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Abstract—The paper undertakes the problem of designing
a simultaneous sensor and actuator fault estimation scheme
for Takagi-Sugeno fuzzy systems. Thus, the paper starts with
the development of such a fault estimation scheme capable of
estimating these faults simultaneously. Apart from estimating the
faults, the proposed scheme provides the so-called uncertainty
intervals, which overbound an unknown state and faults. These
intervals can be applied for both reliable fault diagnosis as well
as assessment of the estimation quality. Indeed, the smaller the
intervals the better the estimation. To settle the above problem,
an assumption is imposed, which yields that the external distur-
bances are overbounded by an ellipsoid. This permits employing
the quadratic boundedness approach both both the estimator
convergence analysis as well as determination of lower and upper
bounds of uncertainty intervals. Finally, the performance of the
proposed approach is examined by exploiting the laboratory
three-tank system. In particular, the effectiveness of the proposed
scheme is tested against a set of simultaneous actuator and sensor
faults, respectively.

Index Terms—fault diagnosis, fault detection, Takagi-Sugeno
model, estimation

I. INTRODUCTION

Industrial processes are usually expensive, because of that a
malfunction may cause serious losses, whether the equipment
is damaged. This issue pertains both sensors and actuators,
which are inevitable in modern industrial systems. Moreover,
their number will proliferate in the upcoming future due to
Industry 4.0 and the related Internet of Things (IoT) tools.
Owing to the above situation, fault diagnosis, and particularly,
fault estimation have received a growing attention both from
theoretical and practical viewpoint. There is another impor-
tant reason behind making fault estimation, which concerns
Fault-Tolerant Control (FTC) [1]–[4]. Indeed, it is the main
component of the so-called integrated FTC [1], [5], [6].
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Nevertheless, it is permanently playing an important role in
the implementation of FDI (Fault Detection and Isolation) [7],
[8], which provide a solution to maintain a safe and reliable
operation of the system.

The paper concerns the design of a fault estimator for
Takagi-Sugeno (T–S) fuzzy systems, which is motivated by
enumerable successful implementations of this system mod-
elling paradigm [9], [10]. In the literature, one can find numer-
ous fault estimation approaches for T–S fuzzy systems [11],
[12], which can be used either sensor [13], [14] or actua-
tor [15], [16] faults. There are, of course, approaches, which
can deal with both faults simultaneously, e.g., the data-driven
approaches [17], [18]. On the other hand, Youssef et al. [19],
proposed the the T–S proportional integral estimator design for
actuator-sensor fault estimation under unmeasurable premise
variables. Hadi et al. [20], proposed a robust development of
T–S multiple-integral unknown input observer for actuator-
sensor fault estimation. Another approach is a Sliding Mode
Observer (SMO) based on T–S model [21], which was used
to estimate the actuator fault and disturbances of a doubly fed
induction generator. Furthermore, a SMO-based fault estima-
tion method presented in [22] was used for detecting, isolating
and reconstructing actuator and sensor faults in a dedicated
benchmark devoted to wind turbine problem. Martinez-Gracia
et al. [23] developed the so-called T–S unknown input interval
estimator for a simultaneous state as well as actuator fault
estimation under parametric uncertainties. Sun et al. [24],
used robust actuator and sensor fault estimation for T–S
systems with time-varying state delay. A delay-partitioning
approach where presented in [25], it was used to determine
the state as well as sensor-actuator faults under time-delay.
Jun Yoneyama [26], developed a method for obtaining a filter
that estimates the state of the T–S fuzzy bilinear system along
with an unknown input coupled with external disturbances.
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Apart from an incontestable appeal of the above-listed
approaches, none of them provide an information about an
estimated fault uncertainty, which can be shaped by the so-
called uncertainty intervals guarantying to overbound both an
unknown real state and faults. Thus, the objective of this paper
is to extend the actuator fault estimation approach capable of
providing such uncertainty intervals [27], [28] to the case of
simultaneous sensor-actuator estimation.

