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Abstract—Semi-supervised classifiers combine labeled and un-
labeled data during the learning phase in order to increase
classifier’s generalization capability. However, most successful
semi-supervised classifiers involve complex ensemble structures
and iterative algorithms which make it difficult to explain the
outcome, thus behaving like black boxes. Furthermore, during
an iterative self-labeling process, mistakes can be propagated if
no amending procedure is used. In this paper, we build upon an
interpretable self-labeling grey-box classifier that uses a black
box to estimate the missing class labels and a white box to make
the final predictions. We propose a Rough Set based approach for
amending the self-labeling process. We compare its performance
to the vanilla version of our self-labeling grey-box and the
use of a confidence-based amending. In addition, we introduce
some measures to quantify the interpretability of our model.
The experimental results suggest that the proposed amending
improves accuracy and interpretability of the self-labeling grey-
box, thus leading to superior results when compared to state-of-
the-art semi-supervised classifiers.

Index Terms—explainable artificial intelligence, grey-box
model, rough sets, semi-supervised classification, self-labeling

I. INTRODUCTION

Gathering data examples for training a machine learning
classifier in a real-world scenario is often simple, but the
process of assigning labels to the examples can be costly in
terms of money, time or effort. In such scenarios we might
obtain datasets with more unlabeled than labeled data. Semi-
supervised classification (SSC) overcomes this issue using
both labeled and unlabeled data for training a classifier. The
goal is to increase the generalization ability of the classifier
when compared to another that only uses the labeled data.

In such scenarios, SSC algorithms are useful under the
assumption that the unlabeled data contains information which
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is relevant for prediction, hence leading to the desired perfor-
mance improvement. Therefore, unlabeled data should follow
the distribution of the labeled data in order to predict the pos-
terior distribution correctly. SSC families of methods involve
some drawbacks coming from the variety of assumptions they
make for their workings. For example, self-labeling classifiers
rely on the prediction of one or more base classifiers to
repeatedly increase the size of the labeled dataset by predicting
the unlabeled instances. Although self-labeling approaches
such as Co-training [1]], Self-training [2], Pseudo-label [3]
and their variants perform quite well in terms of accuracy,
they often result in complex structures failing to give insight
into their decision process. When using simpler strategies, e.g.
self-training by adding the instances incrementally, errors can
be easily propagated. The use of amending procedures [4]]
allows selecting or weighting the self-labeled instances for
enlarging the labeled dataset and improve overall performance.
However, designing effective amending strategies is still an
open problem.

An increasing requirement observed in machine learning is
to obtain not only precise models but also interpretable ones.
End users often demand an insight into how an algorithm
arrives at a particular outcome and need an explanation of
the decisions to some extent. Although some studies [5]-
[7] attempt to formalize terms such as interpretability or
explainability, a common conclusion is that a certain grade
of global interpretability can be reached through the use of
more transparent techniques as proxies for solving a task. In
this paper, we refer to such models (e.g., linear regression,
decision trees or rule induction algorithms) as white boxes, as
opposed to the less interpretable black-box ones (e.g. artificial
neural networks or support vector machines). Black boxes are
normally more accurate techniques that learn exclusively from
data but they are not easily understandable at a global level.
On the other hand, white boxes refer to models which are
constructed based on laws or principles of the problem domain,
or those who are built from data but their structure allows



for explanations or interpretation, since pure white boxes
rarely exists. White boxes lead to intrinsically interpretable
models [8], while post-hoc methods for interpretability such
as LIME [9] or SHAP [10] aim to generate explanations
preserving the black box’s accuracy. Another alternative to
reach interpretability is using white boxes as global surrogates
[8] for distilling previously trained black boxes. While the
white boxes attempts to explain the problem domain directly,
the latter is devoted to explain the domain by approximating
the predictions produced by a black-box classifier.

