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Abstract—This study presents data preprocessing and impu-
tation techniques for creating a model from medical sensor
data. We aim to solve the problem of creating a framework
to diagnose heart diseases with an incomplete and dirty data,
which is common with medical data. The medical dataset is
often incomplete and dirty due to its small size, imbalance
and many missing, false, inaccurate data. In this study, we
utilize the synthetic minority oversampling technique with the
combination of Tomek links to increase the size and eliminate the
imbalance of the dataset. We performed a number of experiments
and measurements on the Cleveland dataset and conducted a
comparative study of various prediction models with recent
algorithms in the literature. In order to process additional data
from Budapest, Zurich and Basel, we apply the technique of semi-
supervised pseudo-labelling, which means that the model has
been trained on unlabeled data and combined with labelled data
by predicting unlabeled values and making them pseudo-labelled.
Then, the same algorithm that we used for Cleveland dataset
was applied for the entire dataset. As the main classifier, Fuzzy
Random Forest technique was implemented. The final accuracy of
the approach proposed in this study is 93.4%, with the specificity
and sensitivity values of 96.92% and 89.99%, respectively, which
is superior to previous models included in the literature.

Index Terms—Fuzzy Random Forest, Pseudo-labelling, Semi-
Supervised Learning, SMOTE, Tomek, Multiple Imputation by
Chained Equations (MICE), Data Preparation, Heart Disease

I. INTRODUCTION

Heart disease is a disorder that affects the functioning of the
body’s blood-pump organ, including coronary artery heart dis-
ease (atherosclerosis), valvular heart disease, cardiomyopathy,
heart rhythm disturbances (arrhythmias) and heart infections.
These disorders lead to highly unpredictable heart attacks
(myocardial infarction or MI), which occur when a blood
clot appears and prevents the blood from flowing normally.
However, cardiac emergency situations can be predictable
through regular medical examinations. During these proce-
dures, it is possible to identify the main non-modifiable risk
factors, the major modifiable risk factors and the contributing
risk factors. The main non-modifiable risk factors are those
that cannot be changed, such as age, gender and heredity. The
main modifiable risk factors can be treated and controlled by
the patient. This group includes cigarette smoke, high blood
cholesterol, high blood pressure, physical inactivity, obesity
and diabetes. Other risk factors that play an important role
in heart disease are stress, alcohol, birth control pills and

sex hormones. All of those modifiable risk factors can be
controlled by the patient or medical facilities. Therefore, it
is essential to identify which factors have the greatest impact
on the individual and to treat them appropriately, [1].

In recent decades, medicine has developed dramatically,
but it is always difficult to anticipate a sudden disorder as
a heart attack, even for highly experienced professionals.
Recently, machine learning and deep learning algorithms have
begun to significantly help medical doctors identify and predict
dangerous diseases, including heart problems. However, one
of the challenges that machine learning faces in medicine are
the imbalance of data, numerous missing values and features,
uncertain data, and noisy features.

The purpose of this study is to address these challenges
and improve the performance of the series of the previous
studies using feature engineering along with semi-supervised
learning (SSL) approaches and creating new semi-synthetic
data using a real-life dataset which is available for the research
community. More specifically, the contributions of this article
are to explore the method of solving unbalanced data by
balancing minor and major classes, take the advantage of vast
unlabelled data using SSL, implement Fuzzy Random Forest
technique, contribute to the Basel, Budapest and Zurich heart
disease dataset and make it publicly available [2], manage
missing values, which is a common problem in medical data
set, and thus predict anomalies, such as cardiac abnormalities,
with greater accuracy compared to previous studies in the
literature, [3], [4].

