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Abstract—This paper analyzes the possibility of defining fuzzy
association rules by means of direct quantiles F-transforms.
The set of fuzzy association rules is used in a fuzzy inference
system, defined by means of the inverse quantile F-transform. The
obtained inference system reminds the Takagi-Sugeno one due
to the use of a weighted sum to perform the inference. However,
there is an important difference: the output is a fuzzy set and,
as a result, we require the use of a defuzzification procedure. In
addition, in this paper we prove experimentally that the fuzzy
set obtained as the output of the proposed inference system is
related to a probability distribution.

Index Terms—Fuzzy Transforms, Quantile regression, Fuzzy
association rules, Fuzzy inference systems.

I. INTRODUCTION

Fuzzy inference systems have had a significant influence
in Engineering during the last 40 years, for instance, in the
development of control systems [1]. Currently, it still has
the interest of the research community for further develop-
ments, both applied and theoretical [2], [3]. The approaches
of Mamdani in [8] and Takagi-Sugeno in [9] are the most
applied fuzzy inference systems for Engineering tasks, despite
of the existence of several other areas concerning inferences
in the fuzzy setting, as Fuzzy Logic [4], [6], Fuzzy relation
equations [5] or Fuzzy answer set programming [7]. In this
paper we focus on the construction of fuzzy association
rules for a Takagi-Sugeno type inference system (TS-inference
systems).

In the literature, the reader can find a huge variety of
methods for the automatic construction of fuzzy rules for
TS-inference systems. Such a methods can be classified in
different groups according to the used techniques [10]; e.g.,
genetic based methods [11], neural-network methods [12], [13]
or clustering methods [14], [15], among others. The method
proposed in this paper is framed in the group of statistics and
optimization based approaches [16], [17].

In this paper we propose the construction of a fuzzy infer-
ence system similar to the one proposed by Takagi and Sugeno,
in the sense that the inference is computed by a weighted sum,
but with an important difference: the result of the inference
is a fuzzy set. That implies the necessity of considering a
defuzzification procedure at the end of the inference. In the
literature we can find different extensions of Sugeno inference
systems, as those based on intervals [2], type-2 fuzzy sets [20]
or intuicionistic fuzzy sets [21]. However, the inference system

proposed in this paper does not consider generalization of
fuzzy sets, its novelty resides on the use of quantiles F-
transforms [22]–[24] for both, the definition of association
rules and the inference engine.

This is not the first approach dealing with the use of
F-transforms for the construction of fuzzy rules in fuzzy
inference systems [25]–[27]. Actually, there are evident re-
lationships between the two kinds of F-transforms, the direct
and the inverse, and T-S inference systems. Specifically, the
interpolation obtained by the inverse (standard) F-transforms
can be considered an inference procedure where the knowl-
edge database is constructed by the direct (standard) F-
transforms [25], [27]. Such a construction coincides with
the proposal given in [16], in a context of T-S inference
systems. This paper goes a step further by proposing the use
of quantiles F-transforms [24] for this task. In this way we
propose both, a fuzzy inference engine based on the inverse
quantile F-transforms and a construction method to create
the fuzzy rules based on direct quantile F-transforms. As
a remarkable feature, the output obtained by the proposed
inference system can be related to quantile regression [18] and
to probability distributions conditioned to the satisfiability of
fuzzy events [19].

For the sake of a better understating of the proposed
fuzzy inference system, in Section II we recall the notions of
(standard) F-transform, quantiles F-transforms and enumerate
some of their most important properties. Then, in Section III
we present the proposed fuzzy inference system and the
proposed construction of rules. In Section IV, we show some
experiments in both synthetic and real data to illustrate the
convenient properties of the approach. Finally in Section V
we provide some conclusions and future lines of research.

II. PRELIMINARIES

A. Fuzzy partitions

Let us begin by recalling that a fuzzy set A on a universe U
can be identified with its membership function A : U → [0,1].
Given α ∈ [0,1] the α-cut of A is given by the set {x ∈U |
A(x)≤ α}. Let us recall also the notion of fuzzy partition.

