Since the

eigenvalues of and are the same, the eigenvalues
 of are also the eigenvalues of . Finally, it is only

necessary to prove that the column vector of is the
eigenvector of . Set = […] and substitute = 0…0 , then […] =[…], compared with each other, is the
eigenvector of .
2. EQUINUMEROSITY THEOREM

Property 6 [23][24] There must be corresponding
linearly independent eigenvectors for the eigenvalues λ of
the vertex adjacency matrix and edge adjacency matrix.
(Eigenvalue of the multiplicity of a real symmetric matrix
has exactly linearly independent eigenvector)

Proof: Lemma 1: For the general matrices, there are at
most linearly independent eigenvectors corresponding to
eigenvalues. For a certain eigenvalue , there are linearly
independent eigenvectors. The following proves that ≤ .
For them, using Schmidt's method to obtain m orthogonal

eigenvectors , , … , , | | = = …= . Extend it to

get a set of orthogonal basis , , … , ， , … , , and = [, , … , ， , … ,]. Then = 00 (It
can be seen from the form of this matrix that the eigenvalue λ
is at least dimensions). Since and have the same
eigenvalue, the dimension of the eigenvalue of A is ≥ .
Thus Lemma 1 is proved. According to the algebra theorem,
the total number of algebraic multiples of the th-dimensional
equation roots is , so the sum of the number of all linearly
independent eigenvectors to each eigenvalue ≤ , and
property 5 proves that there is n independent eigenvector for
the real symmetric matrices. That is, in the above inequality,
the equal sign holds. The condition that the equal sign is true
if there are exactly linearly independent eigenvectors
corresponding to -multiple eigenvalues.

Combining definitions 2, 3, 4 and property 5, 6, it is proved
that the rank of the maximally linearly independent subset ∗ / ∗ of left/right singular vector corresponding to the

-multiple eigenvalue is .
All of two graphs satisfied the permutation theorem as

above must have ∗ ∗ = ∗ ∗ , and = , =
, then = , = ， = , thus =

.
Property 7 Two graphs are isomorphic, if the eigenvalue

sequences of the vertex adjacency matrix and edge adjacency
matrix are equinumerous.

Lemma 2 Two sequences satisfying the permutation
theorem must be equinumerous. Nevertheless, the two
equinumerous sequences do not necessarily have the
permutation relations.

Property 8 [23][24] The two graphs satisfying the
permutation theorem must have the equinumerous
eigenvalues.

Equinumerosity Theorem. The two graphs are isomorphic,
if and only if the eigenvalues of the two graphs’ vertex and
edge adjacency matrices are equinumerous, and the
maximally linearly independent vector systems of the left and

right singular vectors corresponding to the -multiple
eigenvector are equinumerous.

To approve Equinumerosity theorem, the following
Lemma is put forward. Lemma 3 [23][24] ∗ and ∗ are
the right singular vector set for multiple eigenvalues for
graph and , respectively. For the elementary row
interchange operation matrix exchange matrix , if there exist ∗ , and = , then is invertible.

Proof: Rank ()=Rank()=Rank()= ≥Rank(),
according to the matrix theory, =
Rank()=Rank() ≤ min(Rank(), Rank()), so
Rank() ≥ , because of ≥ Rank(), then rank()= ,
therefore is invertible.

Lemma 4 [23][24] There exist the row interchange
matrix , and ∗ and ∗ satisfies = if and only
if they are equinumerous. Similarly, there exists the column
interchange matrix , and ∗ and ∗ satisfies =
if and only if they are equinumerous.

Proof: The necessary proof is obvious. For sufficient proof.
From definition 8, both the vector set and are
corresponding to the equinumerous sequence , then = Π = , = Π = , so = . ,

 (1 ≤ ≤), both , and are row interchange
operation matrix, then = , then = , it is still
the elementary row interchange matrix. Then the sufficient
proof is completed.

Lemma 5 Equinumerosity theorem for graph isomorphism.
If and have the equinumerous eigenvalue, and there

exist the elementary row interchange matrix ∗ which
satisfies: for every eigenvalue (multiplicity of) in and

, the corresponding right singular vector set ∗() and ∗() ,
there exist the square matrix ∗() and () () = () ,
for every eigenvalue (multiplicity of) in and , the
corresponding left singular vector set ∗() and ∗() , there
exist the square matrix ∗() and () () = () . Then
two graphs are isomorphic.

Proof: Both and are similar to the diagonal matrix ∧ (the element at the diagonal is the eigenvalue sequence).
Suppose there are different eigenvalue. Then,
 = ((), … , ()) ⋅∧⋅ ((), … , ()) … (3)
 = () , … , () ⋅∧⋅ () , … , () = (() (), … , () ()) ⋅∧⋅(() (), … , () ()) () … (4)

From Lemma 3, () is invertible; then () () could be
the linearly independent eigenvector of , substitute () in
(1) by () () , then: = (() (), … , () ()) ⋅∧⋅(() (), … , () ()) … (5)

Put (5) into (4), and = . If left singular vector set
also applies, then = . Under the same principle, for
edge adjacency matrix = , therefore two graphs
are isomorphic. Both Permutation and Equinumerosity
Theorem have laid the foundations for the algorithm in this
paper.