This study begins by exploring the related work done on
the problem of predicting the presence of heart disease based
on the same dataset. Of all the previous studies related to
this research, our main focus is the best-performing study [4]
in the literature. Then we give a detailed description of
the dataset, defines the problem with missing columns and
continues with the techniques that were used for preprocessing
the data in Section 3. We also provide the basic background
information needed on these techniques and explain how
existing techniques are used with the necessary examples and
tables. The SMOTE and Tomek methods are utilized in the
combination to create the synthetic data and remove noise
from the existing dataset. We then use the combination of
the Fuzzy Random Forest model with the Semi-supervised
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Pseudo-Labelling approach to propose an algorithm to im-
pute the completely missing columns. We then explain the
reasoning behind the choice of the Fuzzy Random Forest
with the results of a comparative study with the k-fold cross-
validation. We compare different machine learning algorithms,
including deep learning and ensemble models, specifically for
the application studied in this paper. In Section 4, we also
present the results of the techniques proposed in this study and
investigate the metrics of the model developed. We provide
detailed tables and charts to analyze the results. Finally, in
the conclusion section, we reaffirm our approach and suggest
possible improvements to the study as future work.

II. RELATED WORK

The problem we present and study in this paper has already
been addressed by several researchers in literature. One of
the first works conducted on the basis of similar data was
carried out by [5]. The authors describe a new discriminant
function derived from logistic regression and compare it to
the CADENZA Bayesian algorithm. The dataset used consists
of 920 instances obtained from Cleveland, Hungary, VA Long
Beach and Switzerland. The number of attributes is 14 and
they are similar to those used in this study. As a result, the
study in [5] obtains an accuracy of 77%.

Another more recent study on the same problem was carried
out by [6]. The study detects coronary artery disease using a
fuzzy PSO approach. This method is based on the Particle
Swarm Optimization (PSO) algorithm combined with fuzzy
boosting. The authors are able to achieve an accuracy of
85.76% using the En-PSO2 method on the same dataset as [5]
used.

Later, this problem was addressed by [3]. The authors use
an effective diagnosis of cardiac disease using sets of neural
networks ensembles on the same sets of data that we also use
in this study. This dataset is referred to as the "Heart Disease
Data Set" of the UCI Machine Learning Repository, and all
of these related studies focus only on the Cleveland dataset.
The authors combine tree-independent neural networks as a
whole and obtain a model with an accuracy of 89.01% using
SAS software 9.1.3. They also reach 80.95% of the sensitivity
and 95.91% of the specificity values, which represent the
best performance among the studies conducted to date on the
Cleveland dataset.

The most recent research on the same problem was con-
ducted by [4] titled as "Diagnosis of Heart Disease using
Fuzzy Resolution Mechanism." Kumar uses the fuzzy reso-
lution mechanism implemented via MATLAB by combining
an adaptive neuro-fuzzy interface system and a neural network.
The method described in this study consists of five layers
through which input values are passed. As a performance
metric, the author reports an accuracy of 91.83%.

In order to solve the problem of the unbalanced dataset,
an article was published in [7]. In this study, the SMOTE and
Tomek links methods are applied together to effectively predict
three common diseases by combining SMOTE with Tomek
links technique for imbalanced medical data. The authors

worked on medical dataset connected with Parkinson’s disease
and vertebral column taken from “The Data Mining Repository
of University of California Irvine (UCI)”. An application of
the combination of SMOTE and Tomek together for data
preprocessing and the treatment of the imbalance problem in
the medical data has proven its effectiveness compared to the
use of SMOTE alone.

III. RESEARCH METHODOLOGY

This section begins with the description of the dataset. In
addition, it introduces one of the semi-supervised learning
methods - Pseudo-Labelling, data preprocessing techniques -
Multiple Imputation by Chained Equations and the method
of feature selection. After that, we present the SMOTE and
Tomek links — oversampling and undersampling techniques
- and the section ends with the reasons motivating the choice
of the Fuzzy Random Forest classifier.