Definition 1. A fuzzy partition ∆ of a universe U is a set of
fuzzy sets ∆1, . . . ,∆n on U fulfilling the covering property, i.e.
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for all x ∈U there exists k ∈ {1, . . . ,n} such that ∆k(x)> 0.
The fuzzy sets ∆k (for k = 1, . . . ,n) are called the classes of ∆.

In the literature the reader can find several additional con-
dition imposed on fuzzy partitions. As, for instance normality,
continuity, convexity or Ruspini condition [22].

Note that the previous definition is generic and U may be
vectors of Rn. Actually, in Section III and later on, the universe
U considered is Rn for some n ∈ N, but we keep using the
notation U for the sake of the presentation and to emphasize
that such a set is the universe where the fuzzy partition is
defined. Moreover, the classes (membership functions) in the
fuzzy partitions are defined by combinations of triangular
fuzzy sets, which are defined on real numbers (i.e. U = R)
and are determined by 3-tuple of real numbers. In this respect,
given a,b,c ∈ R satisfying a≤ b≤ c, the triangular fuzzy set
(a,b,c) is given by the membership function

T (a,b,c)(x) =





x−a
b−a if a < x≤ b
c−x
c−b if b < x≤ c
0 otherwise

Moreover, we do an abuse of notation and allow that a =−∞

or c = ∞, in such cases the membership functions of such
fuzzy sets are given by:

T (−∞,b,c)(x) =





1 if x≤ b
c−x
c−b if b < x≤ c
0 otherwise.

and

T (a,b,∞)(x) =





0 if x≤ a
x−a
b−a if a < x≤ b
1 otherwise

respectively.

B. F-transforms

Here we recall the basic notions of (standard) F-transforms
(originally introduced in [22]) in the general data framework
given in [28]. The main difference between both approaches
is that data does not need to have a functional structure, and
then, they can be applied to arbitrary datasets. In this respect,
we consider a finite subset T = {(xi,yi)}i∈I of U ×R without
a functional structure; i.e. for the same x ∈ U it may exist
either two tuples (x,y1),(x,y2) ∈ T satisfying y1 6= y2 or it
may exists x0 ∈ U such that (x0,y) /∈ T for all y ∈ R. Since
T represents a dataset, we use the following terminology:
for simplicity let us assume U = Rn, each tuple (x,y) =
(x1,x2, . . . ,xn,y)∈T⊆Rn+1 corresponds to one object b; each
coordinate in T corresponds to a different attribute ai and it is
called variable; each value xi in (x1,x2, . . . ,xn,y) is the degree
of the object b concerning the variable ai; finally, the variables
(x1,x2, . . . ,xn) ∈U are called independent and the variable y
is called depended.

Definition 2. Let T = {(xi,yi)}i∈I ⊆ U × R and let ∆ =
{∆1, . . . ,∆n} be a fuzzy partition of U . We say that the n-

tuple F∆[T] = [F1, . . . ,Fn] ∈ Rn is the direct F-transform of T
w.r.t. ∆ if

Fk =
∑i∈I yi ·∆k(xi)

∑i∈I ∆k(xi)
(1)

for all k ∈ {1, . . . ,n}.
It is not difficult to check that definition above extends the

original one in the following way: given a function f : U →R
the Definition 2 coincides with the original definition given
in [22] by identifying f with the subset T f = {(x, f (x) |
x ∈ U } ⊆ U ×R, i.e., F∆[Tf] = F∆[ f ]. As in the original
definition [22], the components of the direct F-transform
coincide with a least squares weighted solution where the
weights are given by the classes of the fuzzy partition ∆

chosen, as recalled in the following proposition.

Proposition 1 ( [28]). Let T = {(xi,yi)}i∈I ⊆U ×R and let
∆ = {∆1, . . . ,∆n} be a fuzzy partition of U . Then the k-th
component of the direct F-transform is the minimum of the
following function:

φ(z) = ∑
i∈I

(yi− z)2 ·∆k(xi) (2)

As in the original approach [22], the inverse F-transform is
a function defined from the direct F-transform components.