In this paper, we study the SSC problem from the inter-
pretability angle. We build upon a simple yet effective semi-
supervised classifier termed self-labeling grey-box (SIGb) [11]],
[12] that exploits the strength of black-box models being good
classifiers with the interpretability of white boxes. We focus
our study in the use of rule-based white boxes, since they are
a clear proxy for interpretability both in a global and local
perspective. As a first contribution of the paper, we introduce
a Rough Set Theory (RST) based strategy to reduce the effect
of misclassifications when building the enlarged dataset. By
weighting instances based on their inclusion to rough sets
regions of each decision class, we expect to generate more
compact rule sets in the learning process of the white box. As
a second contribution, we introduce some measures to asses
the interpretability of the resulting grey-box model. These
measures can be extended to other rule based interpretable
models. Experimental results using 55 benchmark datasets
show that our SIGb outperforms other state-of-the-art semi-
supervised classifiers in terms of accuracy. Moreover, the
proposed RST-based amending improves interpretability by
reducing the number of rules needed for achieving a good
performance.

The rest of this paper is structured as follows. Section
formalizes the semi-supervised classification problem and
introduces the theoretical background on RST. Section [MI|
describes the SIGb approach and proposes the RST-based
amending of the self-labeling performed by the black-box
classifier. Section discusses the simulation results, which
cover both the performance and interpretability angles. Section
[V] formalizes the concluding remarks.

II. THEORETICAL BACKGROUND

In this section, we introduce the theoretical background
supporting our contribution, namely: semi-supervised classi-
fication and rough sets theory.

A. Semi-supervised Classification

Supervised classification is about identifying the right cate-
gory (among those in a predefined set) to which an observation
belongs. These observations (henceforth called instances) are
often described by a set of numerical and/or nominal attributes.
Solving this problem implies to define a mapping f: X — Y
that assigns to each instance z € X, described by a set of
attributes A = {ay ...,a,}, a decision class y € Y. The
mapping is learned from data in a supervised fashion, i.e., by
relying on a set of previously labeled examples.

Semi-supervised learning techniques attempt to use both
labeled and unlabeled instances during the learning process
for increasing the prediction capacity when only labeled data
is used. More formally, in an SSC scenario we have a set
of m instances L = {ly,...,l,,} which are associated with
their respective class labels in Y, and a set of n unlabeled
instances U = {uy,...,u,}, where usually n > m. Overall,
the performance of SSC models can be evaluated as follows:
(1) transductive learning, which only attempts to predict the
labels for the given unlabeled instances in U; or (2) inductive
learning, which tries to infer a mapping g : LUU — Y for
predicting the class label of any instance. For this study we
focus on inductive learning.

The SSC literature reports several techniques including
transductive support vector machines [13], graph-based meth-
ods [[14], generative mixture models [[15]], self-labeling tech-
niques [|16]] or semi-supervised generative adversarial networks
[17]. In particular, self-labeling refers to a wide family of
versatile semi-supervised methods that employ one or more
base classifiers for enlarging the available labeled dataset by
assuming the predictions they produce on the unlabeled data
are correct. Within this family, self-training approaches [2] are
wrapper classifiers, which rely on the prediction of only one
base classifier to repeatedly increase the size of the labeled
dataset by predicting the unlabeled instances. The instances
are added incrementally, in batch [I8] or in an amending
procedure [4]. The use of amending procedures allows se-
lecting or weighting the self-labeled instances for enlarging
the labeled dataset, hence avoiding error propagation. A wide
experiment conducted in [16] shows that CoTraining using
support vector machines as a base classifier [1]], TriTraining
using C4.5 decision tree [19], CoBagging using C4.5 [[1]] and
Democratic Co-learning (as an ensemble of naive Bayes, C4.5
and k-nearest neighbors) [20], are the best performing self-
labeling classifiers evaluated against a comprehensive collec-
tion of benchmark datasets. A full review on semi-supervised
classification techniques is out of the scope of this paper but
the reader can refer to [21] for a wide and recent survey on
this field.