A. Dataset description

The dataset is from the UCI Machine Learning Repository,
which is a publicly available database called the Heart Disease
dataset, first reported in [8]. Part of the dataset is mostly
labelled and its size is 303 instances, six of which contain
missing values. This part was collected in V.A. Medical Center,
Long Beach and Cleveland Clinic Foundation by Dr. Robert
Detrano. Another part was collected at the Hungarina Institute
of Cardiology by Andras Janosi and University Hospitals
in Zurich by William Steinbrunn and in Basel by Matthias
Pfisterer. It contains 610 instances, missing values and 3
unlabelled columns corresponding to the 11th, 12th and 13th
columns, which have significant negative impact on the stage
of training of the model. The number of attributes in the
dataset is 75. This includes personal information such as name,
age, gender, identification and social security numbers of
patients, sensor values such as ECG (electrocardiogram), heart
rate, blood pressure, etc. In addition to these attributes, the
dataset also includes a type of chest pain, smoking habits, and
several of observations during physical activity. The average
age of all patients was 54, including 206 men. The dataset
has categorical attributes and numerically represented values,
as well as floating-point numbers. However, all published
experiments only consider 13 of the attributes:

1) Age
2) Sex
3) Type of the chest pain(values from 1 to 4: typical angina,

atypical angina, non-anginal pain, asymptomatic)
4) Blood pressure during rest
5) Serum cholesterol measured in mg/dl
6) Blood sugar during fast > 120 mg/dl ( two values: 1 =

true, 0 = false)
7) Resting electrocardiographic results
8) Maximum heart rate achieved
9) Exercise-induced angina

10) Old peak = ST depression induced by exercise relative
to rest

11) The slope of the peak exercise ST segment



12) Number of major vessels (0-3) colored by fluoroscope
13) Thal(Thallium Stress Test): 3 = normal, 6 = fixed defect,

7=reversible defect
The last attribute, the 14th attribute, is the prediction attribute.
It shows the presence of heart disease from 0 to 4, where
0 means absence of disease and 1 - 4 means presence of
narrowing of cardiac vessels by more than 50% of the initial
diameter. According to the coronary arteriograms, each patient
was assigned to a number of calcified vessels. If a patent was
classified as having coronary heart disease (1-4 values of the
dependent variable), this meant that the stenosis of one of
the four main coronary arteries was greater than 50% of the
intraluminal diameter.

B. Data preprocessing

1) Missing values: Due to the inconsistency of patients
health sensor records, some attributes lack the necessary data
collected. Management of missing values is an important step
in the processing of medical datasets. Medical data is often
private and makes every part of datasets valuable. It does not
allow to discard cases with missing values. There are many
methods of dealing with missing values. The method we use
in our study is Multivariate Imputation by Chained Equations
(MICE). This technique is applicable only in the case of
Missing At Random (MAR) values. This means that the
probability of having a missing value depends on the observed
values, [9]. Initially, MICE replaces each missing value with a
“placeholder”, for example, as a single imputation. Then, one
by one the replaced values are set back to initial value. The
next step is to use the cases where all attributes are completed
by logistic regression and missing values are predicted using
known variables. This regression equation gives all predictions
for the given missing variable which is then imputed. This
unique MICE step is called predictive mean matching, and is
repeated for each missing variable in the dataset, [10].

The application of the MICE technique is illustrated by
the following example. The random data has been generated
synthetically, with artificial missing values, which can be
found in Table I. This dataset includes the target variable y
with the 20% of the missing values as well as our independent
variables x1, x2, x3 and x4. After applying the predictive
mean matching on the target variable, the values for the first
five iterations were imputed as shown in Table II. Taking
the raw 4 with an initially missing value as an observation
example, it is clear that the values of the imputation are
significantly modified at each iteration = [-9, -5, 4, -6, 1].
These results cannot be interpreted as poor imputation results,
since the mean predictive matching predicts a deviation of
the results. The difference between the imputed values shows
the uncertainty of the imputation. To converge these values to
a fixed number, the number of iterations must be increased.
As [9] proposes, the recommended number of iterations in
MICE must be between 10 and 20 iterations. Here is an
example of using predictive mean matching on a target
column. In MICE, this technique is applied to each attribute,
which contains some missing values.