Definition 3. Let T = {(xi,yi)}i∈I ⊆U ×R and let F∆[T] =
[F1, . . . ,Fn] ∈Rn be the direct F-transform of T w.r.t. ∆. Then,
the function defined, for all x ∈U , as:

TF
∆(x) =

∑
n
k=1 Fk ·∆k(x)
∑

n
k=1 ∆k(x)

(3)

is called the inverse F-transform of T w.r.t. ∆.

Some remarks about the previous definition. Firstly, the
inverse F-transform TF

∆
(x) is a function independently whether

the set T has the structure of a function or not. Secondly,
note that the domain of the inverse F-transform is U , so it is
defined even for those x ∈U such that there is not (x,y) ∈ T;
i.e., it can be used easily as an interpolation and regression
tool. Finally, the inverse F-transform is closely related to the
function obtained by assigning to each x∈U the mean among
all the yi such that (x,yi) ∈ T (see [28] for more details).

C. L1-F-transforms and QF-transforms
Taking as a reference Proposition 1, [24] proposes a modi-

fication of the (standard) direct F-transform as a minimizer of
a residual absolute error instead of a residual square error.

Definition 4 ( [24]1). Let T = {(xi,yi)}i∈I ⊆ U ×R and let
∆ = {∆1, . . . ,∆n} be a fuzzy partition of U . We say that the
n-tuple FL1

∆
[T] = [F1, . . . ,Fn] ∈ Rn is the L1-F-transform of T

w.r.t. ∆, if for each k ∈ {1, . . . ,n}, Fk is a minimizer2 of the
following function:

φ(z) = ∑
i∈I
|yi− z| ·∆k(xi) (4)

1For prosentation purposes, the definition is presented directly in the context
of non functional data.

2The minimizer of a function f : R→ R is the value z ∈ R such that f (z)
is the minimum of f .



Here it is worth recalling that the median of a dataset Y =
{yi}i∈I can be characterized as the minimizer of the function
φ(z) = ∑i∈I|yi− z|. Note that such an expression is similar to
Equation (4) but this later is weighted by the classes ∆i of a
fuzzy partition. Then, we can assert that the main difference
between the L1-F-transforms and standard F-transform is that
the former is related to the median whereas the latter to the
mean. Going one step further, and taking into account that
the q-th quantile of a dataset Y = {yi}i∈I coincides with the
minimizer of the objective function:

Φ(z) = ∑
i∈I

wq(yi) · |yi− z|,

where wq(yi) is the weighted function

wq(yi) =

{
1−q if yi < z
q if yi ≥ z,

we can define the direct q-th quantile F-transform (or the
q-th QF-transform) as follows.

Definition 5. Let T = {(xi,yi)}i∈I ⊆ U × R, let ∆ =
{∆1, . . . ,∆n} be a fuzzy partition of U and let q ∈ R. We say
that the n-tuple QFq

∆
[T] = [F1, . . . ,Fn] ∈ Rn is the direct q-th

QF-transform of T w.r.t. ∆, if for each k ∈ {1, . . . ,n}, Fk is a
minimizer of the following function:

φ(z) = ∑
i∈I

wq(yi) · |yi− z| ·∆k(xi) (5)

where wk(yi) is the weighted function

wq(yi) =

{
1−q if yi < z
q if yi ≥ z.

We can interpret the k-th component of the direct q-th
QF-transforms as the q-th quantile over the variable yi by
restricting T to the elements in the class ∆k. Note also that
the definition above is cyclic, but it is well-defined (see [24]).
It is worth mentioning also that Definition 5 differs slightly
from the original approach in the following way: in [24]
the QF-transform is defined as a vector of fuzzy sets (or
fuzzy numbers) whereas Definition 5 define QF-transforms
as scalar values in R; one per each q ∈ [0,1]. Nevertheless,
it is easy to prove that both definitions are equivalent in the
sense that one can be obtained from the other and viceversa.
This modification is motivated to allow the definition of
different fuzzy sets for the consequent of rules during the
construction of the knowledge data base (see Section III).
Finally, note that each component of the q-th QF-transform
can be obtained by means of a weighted linear programming
that is straightforwardly constructed [24]. In this way, the
computation of QF-transforms can be efficiently performed
in practice.

As the inverse standard F-transform, the inverse q-th QF-
transform is a function from U to R.