The approach proposed in this paper amounts to a novel
estimator structure, which operates under the assumption that
external disturbances are bounded within a known ellipsoid.
This makes it possible to apply the Quadratic Boundedness
(QB) framework [29], [30] for an underlying convergence
analysis and the development of uncertainty intervals. The
paper is organized as follows. The estimator development
problem is given in the Section II, whilst Section III pro-
vides an approach for determining the upper/lower bound
of the uncertainty intervals, respectively. Section IV presents
a verification of the proposed strategy using the three-tank
system [31] modeled within T–S framework [32]. Finally, the
last section provides concluding remarks.

II. ESTIMATOR DESIGN

Let us start by defining a nonlinear system

xk+1 = f (xk,uk) , (1)

which can be efficiently modeled by a Takagi-Sugeno (T–S)
system involving faults as well as uncertainties:

xk+1 = A(vk)xk +B(vk)uk +B(vk)fa,k +W 1w1,k

=

M∑
i=1

hi (vk)
[
Aixk +Biuk +Bifa,k

]
+W 1w1,k,

(2)
yk = Cxk +Cffs,k +W 2w2,k, (3)

with

hi (vk) ≥ 0 ∀i = 1, . . . ,M

M∑
i=1

hi (vk) = 1 (4)

where xk ∈ X ⊂ Rn, uk ∈ Rr and yk ∈ Rm indicate
the state, input and output, respectively. Moreover, fa,k ∈
Fa ⊂ Rr and fs,k ∈ Fs ⊂ Rns are the actuator-sensor faults,
respectively. Matrix Cf stands for the sensor fault distribution
one, where rank(Cf ) = ns with r+ns ≤ m, means that there
is no possibility to estimate more faults than the measured
outputs. Additionally, W 1 and W 2 denote the distribution
matrices of w1,k and w2,k signifying exogenous disturbance
vectors, respectively. Furthermore, hi(·) stands for the rule
fire strength [33] depending on the known vector of premise
variables vk =

[
v1
k,v

2
k, . . . ,v

p
k

]T
.

Let us first extract Cffs,k from (3) to show that

Cffs,k = yk −Cxk −W 2w2,k. (5)

Additionally, the sensor fault can be defined by

fs,k = Eyk −ECxk −EW 2w2,k. (6)

with
E = (Cf )

†
, where ECf = I. (7)

Accordingly, the sensor fault estimator is proposed to have the
following

f̂s,k = Eyk −ECA (vk) x̂k−1 −ECB (vk)uk−1

−ECB (vk) f̂a,k−1.
(8)

Furthermore, the actuator fault and state estimator are de-
scribed by:

f̂a,k+1 = f̂a,k + F
(
yk −Cx̂k −Cf f̂s,k

)
. (9)

x̂k+1 = A (vk) x̂k +B (vk)uk +B (vk) f̂a,k

+K
(
yk −Cx̂k −Cf f̂s,k

)
,

(10)

where F and K indicate the gain matrices of the estimator. Let
us define the underlying state, actuator as well as sensor fault
estimation errors for the subsequent convergence analysis:

ek+1 = xk+1 − x̂k+1 = (A (vk)−KC) ek

+B (vk) ea,k −KCfes,k +W 1w1,k

−KW 2w2,k,

(11)

ea,k+1 = fa,k+1 − f̂a,k+1 = εa,k + ea,k − FCek

− FCfes,k − FW 2w2,k,
(12)

es,k = fs,k − f̂s,k = −ECA (vk) ek−1 −ECB (vk) ea,k−1

−ECW 1w1,k−1 −EW 2w2,k.
(13)

Accordingly, the estimation errors can be obtained by substi-
tuting (13) into (11)–(12):

ek+1 = (A (vk)−KC) ek +B (vk) ea,k +W 1w1,k

+KCA (vk) ek−1 +KCB (vk) ea,k−1

+KCW 1w1,k−1,

(14)

ea,k+1 = εa,k + ea,k − FCek + FCA (vk) ek−1

+ FCB (vk) ea,k−1 + FCW 1w1,k−1.
(15)

It is easy to check that the sensor fault estimation error depends
on the state as well as the actuator fault estimation error. They
also are independent of the sensor fault estimation one.