Table I
GENERATED SYNTHETIC DATA

Y1 X1 X2 X3 X4

8 38 -3 6 1
1 50 -9 5 0
5 43 20 5 1
NA 9 13 3 0
-4 40 -9 6 0
NA 29 -6 5 1

Table II
PREDICTIVE MEAN MATCHING AFTER FIVE ITERATIONS

Y0 Y1 Y2 Y3 Y4 Y5 X1 X2 X3 X4

8 8 8 8 8 8 38 -3 6 1
1 1 1 1 1 1 50 -9 5 0
5 5 5 5 5 5 43 20 5 1
NA -9 -5 4 -6 1 9 13 3 0
-4 -4 -4 -4 -4 -4 40 -9 6 0
NA -3 9 0 1 -3 29 -6 5 1

2) Feature selection: To eliminate excessive and noisy fea-
tures, we use the correlation matrix heatmap method. Heatmap
analysis is a two-dimensional visualization method generally
applied for high-dimensional data, for example the field of
genetics. It makes it possible to distinguish the numerical
values by color’s intensity. The correlation matrix represents
the strength of the relationships between features. The vari-
ables are placed symmetrically so that the correlation values
mirror each other on the main diagonal. The main diagonal
itself presents the correlation of each variable with itself. To
construct the correlation matrix, we use the Pearson correlation
coefficient that presents the relationship between features in
a linear fashion. The values of coefficients vary from -1 to
+1, where values closer to -1 or +1 indicate a strong linear
correlation and values closer to 0 mean no relationship, [11].

C. Semi-Supervised Learning

Semi-Supervised learning trains the model by using both
labelled and unlabelled features by extending an existing real
dataset. In these learning techniques, the labelled data is col-
lected by human and represents the supervised part, while the
unsupervised one does not have output labels, [12]. Pseudo-
Labelling is part of semi-supervised learning techniques. It
provides "pseudo-labelled" values by training a model using
dataset containing labelled data. Later, Pseudo-Labelled data
can be combined with labelled data to obtain a larger dataset
for a more accurate learning model. For the Pseudo-Labelling
training model, it is possible to combine different training
methods and neural network models.

D. Oversampling and undersampling techniques

1) SMOTE: The existing real-life dataset is unbalanced
due to the unequal distribution of its classes. To solve the



problem of an unbalanced dataset, SMOTE (Synthetic Mi-
nority Over-sampling Technique) and Tomek links technique
are applied together. The SMOTE approach is applied on
over-sampled minority classes by creating synthetic examples
instead of replicating or replacing already existing examples.
The majority class samples remain unchanged, thus avoiding
the overfitting problem, [13]. The idea is to randomly identify
k-nearest neighbors belonging to the current minority class xi.
The number of nearest neighbors chosen at random x̂i varies
depending on the oversampling required. A similar algorithm
is repeated for each minority class to be over-sampled:

xnew = xi + (x̂i − xi) · δ

The new sample xnew is obtained by interpolation using the
formula above, [13], where δ is a random number between 0
and 1.

Sample application of the SMOTE technique on the sam-
pling point is as follows. Suppose there is a point xi with
the value (1, 3) and that of the k-nearest neighbor is the point
with the value (4, 6). In this case, f1.1 = 1; f1.2 = 3; f2.1 =
4; f2.2 = 6. Then the value of x̂i−xi is computed as follows:
x̂i − xi = (f2.1 - f1.1, f2.2 - f2.1) = (3, 3). Finally, the result
is calculated as follows: xnew = (1, 3) + rand(0—1) · (3, 3).

2) Tomek links technique: Tomek links are pairs of points
x, y, where x belongs to the minority class and y belongs
to the majority class, which are the closest neighbors and
represent opposite classes. Suppose the distance between these
two points is d(x,y). They are considered as a Tomek link if
there is no such a point z that: d(x, z) < d(x, y) or d(y, z) <
d(x, y). After identifying the Tomek link, it removes majority
instance of that pair. This makes it possible to distinguish
the boundaries between the majority classes and the minority
classes, [13].