Definition 6. Let T = {(xi,yi)}i∈I ⊆U ×R, let q ∈ [0,1] and
let QFq

∆
[T] = [F1, . . . ,Fn]∈Rn be the direct q-th QF-transform

of T w.r.t. ∆. Then, the function defined for all x ∈U as

TQF
∆

(x) =
∑

n
k=1 Fk∆k(x)

∑
n
k=1 ∆k(x)

(6)

is called the q-th inverse QF-transform of T w.r.t. ∆.

For each x ∈U , TQF
∆

(x) approximates the q-th quantile of
the set Dx = {yi | (x,yi) ∈ T}. Note that the approximation
given by TQF

∆
(x) takes into account the elements in T which

first component is “close”3 to x; as a result, it is also
applicable when Dx = /0.

III. QUANTILE F-TRANSFORMS FOR THE DEFINITION OF
FUZZY INFERENCE RULES

In general, every fuzzy inference system has a similar
structure, which consists in the following three steps:
• FUZZIFICATION: this process takes the raw data and

converts it into fuzzy data that can be processed by means
of fuzzy tools. In this step, the consideration of a suitable
fuzzy partitions is fundamental for a good behaviour of
the inference system.

• INFERENCE ENGINE: this is the central stage, and con-
sists in the computation of an inference from the input
data previously fuzzified. Such an inference requires the
use of a knowledge database composed by rules If-Then.
The knowledge database used in the inference engine is
a crucial for the procedure; it may be either constructed
from data or given by experts.

• DEFUZIFICATION: this is the oposite process to Fuzzi-
fication, and takes the outputs of the inference engine,
given usually in terms of fuzzy sets, and computes an
output in the crisp setting.

Although the Fuzzification process is a fundamental step,
we do not go in deep and assume a fixed fuzzy partition ∆.
In Section III-A we show how to construct fuzzy association
rules by means of direct QF-transforms. Then, we define
the Inference engine in Section III-B by using the inverse
QF-transform. Finally in Section III-C, we present a simple
defuzzification procedure, although others can be defined
according to applicational purposes. Finally in Section III-D
we provide three measures to determine the significance of the
the obtained association rules. Figure 1 shows a diagram with
a description of the proposed fuzzy inference structure.

A. Construction of a knowledge database from QF-transforms

For the sake of a better understanding of the fuzzy inference
rule system, it is convenient to present firstly the construction
of rules in the knowledge database.

In general, the knowledge database used to perform the
inference engine is a set of rules with the form:

Rule : IF (A1 and A2 and . . . and An) THEN B (7)

where Ai (called antecedent) and B (called consequent) repre-
sent fuzzy sets. The meaning of the rule is the following: if all
the antecedents A1,A2, . . .An are satisfied by an input, then the
output should satisfy the consequent B as well. For example,
the following toy rule of a break control system in a car

Rule : IF (HighSpeed and CloseCurve) THEN StrongBrake

3Where the relationship of closeness is given by the fuzzy partition ∆.
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Fig. 1. Diagram of the proposed fuzzy inference system based on quantiles F-transforms.

represents the knowledge If the car is going fast and is
approaching a curve, then the car should break strongly.

In our approach the construction of the knowledge database
is unsupervised, for such a reason we require a training
dataset for mining association fuzzy rules. We fix a dataset
T = {(xi,yi)}i∈I ⊆ U ×R, the antecedents of the rules are
those classes in a fuzzy partition ∆ and the fuzzy sets in the
consequents are constructed via direct quantiles F-transforms
as follows: for each class ∆k ∈ ∆ we define the fuzzy rule:

Rule : IF ∆k THEN QFk (8)

where QFk is the fuzzy set (on R) defined by the membership
function:

QFk(x) = min{q ∈ [0,1] |
(
QFq

∆
[T]
)

k ≥ x}

for all x ∈ R; where
(
QFq

∆
[T]
)

k is the k-th component of the
q-th direct QF-transform whit respect to ∆k.