Nevertheless, let us combine (14)–(15) to obtain the follow-
ing super-vectors:

ēk =

[
ek
ea,k

]
, w̄k =

[
w1,k

εa,k

]
. (16)

Consequently

ēk+1 =

[
A (vk)−KC B (vk)
−FC I

]
ēk

+

[
KCA (vk) KCB (vk)
FCA (vk) FCB (vk)

]
ēk−1

+

[
W 1 0
0 I

]
w̄k +

[
KCW 1 0
FCW 1 0

]
w̄k−1.

(17)



Additionally, its simpler form is given as follows

ēk+1 = A1 (vk) ēk +A2 (vk) ēk−1 + W̄ 1w̄k + W̃ 1w̄k−1,
(18)

where:
A1 (vk) = Ā (vk)− K̄C̄,

A2 (vk) = K̄B̄ (vk) , W̃ 1 = K̄W̄ 3,

with:

Ā (vk) =

[
A (vk) B (vk)

0 I

]
, K̄ =

[
K
F

]
,

B̄ (vk) =
[
CA (vk) CB (vk)

]
,

W̄ 1 =

[
W 1 0
0 I

]
, W̄ 3 =

[
CW 1 0

]
, C̄ =

[
C 0

]
,

Let us define the Lyapunov candidate function of the form

Vk = ēTkP ēk + ēk−1Rēk−1, (19)

with P � 0 and R � 0. Furthermore, let us start with
reminding the following definitions [34], [35]:

Definition 1: The system signified by (2)–(3) is strictly QB
for all w̄k ∈ Ew, k ≥ 0, if Vk > 1 =⇒ Vk+1 − Vk < 0 for
any w̄k ∈ Ew.

Definition 2: A set E is a positively invariant one for (18)
and for all w̄k ∈ Ew if ēk ∈ E implies ēk+1 ∈ E for any
w̄k ∈ Ew.
Note that the system (18) can be perceived as a single-delay
one, and hence, it is proposed to define the invariant set as
follows:

E =
{
(ēk, ēk−1) : ē

T
kP ēk + ēTk−1Rēk−1 ≤ 1

}
. (20)

Indeed, as it can be observed in [27], [28], [34], in a delay-free
case (20) is defined with R = 0. Subsequently, it is necessary
to define the ellipsoidal domain of w̄k, which is assumed to
have the following form:

Ew =
{
w̄k : w̄T

kQww̄k ≤ 1
}
, Qw � 0, (21)

where Qw is a known matrix shaping the ellipsoidal domain
of w̄k. A practical way for determining this matrix is provided
in the following authors’ paper [36]. The above considerations
allow to state the following theorem:

Theorem 1: The system described by (18) is strictly QB
for all w̄k ∈ Ew, if three exist matrices P � 0, R � 0, N
and a scalar γ, β ∈ (0, 1), γ+ β < 1, satisfying the following
inequality:

R− (1− γ − β)P 0 0
0 −(1− γ − β)R 0
0 0 −γQw

0 0 0
PĀ (vk)−NC̄ NB̄ (vk) PW̄ 1

0 Ā
T
(vk)P − C̄

T
NT

0 B̄
T
(vk)N

T

0 W̄
T
1 P

−βQw W̄
T
3 N

T

NW̄ 3 −P

 ≺ 0.

(22)

Proof 1: Applying definition 1 as well as the facts that
w̄T

kQww̄k ≤ 1 and w̄T
k−1Qww̄k−1 ≤ 1, it is possible to

show that

w̄T
k−1Qww̄k−1 < ēTkP ēk + ēTk−1Rēk−1, (23)

w̄T
kQww̄k < ēTkP ēk + ēTk−1Rēk−1, (24)

Consequently, using the estimation error (18) and representing
v̄k =

[
ēTk ēTk−1 w̄T

k w̄T
k−1
]T
, it can be shown that

v̄T
k


AT

1 (vk)PA1 (vk) +R− P AT
1 (vk)PA2 (vk)

AT
2 (vk)PA1 (vk) AT

2 (vk)PA2 (vk)−R

W̄
T
1 PA1 (vk) W̄

T
1 (vk)PA2 (vk)

W̃
T

1 PA1 (vk) W̃
T

1 PA2 (vk)

AT
1 (vk)PW̄ 1 AT

1 (vk)PW̃ 1

AT
2 (vk)PW̄ 1 AT

2 (vk)PW̃ 1

W̄
T
1 PW̄ 1 W̄

T
1 PW̃ 1

W̃
T

1 PW̄ 1 W̃
T

1 PW̃ 1

 v̄k ≺ 0.