This can be illustrated in the following example. Suppose
there is a majority class A with the following points = [(0,1),
(3,4), (4,3), (5,5), (7,0)] and the minority class B with the
points = [(9,10), (7,3), (8,7)]. Suppose the point x is (0,1) and
the point y is (7,3), then to classify the pair (x,y) as that Tomek
link, for each z, other than x and y, there should be no values
satisfying one of the following conditions:

d((0, 1), z) < d((0, 1), (8, 7))

or

d((8, 7), z) < d((0, 1), (8, 7))

By comparing each z, no single point breaks this condition.
Therefore, the values ((0, 1), (8,7)) are the Tomek link. If
any of the two examples is a Tomek link, then there are two
possible cases: one of these examples are noisy or both are
located on the boundary of the classes.

E. Fuzzy Random Forest classifier

Fuzzy Random Forest is a multiple classifier system similar
to the classic Random Forest, but it uses fuzzy decision trees
as a classifier. Comparing with Random Forest, Fuzzy Random
Forest reduces biased that can be caused by the presence of

correlated features, [14]. Although decision tree techniques
have proved to be interpretable, efficient and capable of
dealing with large datasets, they are highly unstable when
small disturbances are introduced in training datasets. For
this reason, fuzzy logic has been incorporated in the decision
tree construction techniques. Leveraging its intrinsic elasticity,
fuzzy logic offers a solution to overcome this instability. This
integration has preserved the advantages of both components:
uncertainty management with the comprehensibility of linguis-
tic variables, and popularity and easy application of decision
trees. The resulting trees show an increased robustness to
noise, an extended applicability to uncertain or vague contexts,
and support for the comprehensibility of the tree structure,
which remains the principal representation of the resulting
knowledge, [15].

To measure the performance and avoid overfitting problem,
we applied the k-fold cross validation method, which divides
the dataset into a k number of equally sized folds. Then,
the model is trained on the k-1 folds and the rest is a
validation fold used to predict, [16]. The performance of the
given algorithm can be measured by desired metrics, such
as accuracy. We use 10 folds and each result obtained after
completion is averaged.

F. Normalization

Normalization is a technique often applied as part of data
preparation for machine learning. In our paper, we use Z-
score Normalization (standardization). Feature standardization
makes the values of each feature in the data have zero-
mean (when subtracting the mean in the numerator) and unit-
variance. This method is widely used for normalization in
many machine learning algorithms (e.g., support vector ma-
chines, logistic regression, and artificial neural networks), [17].

IV. EXPERIMENTAL RESULTS

During our research, the following machine learning al-
gorithms were tested and compared using our dataset: C4.5,
Artificial Neural Network, Naive Bayes, Catboost, Adaboost,
Xgboost, Logistic Regression, Random Forest and Fuzzy
Random Forest. The table of accuracy values for each model
and ROC graph for the first 5 best-performed classification
models are presented in Table III and Figure 1. As we can
see, Fuzzy Fuzzy Random Forest gives the best accuracy on
our dataset among these models. In addition, the performance
gain of the random forest before and after using fuzzy logic is
1.27%. We performed a z-score test with the null hypothesis
of equal accuracy and significance level with a p value of 0.05.
The results of the z-test show that p is equal to 0.0102, which
means that we can reject the null hypothesis. We repeated
this test with the models: FRF vs DANN + LightGBM
and FRF vs XGBoost. The calculated p values are equal to
0.0031 and 0.0002, respectively. All these results confirm that
the improvement of our approach in terms of accuracy is
significant. This is why we have chosen Fuzzy Random Forest
as the main classifier for our application.