B. Rough Set Theory

Rough set theory (RST) [22] allows handling uncertainty
in the form of class inconsistency in real-world applications.
Given a decision system DS = (U, A U {d}) where the
universe of instances U is described by a non-empty finite set
of attributes A and its respective decision class d, any concept
(subset of instances) X € U can be approximated by two crisp
sets. These sets are called lower and upper approximations of
X (BX and BX, respectively) and can be computed taking
into account an equivalence relation, as follows:

BX={zel|[z]p C X} (D
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The equivalence class [z]p gathers the instances in the
universe { which are inseparable according to a subset of
attributes B C A. From the formulations of upper and
lower approximation, we can derive the positive, negative
and boundary regions of any subset X & U. The positive
region P(X) = BX includes those instances that are surely
contained in X; the negative region N'(X) = U — BX denotes
those instances that are surely not contained in X, while the
boundary region B(X) = BX — BX captures the instances
whose membership to the set X is uncertain, i.e., they might
be members of X.

The classic RST is regularly defined over a subset of discrete
attributes, thus generating a partition of /. A more relaxed
formulation of RST establishes the inseparability between
instances based on a weak binary relation. Equation (3]
formalizes the similarity relation used in this paper,

R:xziRxj — 0(z;, ;) > € 3)

where §(x;,x;) computes the extent to which z; and x; are
deemed inseparable as indicated by the similarity threshold €.
Under this assumption, the universe is arranged in similarity
classes that are not longer disjoint but overlapped. In this
paper, we use € = 0.98 and the Heterogeneous Euclidean-
Overlap Metric 23] to measure the inseparability degree
between two instances. It is worth mentioning that other
configurations are also possible.

Once the covering of the decision space is generated ac-
cording to the similarity function, several RST-based measures
can be computed for measuring the uncertainty contained in a
dataset [24]. In the following section, we adopt one of these
measures to weight the instances belonging to the enlarged
training set obtained after performing the self-labeling process.

III. AMENDED SELF-LABELING GREY-BOX

In this section, we build upon the SIGb method by propos-
ing an amending procedure using RST. The RST measures
determine the weight of the instances in the self-labeling
process based on the uncertainty in the form of class label
inconsistency lying within the enlarged dataset.

A. Self-labeling Grey-box Approach

The SIGb approach [11] uses a black-box classifier to
predict the decision class of the unlabeled instances, while
a surrogate white box is used to build an interpretable pre-
dictive model based on the whole instance set. The aim is
to outperform the base white-box component using only the
originally labeled data, while maintaining a good balance
between performance and interpretability.

The SIGb learning process (see Figure [I)) is performed in
a sequential order. In a first step, we provide the available
labeled dataset (L,Y") to a black-box classifier for training.
Once the supervised learning is completed, the black-box
component has learned a function f L — Y, where
f € F, being F' the hypothesis space that associates each
instance with a class label. The f function can be computed
from the scoring function » : L x Y — [0,1] such that

f(xz) = argmazxycy{h(l,y)},l € L. Thereafter, the trained
black-box component is used for generating new tuples (u,y)
by mapping all unlabeled instances ©v € U to a class label
y €Y as y = f(u), adding a self-labeling character to the
approach. From this step we obtain an enlarged training set
(LUU,Y) comprising the original labeled instances and the
extra labeled ones.

In the second step, the enlarged training set (LU U,Y) is
used to train a surrogate white-box classifier. Once the learning
process in the white-box component is completed, we obtain
a function g : (LUU) — Y resulting in a classifier which
is more likely to have better generalization capabilities than
the original white-box component, when trained on only the
labeled data.