Some remarks:
• Although the antecedent is given above by only one class

∆k, it is worth noting that it may be identified with a
conjunction of various fuzzy sets. For example, consider
the universe U =R2 and two fuzzy partitions for R given
by ∆x = {∆x

1, . . . ,∆
x
n} and ∆y = {∆y

1, . . . ,∆
y
m}. Then, we

can define a fuzzy partition ∆ on U =R2 by considering
the basic functions defined for all (x,y) ∈ R2 by:

∆i j(x,y) = ∆
x
i (x) ·∆y

j(y)

for i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m}. Under the construc-
tion of fuzzy rules presented above, there is exactly one
rule with antecedent ∆i j. Note that the product between
the classes ∆x

i (x) and ∆
y
j(y) can be interpreted as a

conjunction. Actually, the product may be replaced by
an arbitrary t-norm or fuzzy aggregator function [4].
Therefore, the interpretation of the unique antecedent
in the rule of Equation 8 may be considered also a
conjunction of fuzzy sets as in Equation (7).

• Note that the consequent of each fuzzy rule, QFk, is
a fuzzy set defined on R. Moreover, thanks to the use
of quantiles and its properties related to probability,
QFk has the following (fuzzy) conditional probabilistic
interpretation: given x ∈R, QFk(x) is the probability that
an arbitrary (x,y) ∈ T with x in ∆k satisfies y≤QFk(x).

In other words, QFk may be considered an approximation
of a probability distribution.

• For each class in the fuzzy partition there is a rule even if
there is no relation between the antecedents and the con-
sequents. However, this is not a defect since the strength
of the inference lies on the fuzzy sets QFk constructed
in the consequent of the rules. In Section III-D we
present a measure to determine the dependence between
antecedents and consequents by means of QFk.

Due to the initial nature of this paper, the knowledge
database is constructed in a rudimentary way by considering
the whole set of rules definable as in Equation (8). Obviously,
this consideration entails an exponential increment of rules
according to the number of dependent variables (i.e. dimension
of U ) and the number of classes in their respective fuzzy
partitions. The application of many advanced procedures in
the literature can be used to reduce the number of constructed
rules; see [10]. However, such a consideration is let to further
studies due to the lack of space and, as we already said, the
introductory purpose of this approach.

B. Inference engine

Once the construction of the knowledge database has been
presented, we can focus on the inference system. Let us recall
that the inverse F-transform can be used to approximate the
original dependent values of the data used to construct the
direct F-transforms (see [25]). Therefore, if we assume that a
new piece of data comes from the same context of the training
dataset, the obtained fuzzy rules (constructed by means of
direct F-transforms) should also describe conveniently its
behaviour and then, the use of the inverse F-transform can
be used to retrieve the dependent variable.

Following the previous consideration, the inverse F-
transform should be the central point of the inference engine.
Actually, the inference engine is defined by applying the
inverse F-transform on the α-cuts of the consequent fuzzy sets
QFk in all the rules of our knowledge database (Equation (8)).
Formally, given x∈U , the inference of the dependent variable
is computed as the fuzzy set QF whose α-cuts QFα , with
α ∈ [0,1], is given by:

QFα =
∑

n
k=1(QFk)α ·∆k(x)

∑
n
k=1 ∆k(x)



where (QFk)α denotes the α-cut of the fuzzy set QFk associ-
ated with the k-th rule in the knowledge base and the (escalar
interval) product · is defined by λ · [a,b] = [λa,λb], for λ ≥ 1
and a,b ∈ R∪{∞}.

Note that this inference reminds the TS-inference system [9]
(i.e. the output is computed by a weighted mean) but with two
important differences: firstly it reports a fuzzy set instead of a
real number and secondly, the weighted mean is used to create
α-cuts instead of truth values.

C. Defuzzification

Since the output of the inference engine is a fuzzy set, it
is necessary to consider a defuzzification procedure. Let us
recall that, since the consequents of the association rules are
defined by quantile F-transforms, the inferred fuzzy set QF
represents the probability distribution of data according to the
information acquired from the antecedents; in Section IV we
show experimentally that assumption. Therefore, the consid-
eration of the centroid of QF as the defuzzification procedure
may be meaningless.