Table III
COMPARATIVE STUDY OF ML ALGORITHMS

Algorithm Accuracy
Fuzzy Random Forest [14] 85.28%
Random Forest [18] 84.01%
DANN + LightGBM [19] 83.57%
XGBoost [20] 81.21%
DANN [21] 80.89%
CatBoost [22] 78.15%
Naive Bayes [23] 77.81%
Adaboost [24] 75.90%
C4.5 [25] 75.79%
Logistic Regression [26] 74.12%

Figure 1. Comparative study of ML algorithms - ROC

As a preliminary step for our main research, we did the
data engineering including Multiple Imputation with Chained
Equations, feature engineering with correlation matrix and
applied the hybrid SMOTE and Tomek on the Cleveland
dataset only. The model obtained after these steps, gave the
score of accuracy of 92.02%.

One of the challenges in applying this algorithm to this
dataset is the size of the Cleveland dataset. In particular, it is
hard to apply the powerful state-of-the-art classifiers because
of its small size and imbalance. To solve this problem, new
semi-synthetic data has been created via an hybrid approach.
By combining the SMOTE technique with the Tomek under-
sampling technique, the size of the Cleveland dataset has been
increased from 227 to 599 instances of the training set.

Feature engineering is done to remove noisy features. The
correlation matrix heatmap is constructed and was published
[27]. Squares colors depend on the values which range from
-1 to 1, with -1 being red and 1 being green. The colors of the

correlation matrix are only intended for a better visualisation
and understanding of the feature correlations. As the correla-
tion coefficient is closer to 0, it becomes brighter, therefore
less influential on each other. Values are sorted by the influence
of each attribute on the target variable and removed from a
column until the accuracy of the model decreases or does not
remain the same. The least influential attribute for the target
variable is the blood sugar (fbs) attribute with a correlation
coefficient of 0.059. After removing this attribute, the accuracy
of the model is improved by 1.1%, which means that this
feature is noisy. A further reduction of the attributes does
not improve the performance results, so no more reduction
is needed.

In our paper we use the Breiman’s methodology to construct
the random forest of "fuzzy" decision trees. As the result of the
experiment, we can confirm that this methodology combines
the robustness of multiple classifier systems along with the
imperfect data handling of fuzzy systems. We use the fuzzy
transformation approach similar to [28]. The proposed solution
is shown on Algorithm 1 and 2, corresponding prediction of
the Fuzzy Random Forest shown on the Algorithm 3.

Figure 2. Transformation

Applying the Transformation, described in the Figure 2
onto the supportV ecMat from Algorithm 4, we can see
that each leaf assigns a simple vote to the majority class.
The methods MajorityV oting1 and MajorityV oting2 are
follows:

MajorityV oting1(t, i, supportV ecMat) = 1 if i = argmax
j,j=1,...,I

{∑Nt

n=1 LLsupportV ecMat[t][n][j]
}

0 otherwise

Each tree t assigns a simple vote to the most voted class
among N, reached by the leaves.

MajorityV oting2(i, confTreeMat) =∑T
t=1 confTreeMatt,i

In order to fuzzify the crisp values we use a technique
proposed in [28]. The domain of each attribute is represented
by trapezoid of fuzzy sets. This fuzzy partitioning algorithm
guarantees completeness and it is strong fuzzy partition.

The main problem is 3 completely missing columns in
the second part of the dataset. To append the second part
and create a more powerful model, we use a combination of
Pseudo-labelling and Fuzzy Random Forest. As indicated on
the pseudo-code (Algorithm 4), we form models to predict



Algorithm 1: Fuzzy Random Forest

1 function FuzzyRandomForest (dataset, c,N);
Input : dataset - expected to be fuzzified data, N - number of trees to be generated, c - predicted column

2 foreach i in the range(N ) do
// divide the examples set of entry in subsets;

3 randomly sample the training data D with replacement to produce Di;
4 create a root node Ni containing Di;
5 call BuildFuzzyTree(Ni);
6 end
7 return generated model;