Self-labeling grey-box
Learning

Trained white-box
classifier
g:(LuU)>Y

Black-box

White-box
classifier

(9]

classifier

Labeled instances Learning

Trained black-box
classifier
u f:L->Y

(LUU,Y)

Classification

Unlabeled instances Enlarged labeled dataset

Fig. 1: Blueprint of the SIGb architecture. During the first
step, labeled data is used for training a black-box model,
which assigns labels to the unlabeled data. Later on, a white-
box surrogate model is trained on the enlarged dataset, thus
resulting in an interpretable model.

When applying self-labeling, we should be aware of the risk
of having imbalanced data with respect to the class labels. It
might be easier to obtain unlabeled data of a certain class,
for example, in the context of credit fraud detection or rare
diseases classification. In order to deal with this problem,
our approach additionally incorporates a simple strategy for
balancing instances as a preprocessing step. This weight is
computed as follows:

w(

= | Lty |/ | L1y 4)

where L., Liy,.,.,) C L denote the sets of labeled instances
that are mapped to the class label y; and the minority class
Ymin, Tespectively. In this way we assign higher importance
to instances belonging to the minority class.

In general, the SIGb approach is only based on the general
assumption of SSC methods: the distribution of unlabeled
instances helps elucidate the distribution of all examples. In
addition, our approach allows retaining the inherent inter-
pretability of the chosen white-box surrogate, which will be
assessed later in section

3Yi)

B. Rough Set Amending

As mentioned, the motivation for using of amending strate-
gies is based on the fact that the black box could produce
wrong labels for unlabeled instances, which can be propagated



in the self-labeling. A confidence based amending procedure
proposed in our previous work [11] defines a weight for
the unlabeled instances relying on the confidence of the
classification of the black-box component. The weight w(,, )
is computed as the value of the scoring function of the black-
box base classifier h(uy,y;), which expresses the calibrated
probability of uy being correctly assigned to the y; class.

However, there is no guarantee that the knowledge concern-
ing the original labeled instances does not contain uncertainty
in the form of class label inconsistency in the classification.
To address both situations together, we propose a mechanism
to weight the instances after the self-labeling process. Unlike
the confidence-based amending [[11]], this amending procedure
is adopted for the entire enlarged dataset, instead of only the
self-labeled instances.

More explicitly, our proposal is based on the inclusion
degree of both labeled and self-labeled instances into the RST
granules. Let X = LUU and d = 3. Let ,u%(y‘) (), ,ugw) ()
and u}\z/(yi) (z) be the membership degrees oflany instance z
to the positive, boundary and negative region of each class
label y;, respectively. These membership degrees are computed
from the inclusion degree of the similarity class of x into each
information granule,

[R(z) NP(Xy)]

R
_ 5
up(yi)(x) |7D(X[yb])| ”
[R(x) N B(Xpy,)|
R . Y
IU’B(ZM)(I) - IB( X[yl ©
R(z) N N(X;,,
Ny () = [Riz) NN (Xiy) 2

N (X))l

where R (z) is the similarity class associated with the instance
x, whereas X [yi] denotes the set of instances with label ;.

Equation (8)) computes the weight for the instance = belong-
ing to the enlarged dataset, given its label y; and a similarity
relation R. The sigmoid function p(x) = 1/(14e~7) is used
to maintain the weight in the (0,1) range.

Wag) = @ (180 (@) + 055 4y () = 1y () ®)

Observe that the boundary information is also interesting,
since a high inclusion degree of an instance in the boundary
region of a class is to some extent a positive evidence. This
knowledge can be reinforced or diluted according to the
evidence coming from the inclusion degrees in the other two
regions. We expect that including this type of information
in the learning process of the white box leads to more
compact rule sets while obtaining comparable or improved
performance. It is important to note that the amending process
is only carried out in the learning phase of the self-labeling
grey-box. Therefore, the amending strategies do not affect the
transparency of the white-box surrogate during the inference
on new cases.