One possible defuzzification procedure can be given in
terms of intervals. In other words, since the fuzzy set obtained
as output represents the distribution of data, we can determine
an expected range of the dependent variable. For example, we
can assume that the α% of the data satisfying the antecedents
belong to the α-cut QFα

4. If we prefer a bounded interval
as output, another option is to consider the interval obtained
by the intersection of the α

2 -cut and 1− α

2 -cut, since we can
also assume that it approximately contents the α% of the data
satisfying the antecedents.

Many other defuzzification procedures may be defined.
For example, we can put effort in determining the kind of
distribution (Normal, Exponential, Poisson, etc) of the data
and then proceed accordingly; e.g., to determine accumulation
of data by the variation of the output. However, the analysis
of the different kinds of defuzzification procedures is out of
the scope of this paper and it will be studied in future works.

D. Measures of significance

Although the elimination of rules is not considered in this
approach, it is important to determine whether one rule is
significant or not. By such a reason we propose here three
different measures. The first one measures the number of
objects in the training dataset that support the obtained rules.
Since all the rules are constructed by direct F-transforms and,
formally the process consider all the objects in the dataset, the
support is given by the number of object that has a significant
impact in the definition of QFk, For such a reason, the support
of a rule:

Rk : IF ∆k THEN QFk

is defined as the fuzzy cardinality of the antecedent ∆, that is:

supp(Rk) =Card(∆k) = ∑
u∈U

∆k(u). (9)

4Note that the α-cut QFα coincides with an interval of the form [a,∞] for
certain a ∈ R

On the other hand, since we construct an association rule
for all class in ∆, we must determine whether there is a de-
pendence between the class ∆k ∈ ∆ and the consequent. Let us
recall that the fuzzy set QFk, in the rule ∆k→QFk, represents
the probability distribution of the variable associated to the
consequent “conditioned to the satisfiability of the antecedent
∆k”. That is, QFk approximates the probability distribution
of {yi | (xi,yi) ∈ T and xi ∈ ∆k}. Therefore, we can assume
that if QFk coincides with the “non conditioned” probability
distribution of the variable associated to the consequent (i.e,
with the probability distribution of {yi | (xi,yi) ∈ T}), then
there is full independence between variables. Based on such
an idea, we propose here the following two measures of
dependence between the antecedent and the consequent of a
rule Rk : ∆k→QFk as:

depmax = max
x∈[min,max]

|QFk(x)−F(x)| (10)

depsum =
1

max−min

∫ max

min
|QFk(x)−F(x)|dx (11)

where min (resp max) is the minimum (resp. maximum) value
in the dataset corresponding to the dependent variable and
F denotes the probability distribution of the the dependent
variable; i.e, of {yi | (xi,yi) ∈ T}. Note that both measures
are in [0,1] and the closer the measures to 0, the more
independence between antecedents and consequent.

IV. EXPERIMENTAL VALIDATION

In this section we validate experimentally the fuzzy in-
ference system described in the previous section. For such
a reason, we divide the section into two parts. In the first
one, we consider synthetic datasets in order to show the
behaviour of the fuzzy inference systems under certain cir-
cumstances. Subsequently, we apply the approach to real
data by considering the dataset uci-combined-cycle-power-
plant dataset, available in https://archive.ics.uci.edu, aimed at
the estimation of the energy production of a power station.
The quantiles F-transforms are discretized by computing 99
quantiles uniformly distributed.

A. Application to synthetic databases.

The goal of this section is to show the profits of the
proposed approach in order to acquire knowledge from a
training database. For such a reason, we create three groups of
datasets for different experiments to analyze the significance
of the obtained rules. The first group of datasets is oriented to
the analysis of independent variables, the second one oriented
to the analysis of functional data and the third one to the
analysis of dependent (but not functional) variables. For the
sake of a better understanding, we create only datasets of two
dimensions.

In the first experiment, we consider two variables A and B
and construct a dataset of 500 entries generated randomly by
two uniform distributions with range values in [0,10]. Then,
we consider a uniform fuzzy partition on the variable A of 5
classes and we compute the respective 5 rules in the knowledge
database (one per each class in the fuzzy partition) for the



Fig. 2. Left, point cloud of two independent variables. Right, one consequent
fuzzy set QFk, obtained from the independent variable given in the left, and
overlapped with the uniform distribution U(0,10).

inference of B: i.e., we compute the respective fuzzy sets
QF1, . . . ,QF5 obtained from the direct quantile F-transforms.