Algorithm 2: Fuzzy decision tree

1 function BuildFuzzyTree (data);
Input : data - fuzzified data

2 foreach e in the data do
3 χfuzzy-tree-root(e) = 1
4 end
// get the set of attributes, where numeric variables fuzzy-partitioned;

5 S ← SetOfAttributes(data)
// choosing attribute to make a selection at node N;

6 while NotSingleClass(N) and NotEmpty(S) do
// random selection of attributes from S;

7 R ← SelectRandom(S);
8 maxGain ← 0 ;
9 selectedAttr ← null;

10 foreach attr in the R do
11 gain = ComputeInformationGain(attr, χfuzzy-tree-N(e) )
12 if gain > maxGain then
13 maxGain ← gain;
14 selectedAttr ← attr;
15 end
16 end
17 Partition(M, selectedAttr)
18 end

the missing columns using the Cleveland dataset. Then, using
them, we label the missing columns in the second part of the
dataset and retrain the model using a combination of labelled
and pseudo-labelled data. Then, using those models, we impute
the missing columns. The imputation order is important to
form the next model and we need to consider the recently
imputed column. We experimentally determine that imputing
the best model would provide a more powerful model. The
accuracies of the models to predict the slope, the number of
major vessels colored by fluoroscope and Thallium Stress Test
results are 81.12%, 86.11% and 90.01% respectively. Finally,
we impute the new dataset into the existing labeled one and
feed the entire dataset into the Fuzzy Random Forest classifier.

One of the main parameters of this problem is the multi-
class confusion matrix, illustrated in Table IV. The correspond-
ing indexes of rows and columns mapped to the number of
vessels narrowing by more than 50%. In this confusion matrix,
the true positives of the particular class are placed on the

diagonal. That is, the true positives of a particular class x are
C(x, x), the false positives are

∑
i=0

∑
j=0 C(i, j)−C(x, x),

the true negatives are
∑

i=0 C(x, i) and the false negatives are∑
j=0 C(j, x). To obtain the results in the same format as it

is in the study in [3], the macro average of the positives and
negatives of all the confusion matrices is computed. According
to the results obtained, the recall, which is also known as
specificity or rate of true positives, is equal to 96.93% and
sensitivity is 89.92%, which is higher than the values obtained
in the previous study by 1.22% and 1.26%, respectively.

One of the parameters proposed by our model is the Re-
ceiver Operating Characteristic (ROC) chart. It illustrates the
diagnostic capability of the binary classifier system in which
its discrimination varies because the proposed problem is the
prediction of the multiclass classification. To binarize input,
the One-Vs-Rest classifier was built. True and false positive
rates were graphically represented in the ROC graph for each
class, as shown in Figure 3. The area under the curve of each



Algorithm 3: Fuzzy Random Forest prediction

1 Function FuzzyRandomForest(data, fuzzyRandomForest)
2 confTreeMat ← DecisionsOfTrees(data, fuzzyRandomForest);
3 return DecisionOfForest(confTreeMat)
4 end
5 Function DecisionsOfTrees(data, fuzzyRandomForest)
6 foreach t in the fuzzyRandomForest do

// obtain the matrix where each element of the matrix is a vector containing
the support for every class provided by every activated leaf of each tree t;

7 supportVecMat ← getsupportVecMat(fuzzyRandomForest)
8 foreach i in the classes do

// obtain confidence matrix for each class i assigned by tree t;
9 confTreeMat[t][i] ← MajorityVoting1(t,i, supportV ecMat)

10 end
11 return confidenceMatrix
12 end
13 end
14 Function DecisionOfForest(confTreeMat)
15 foreach i in the classes do
16 confidenceForestMatrixi ← MajorityVoting2(i, confTreeMat);
17 end
18 prediction ← argmax

i,i=1,...,I
{confidenceForestMatrixi};

19 return prediction
20 end

class is close to the value of 1.0, which shows a high accuracy
of the model compared to previously proposed techniques.