Data: Labeled instances (L,Y"), Unlabeled instances U

Result: g: (LUU) =Y

begin

/* Preprocessing: Weight labeled
instances according to EJd. @D */

forall (I;,y;) € (L,Y) do

‘ wq y ‘me|/‘Lz|

3 Yi
end
/+ Train black-box component with
weighted labeled data */

fyh +— blackboxClassifier. fit(L, Y, w)
/+ Self-labeling process: Assign a
label to unlabeled instances

using black-box inference */
forall u;, € U do
yi «— flur)

/* Compute weight of instance ug

according to Eq.(®) */

/+ Add the instance to enlarge
dataset */
(LUUY) U {(uk, yi) }

end

/+ Train white-box component with
the weighted (LUU,Y) dataset =/

g «— whiteboxClassi fier.fit(LUU,Y,w)

return g

end
Algorithm 1: Self-labeling grey-box learning algorithm
with rough sets based amending.

The pseudocode in Algorithm |1} formalizes the SIGb ap-
proach incorporating this step. Overall, the proposed rough set
amending comprises an alternative to the use of incremental
or batch procedures, thus reducing the computational burden
of the self-labeling process.

IV. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the proposed RST amending
against the vanilla version of SIGb [12] and the confidence
based amending proposed in our previous works [11]]. The
experimental design includes 55 benchmark datasets available
on KEEL repository [25] with partitions for 10-fold cross
validation. Four ratios of labeled instances in the training set
(from 10% to 40%) allow studying the influence of the amount
of labeled examples in the overall performance. These datasets
comprise different characteristics: the number of instances
ranges from 100 to 19000, the number of attributes from 2 to
90, and the number of decision classes from 2 to 28. Moreover,
we have 25 datasets with different degrees of class imbalance
and roughly half of the datasets are multiclass problems{ﬂ

ICode, datasets and results for individual datasets using different measures
are provided for reproducibility purposes at gitlab.ai.vub.ac.be/igraugar/slgb_
scripts/tree/paper
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There are several algorithms that can be adopted as base
classifiers for the SIGb approach. On the one hand, the selected
classifier for the base black box should exhibit a strong
predictive capability as it is used to determine the decision
class of unlabeled instances. On the other hand, for the white-
box component any classifier that can act as a surrogate model
for interpretability can be used. On [26] we report on a
extended experimental study supporting the choice of random
forests and PART decision lists as best performing black box
and white box respectively, from a pool of 9 combinations
of base classifiers. Hereinafter, the SIGb will refer to this
combination of base classifiers. The hyperparameters used in
the experiments are specified below:

o Random forests (RF) [27]]: Bagging of random trees
composed of decision trees without pruning considering
m randomly chosen attributes at each node. Hyperparam-
eters: 100 trees, minimum number of objects per leaf: 2,
number of random attributes: log, (attributes) + 1.

o PART decision list (PART) [28]]: Decision list using
separate-and-conquer for building rules. Generates a par-
tial C4.5 decision tree in each iteration and makes the
best leaf into a rule. Hyperparameters: minimum number
of objects per leaf: 2, confidence factor for pruning: 0.25,
uses subtree raising operation when pruning.

In order to measure the configurations in terms of pre-
diction rates we report the Cohen’s kappa coefficient [29].
This measure estimate the inter-rater agreement for categorical
items and ranges in [—1, 1], where —1 indicates no agreement
between the prediction and the actual values, 0 means no
learning (i.e., random prediction), and 1 total agreement or
perfect performance. While accuracy is considered mainstream
when measuring classification rates, the kappa is a more robust
measure since this coefficient takes into account the agreement
occurring by chance, which is especially relevant for datasets
with class imbalance.

Unlike other experiments reported in the literature, the one
developed in this section evaluates both algorithms’ perfor-
mance and interpretability, when having different percentages
of labeled instances. In the next subsection, we propose new
evaluation measures that go beyond the prediction rates.