(25)

From (23) and (24) it is obvious that for γ > 0 and for β > 0:

γv̄T
k


−P 0 0 0
0 −R 0 0
0 0 Qw 0
0 0 0 0

 v̄k ≺ 0, (26)

βv̄T
k


−P 0 0 0
0 −R 0 0
0 0 0 0
0 0 0 Qw

 v̄k ≺ 0. (27)

Then, applying an S-procedure [37] to (25)–(27) the following
result can be achieved

v̄T
k


AT

1 (vk)PA1 (vk) +R− P + γP + βP

AT
2 (vk)PA1 (vk)

W̄
T
1 PA1 (vk)

W̃
T

1 PA1 (vk)

AT
1 (vk)PA2 (vk)

AT
2 (vk)PA2 (vk)−R+ γR+ βR

W̄
T
1 PA2 (vk)

W̃
T

1 PA2 (vk)

AT
1 PW̄ 1 AT

1 PW̃ 1

AT
2 PW̄ 1 AT

2 PW̃ 1

−γQw + W̄
T
1 PW̄ 1 W̄

T
1 PW̃ 1

W̃
T

1 PW̄ 1 W̃
T

1 PW̃ 1 − βQw

 v̄k ≺ 0.

(28)

Subsequently, applying Schur complements to (28) and then



multiplying left- and right-side by diag (I, I, I, I,P ) gives
−P +R+ γP + βP 0

0 −R+ γR+ βR
0 0
0 0

PA1 (vk) PA2 (vk)

0 0 AT
1 (vk)P

0 0 AT
2 (vk)P

−γQw 0 W̄
T
1 P

0 −βQw W̃
T

1 P

PW̄ 1 PW̃ 1 −P

 ≺ 0.

(29)

Then, substituting:

PA1 (vk) = PĀ (vk)− PK̄C̄ = PĀ (vk)−NC̄, (30)
PA2 (vk) = PK̄B̄ (vk) = NB̄ (vk) , (31)
PW̄ 1 = PW̄ 1 − PK̄W̄ 2 = PW̄ 1 −NW̄ 2, (32)

PW̃ 1 = PK̄W̄ 3 = NW̄ 3, (33)

leads to
R− P + γP + βP 0 0

0 −R+ γR+ βR 0
0 0 −γQw

0 0 0
PĀ (vk)−NC̄ NB̄ (vk) PW̄ 1

0 Ā
T
(vk)P − C̄

T
NT

0 B̄
T
(vk)N

T

0 W̄
T
1 P

−βQw W̄
T
3 N

T

NW̄ 3 −P

 ≺ 0.

(34)

However, to guarantee the solution feasibility,
R−P + γP + βP in (34) is needed to be negative definite.
Due to this fact it can be noticed that (1− γ − β)P � 0, and
hence, it should be γ + β < 1, which concludes the proof. �

Finally, (22) can be easily formulated as an adequate set of M
linear matrix inequalities corresponding to all vertices shaping
(2). As a result, the problem is simplified to set α, β > 0
and solve the set of LMIs (22) and obtaining the estimator
matrices:

K =

[
K
F

]
= P−1N . (35)

Note that γ and β can be obtained by generating a solution
grid formed with α > 0 β > 0, α + β < 1 for which the
above mentioned LMIs are to be solved.

III. DETERMINATION OF ESTIMATION ERROR BOUNDS

The section aims at determining the so-called uncertainty
intervals that correspond to the fault and state maximum and
minimum bounds, which are consistent with the available
input-output data. Indeed, the estimator (8)–(10) provides
point estimates of the sensor, actuator, and state of the system,
respectively. However, from the fault diagnosis viewpoint,

uncertainty intervals are a fundamental tool for undertaking
decisions about faults [27], [36], [38]. To settle such an
important problem, let us provide the following theorem.