Figure 3. ROC curve of the model

One of the most important metrics is the accuracy of the
model. As mentioned earlier, this paper uses k-fold cross-
validation, where k = 10. We determine the accuracy of each
fold and use the mean of all to obtain the accuracy of our
model. Using this technique, the accuracy of our model is
93.2%, which is 1.37% higher than the best existing result in
the literature.

V. CONCLUSION

Imbalance, inaccurate and missing data are important factors
for the success of data science techniques. The purpose of
this study is to address these challenges and improve the
performance of previous series of studies, Table V, using
some preprocessing and semi-supervised learning techniques
and creating new semi-synthetic data for more effective data
science solutions. For prediction, the Fuzzy Random Forest
classifier was used, among others, including C4.5, ANN,
Naive Bayes, Catboost, Adaboost, Xgboost, Random Forest
and Logistic Regression. The Fuzzy Random Forest classifier
is a new yet powerful machine learning algorithm, widely
used in the field of data science and other fields, from image
classification to recommendation systems. The k-fold cross
validation was applied to check whether the model was overfit-
ted or not, where k=10. The following metrics were therefore
used to evaluate the performance of the model: sensitivity
and specificity, ROC curve graph on Figure 3 and accuracy.
The accuracy of the model is 93.45% with a specificity and
sensitivity of 96.92% and 89.99%, respectively. In conclusion,
our approach has improved the performance of each metric,
that is, significantly better than the results of the previous
published results.

In this paper, we show that unlabeled data, when used in
conjunction with some amount of labeled data, can produce
a considerable improvement in learning accuracy. This intro-
duced algorithm can greatly help to merge and manipulate
multiple datasets, with the imputation of missing columns,



Algorithm 4: Final model

1 function Train (dataset1, dataset2, P );
Input : Cleveland dataset1 and dataset2 with missing columns, P - predicted column

2 missingColumns←[11, 12, 13]
3 dataset1 ← ApplyMice(dataset1);
4 dataset1 ← SMOTETomek(dataset1);
5 foreach c in the missingColumns do

// Apply MICE to the dataset2, but excluding the missing columns;
6 dataset2 ← ApplyMice(dataset2, -e);
7 end
8 rank features and select optimal number;
9 initialize the array with models;

10 foreach c in the missingColumns do
// train models to predict 11, 12, 13 columns, missing in the dataset2;

11 models[c] ← FuzzyRandomForest(dataset1, c, 300);
12 end
13 foreach c in the missingColumns do

// impute the predicted values using models trained on dataset1;
14 dataset2[c]←Predict(models[c], dataset2, c);
15 end
16 foreach c in the missingColumns do

// retrain the models including labelled and pseudo-labelled data;
17 models[c] ← FuzzyRandomForest(dataset1+dataset2, c);
18 end
19 foreach c in the missingColumns do

// impute missing columns using the Semi-supervised model;
20 dataset2[c]←Predict(models[c], dataset2, c);
21 end
22 finalModel←FuzzyRandomForest(dataset1+dataset2, 300);
23 return finalModel

Table IV
MULTICLASS CONFUSION MATRIX

99 15 9 1 1
13 98 3 6 1
2 5 110 2 0
1 1 0 115 4
1 1 1 0 119

to obtain a more powerful and accurate model. The dataset
we created, in addition to this UCI heart disease dataset, is
publicly available for the researchers [2]. Additionally, we
have implemented the "Forest" of Decision Trees, according
to the classic Brienman’s Random Forest implementation. By
applying few changes to the algorithm, we have implemented
the fully functioning Fuzzy Random Forest algorithm as shown
on the Algorithm 1, 2 and 3.

The model we have developed here can be applied to various
fields of applications. Our model can be used in smartphones,
smartwatches or fitness trackers with built-in wearable sensors
to track heart conditions and be aware of potential risks. In
addition, it can be adapted to smart home technologies or used
as an emergency call to medical institutions.
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