A. Interpretability Measures

Although obtaining good predictions is pivotal for any
classification model, our research is also concerned with the
interpretability issues. Toward exploring results further, we
propose two new measures to evaluate models’ interpretability
via a quantifiable proxy. The first measure can be used in the
context of self-labeling and the second one is applicable to
any model containing explanation units.

According to [6], there are three main forms of evalu-
ating interpretability: application-grounded, human-grounded
and functionally-grounded metrics. The functionally-grounded
approach is the only one not requiring human experiments
and collaboration. As an alternative it uses desiderata for
interpretability (e.g. transparency, trust, etc.) as a proxy for
assessing the quality of the model. Although this form of

evaluation is the most commonly found in literature, the
proposed measures are predominantly related to the context
of fuzzy rule-based systems [30].

Since we are working with benchmark datasets, we use the
functionally-grounded approach for creating measures based
on the simplicity as a mean for gaining transparency and
simulatability (i.e. a human is able to simulate and reason
about the model’s entire decision-making process). The first
measure can be used in the context of self-labeling for base
methods that produce tree structures, rules or decision lists.
It involves the number of rules in the decision lists (or
equivalently the number of leaves in a decision tree) and
expresses the relative growth in structure as:

I = |E9|/|E"| ®)

where EY is the set of rules produced by the self-labeling
method (here the grey-box) and E* is the set of rules produced
by the baseline white box when using only labeled data. For
this measure, a number much greater than one indicates that
a major growth in the structure of the self-labeling method
is needed when using the extra unlabeled data. In that case,
the balance between interpretability and performance must be
taken into account for further evaluation.

The second measure is more general and applicable to any
model whose structure is formed by quantifiable explanation
units (e.g. rules, prototypes, features, derived features, etc.).
Here, this measure estimates the simplicity of the model
according with the size of the structure in terms of number
of rules. Although it is often presumed that the smaller the
rule set the better, this is not necessarily a linear relation. The
desired simplicity in terms of number of rules has a smooth
behavior which can drop quickly. Therefore, we propose to
measure simplicity through a generalized sigmoid function,
since it allows to represent this relation with enough flexibility:

T(|E£]|) = ¢(|Eg|a917927)‘7775 V) (10)
0y — 01
g _
(b(lE ‘791a92v)\7777y) - 91 + (1 +67A(|Eg‘777))1/u (11)
where §; = 1 and 62 = O represent the upper and lower

asymptotes of the function respectively, A is the slope of
the curve, n regulates the shift over the z-axis and v affects
near which asymptote maximum growth occurs. In this way, a
value of 1 indicates high simplicity and it decreases smoothly
toward 0. A bigger A would make the function less smooth
and the value of 1 moves where the middle value of the
function is obtained. A value of ¥ = 1 makes no change in
the curve, while v < 1 moves the growth toward the upper
asymptote and v > 1 toward the lower one. Observe that
both 1 and v influence where 0.5 simplicity is obtained. In
real application scenarios these parameters should be decided
based on the criteria of domain experts. Given the diversity
of our benchmark, we set A = 0.1, = 30,v = 0.5 for
illustrating a general setting (see Fig. [2).
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Fig. 2: Simplicity function with default parameters used for the
benchmark datasets. For specific applications these parameters
are domain dependent.

With these values, the function produces medium evalua-
tions (around 0.5) when the number of rules is around 40.
Similarly, it obtains rather high simplicity (higher than 0.8)
when the number of rules goes below 30. However, parameter
values should be estimated based on expert knowledge for
specific applications. This highly flexible function allows cus-
tomizing the value of simplicity according with the specifics
of a given case study.