Theorem 2: If (18) is strictly QB for all w̄k ∈ Ew then the
uncertainty interval of the estimation error is:

− si,k ≤ ēi,k ≤ si,k, (36)

si,k =
(
ηk(γ, β, sk−1)c

T
i P
−1ci

) 1
2 , (37)

ηk(γ, β, sk−1) = ζk(γ, β)− λmin(R)‖sk−1‖, (38)

where ci is the ith column of an identity matrix while λmin(R)
stands for the smallest eigenvalue of R.

Proof 2: From (28) it can be deduced that:

Vk+1 − Vk ≤ γ(w̄T
kQww̄k − Vk)+

β(w̄T
k−1Qww̄k−1 − Vk), (39)

and hence, bearing in mind w̄T
kQww̄k ≤ 1 and

w̄T
k−1Qww̄k−1 ≤ 1, it can be written as:

Vk+1 ≤ γ + β + (1− γ − β)Vk,

Thus, following [34], by the induction it can be shown that:

Vk ≤ ζk(γ, β), (40)

where:

ζk(γ, β) = (1− γ − β)kV0 + 1− (1− γ − β)k (41)

Finally, from (40) and (19), it can be shown that:

ēTkP ēk ≤ ζk(γ, β)− ēTk−1Rēk−1 (42)

Finally, by applying the Rayleigh quotient, it can be concluded
that:

ēTkP ēk ≤ ηk(γ, β, sk−1) = ζk(γ, β)− λmin(R)‖sk−1‖,

which completes the proof. �

Having the estimation error bounds (36) is is straightforward
to derive the uncertainty intervals for the unknown states
and faults, which can be realized according to the approach
proposed in [27], [28].

IV. EXPERIMENTAL VERIFICATION

In order to verify the correctness of the proposed estimator,
it was implemented with the nonlinear laboratory three-tank
system given in Fig. 1. A specific description of this system
along with its nonlinear model and transformation into T–S
form can be found in [32]. Due to the lack of space, it is
omitted in this paper. In the experiment, the fault scenario
had the following shape:

fa,k =

{
−0.27 · uk 7000 ≤ k ≤ 11000

0 otherwise , (43)

fs,k =

{
yk − 0.1 6000 ≤ k ≤ 9000

0 otherwise , (44)

along with the sensor fault distribution matrix

Cf =
[
0 1 0

]T
, (45)



Fig. 1. Laboratory three-tank system

which exhibits the 27% loss of effectiveness of the pump in
the actuator fault case and the incorrect sensor readings in
the second tank in the case of a sensor fault. In Figs. 2–
4, a response of the system is presented. It can be deduced
that the states were identified correctly in spite of the unap-
pealing presence of actuator-sensor faults. Moreover, the state
estimates follow the real state even if there was an incorrect
measurement given from the sensor in the second tank. The
estimated values in the initial phase coincide to the real ones
very quickly. Figures 5 and 6 show the actuator and senor
faults, respectively, along with their estimates. They were
estimated in a very good quality. The states as well as senor-
actuator faults are overbounded by the bounds developed in
Section III, which guarantee that the real and estimated values
are inside these bounds.

V. CONCLUSIONS

The paper investigated the issue of the state and actuator-
sensor fault estimation T–S systems under the presence of
ellipsoidal-bounded uncertainties. The stability of the esti-
mator is guaranteed by the so-called QB approach, which
ensures that the process and measurement uncertainties are
bounded within an ellipsoidal set. The design problem is sim-
plified into solving a set of LMIs. Therefore, estimation error
bounds were developed, which form the so-called uncertainty
intervals. They can be used to assess the performance of the
proposed scheme as well as to obtain a reliable fault diagnosis.
Indeed, instead of using a single point estimate of a fault, its
uncertainty interval can be used. Thus, more reliable decisions

Fig. 2. The response of the system: first tank

Fig. 3. The response of the system: second tank

Fig. 4. The response of the system: third tank
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can be undertaken. This recommends to use the proposed
estimator in the prospective integrated fault-tolerant scheme.
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