It is important to remark that the simplicity measure solely
expresses what it would be considered a manageable model.
Of course, a very simple model with only one rule and
poor prediction rates is not desirable, whereas for a very
simple dataset it might happen that three or four rules are
enough to reach accurate results. That is why taking into
account the prediction performance is fundamental for a proper
assessment. In order to measure algorithms’ quality based on
the balance between the prediction rates and the simplicity
of the learned model, we propose a third measure — called
utility — combining the kappa and the simplicity values with
a mixing parameter «,

U(EY) = a* k(B9 + (1—a)« T(EI)  (12)

where « is set to 0.6 for our experimental setting, although
other values are also possible.

B. Evaluation of the Amending

In this section, we study how different choices of the amend-
ing processes impact the performance of SIGb. Therefore,
we first explore the influence on the prediction rates. Table
[ shows slight improvements in the performance across each
ratio. However, when examining the number of rules obtained,
the difference is significantly visible. Figure [3] plots the number
of rules produced by each combination, per ratio of labeled
data. An interesting pattern is observed across ratios: RST-
based amending further reduces the number of rules.

Table [II] shows the average relative growth and simplicity
over the 55 datasets tested for the four ratios. Regarding the
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Fig. 3: Number of rules produced by each configuration. RST-
based amending further reduces the number of rules.



TABLE I: Prediction rates by labeled ratio in terms of kappa
mean (and standard deviation) achieved by SIGb with the
proposed RST-based amending (RF-PART-RST) against SIGb
using confidence based amending (RF-PART-CONF) and S1Gb
without amending (RF-PART-NONE).

Ratio | 10% | 20% | 30% | 40%

RE-PART-NONE | (6.0 (353) (833) (8:2;) (g:gg)
RF-PART-CONF (13323) (838) (813(7)) (8:3;) (g:%)
RF-PART-RST (22323) (g:gg) (8:2;) (323) (g:gg)

relative growth, the increase in the structure of the grey-box is
on average larger when using small amounts of labeled data,
while for bigger ratios this difference decreases. This growth
in the structure is an expected consequence of providing more
unlabeled data to the white-box surrogate in the grey-box
scheme. However, the use of amending procedures alleviates
this effect by giving more importance to relevant unlabeled
instances. In general, a smaller growth is observed when using
RST amending thus resulting in the winner combination for
all ratios. In addition, in Table the simplicity measure
(the closer the value to one the better) also indicates that in
general the use of amending is convenient for obtaining more
concise sets of rules. For this measure the proposed RST-based
amending exhibits the highest values of simplicity for all ratio
values used for experimentation.

TABLE II: Interpretability by labeled ratio in terms of relative
growth mean (and standard deviation) achieved by SIGb
with the proposed RST-based amending against SIGb using
confidence based amending and SIGb without amending.

PART-NONE I 0.72

PART-NONE = PART-NONE PART-NONE
0.6193 0.6390 0.6446 0.6485
-0.68
g
"é PART-CONF  PART-CONF  PART-CONF  PART-CONF
o 0.6596 0.6696 0.6682 0.6664
£ -0.64
<
-0.60
PART-RST PART-RST PART-RST PART-RST
0.6666 0.6895 0.6964 0.6954

I- 0.56

Fig. 4: Mean utility values for amending types across ratios.
RST-based amending shows the best results for all ratios.

10% 20% 30% 40%

From the experiments above, we can conclude that the
proposed RST amending contributes to obtaining more concise
rules sets in the white box, without sacrificing performance
of the grey-box model. This gain in simplicity is relevant as
a proxy for interpretability in the form of transparency and
simulatability of the final model.

C. Comparing against Self-labeling Classifiers

In this subsection, we compare the predictive capability of
SIGb against the four best self-labeling techniques reported
in the review paper in [16]: Co-training using support vector
machine [1] (CT(SMO)), Tri-training using C45 decision tree
[19] (TT(C45)), Co-Bagging using C45 decision tree [1]
(CB(C45)) and Democratic Co-learning [20] (DCT). Since
these algorithms are not inherently interpretable we focus our
comparison on the prediction rates only. For this experiment,

Ratio 10% 20% 30% 40% L
RF-PARTNONE | _mean 3.07 319 178 155 S1Gb refers to the RF-PART-RST combination.
(stdev) | (0.92) | (0.62) | (0.51) | (0.47) .. .
mean | 2.11 1.66 145 130 TABLE IV: Mean and standard deviation of kappa coefficient
RF-PART-CONF ’ ’ ’ ’ : :
(stdev) | (0.59) | (0.47) | (0.43) | (0.40) obtained by SIGb and four self-labeling methods from the
mean 1.99 1.38 113 0.98 state-of-the-art, by ratio. The best performance is highlighted.
RE-PARTRST | (qidev) | 0.49) | 0.31) | 0.24) | (021) Y P S8
Ratio 10% 20% 30% 40%
SIGb mean 0.56 0.61 0.62 0.62
TABLE III: Interpretability by labeled ratio in terms of sim- (stdev) | (0.29) | (0.27) | (0.27) | (0.27)
plicity (and standard deviation) achieved by SIGb with the TT(C45) mean 0.51 0.55 0.57 0.59
proposed RST-based amending against SIGb using confidence (stdev) (8??) (8?2) (8?3) (8?2)
based amending and SIGb without amending. CB(C45) mean ’ ’ ’ )
(stdev) | (0.29) | (0.29) | (0.29) | (0.28)
Ratio 10% 20% 30% 40% DCT mean 0.49 0.54 0.58 0.59
RE-PART.NONE | mean 0.70 0.70 0.69 0.69 (stdev) | (0.32) | (0.30) | (0.28) | (0.28)
(stdev) | (0.39) | (0.39) | (0.40) | (0.40) CT(SMO) mean 0.48 0.55 0.58 0.60
_PART- mean | 081 | 078 | 075 [ 0.74 td 0.31) | (0.29) | (0.29) | (0.29
RE-PART-CONF (stdev) | (0.32) | (0.34) | (0.35) | (0.36) (stdev) ( ) ( ) ( ) ( )
RE.PART.RST | mean | 082 | 081 | 081 | 08I
(stdev) | (0.32) | (0.33) | (0.33) | (0.34) Table [IV| reports the mean and standard deviation of kappa

Fig. {] visualizes the utility values in a heat-map plot. From
this figure, it is easy to perceive that RST amending, positively
contributes to the overall performance of the approach when
taking both kappa and simplicity into account.

coefficient, reveling that our proposal has the highest mean for
all ratios. There is no doubt about the superiority of the SIGb
classifier when tested with datasets with ratios of 10% and
20% of labeled instances, as the differences are clearly visible.
In the case of datasets comprising 30% and 40% of labeled



instances, the results show that SIGb is the best-performing
classifier, but with less pronounced differences against DCT
(for 30%) and CT(SMO) (for both ratios). However, DCT
and CT(SMO) cannot be considered transparent due to their
complex structure involving support vector machines and
collaboration between base classifiers.

A more detailed analysis including statistical tests sup-
porting these conclusions can be found in a extended study
provided by authors as supplementary material [26]. Although
our main goal was not to outperform the SSC methods
in terms of classification rates, the analysis reported above
supports our claim that we obtain a favorable balance between
performance and interpretability by using the self-labeling
grey-box approach for solving SSC problems.

V. CONCLUSIONS

In this paper, we have introduced a RST-based amending
procedure for weighting the instances coming from the self-
labeling process in the SIGb semi-supervised classifier. In
addition, we proposed measures for rule-based classifiers in
order to evaluate the simplicity of the final model as a proxy
for interpretability. Numerical experiments using accuracy
and interpretability measures show that RST-based amending
produces more concise sets of rules without affecting the pre-
diction rates by giving more importance to confident instances.
In addition, the experimental comparison shows that our SIGb
is able to outperform state-of-the-art self-labeling approaches
across a standard benchmark of SSC datasets, yet being far
more simple in structure than these techniques.
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