In order to evaluate our results, we compute the measures
of dependence depmax and depsum of each rule with respect
to the uniform distribution U(0,10). The experiment has been
repeated 20 times (i.e., in total we have analyzed 100 rules)
in order to obtain more robust conclusions. The mean (µ) of
the measures depmax and depsum have been µ(depmax) = 0.15
and µ(depsum) = 0.086 with quasi-variance 0.003 and 0.007
respectively. From the previous measures, we can conclude
that the measures depmax and depsum can be used to determine
the independence dependence between the variables A and
B; as expected. In Figure 2 we show one of the consequent
fuzzy sets QFk overlapped with the distribution of the uniform
distribution to make more visible the similarity between them.

In the next experiment we consider functional data. That is,
we consider two variables A and B, and one function f : R→R
such that B(x) = f (A(x)) for every object u∈U . We construct
four groups of datasets with 100 objects. In all of them the
values of A are (randomly) uniformly distributed between 0
and 10, and B(x) = f (A(x)) for different functions f : R→R.
In the first group, B is always constant, i.e., f (x)= c for certain
c ∈ [0,10]; in the second one , f is a random straight line;
in the third one, f is a second order polynomial; and in the
fourth group f is a logarithmic function. In each experiment
we have computed the measures of dependence depmax and
depsum for each rule with respect the uniform distribution
U(0,10). We have repeated 20 times the experiment for each
group (i.e., 20 randomly generated functions for each group)
and the maximum value, the minimum value, the mean and
quasi-variance of the measures depmax and depsum are given
in the following table:

Fig. 3. Left, point cloud of two functional variables under the relation 2y =
x+0.8. Right, the consequent fuzzy set QF3 obtained for the triangular class
∆3 = T (3.14,5.07,6.99); i.e. the rule ∆3→QF3.

cte. mx+n ax2 +bx+ c loga(x)
max(depmax) 0.999 0.769 0.914 0.886
max(depsum) 1 0.424 0.478 0.466
min(depmax) 0.499 0.329 0.297 0.308
min(depsum) 0.5 0.179 0.149 0.171
µ(depmax) 0.7458 0.573 0.619 0.615
µ(depsum) 0.67 0.579 0.289 0.302
σ2

n−1(depmax) 0.022 0.021 0.04 0.034
σ2

n−1(depsum) 0.127 0.007 0.011 0.010

Therefore, if we compare these results with those obtained
for independent variables, we can observe that the fuzzy
rules computed by quantiles F-transforms are able to capture
the dependence between variables. In Figure 3 we show the
consequent QF of one rule obtained for functional data; note
the difference between QF an the uniform partition.

In the last experiment developed with synthetical datasets,
we consider the straight line x = y in R2 modified by some
noise. In particular, we generate a dataset of 500 objects where
the variables A(x) are uniformly distributed in [0,10]. Then, we
construct a variable B by the equation B(x) = A(x)+N(0,1),
where N(0,1) denotes one value randomly generated by the
normal distribution with mean 0 and standard deviation 1.
In Figure 4, we show one of the obtained dataset with one
of the consequent fuzzy sets obtained for one rule. Note the
similarity of QFk with the normal distribution N(cor,1), where
cor denotes the core of the class ∆k; in the case illustrated
in Figure 4, cor = 5.07. The mean of the obtained measures
depmax and depsum for these experiments are 0.496 and 0.255
respectively; the quasi variance obtained for both measures are
0.016 and 0.006 respectively. Comparing these results with
the ones obtained for independent data, we may conclude
that the obtained rules obtained by quantile F-transforms
capture the relationship between the generated variables in this
experiment.



Fig. 4. Left, point cloud of two functional variables under the relation 2y =
x+ 0.8. Right the consequent fuzzy set QF3 obtained from those variables
for the triangular class ∆3 = (3.14,5.07,6.99).

B. Real data

In this section, we consider the uci-combined-cycle-power-
plant dataset5 which was analyzed in [29] under different
regression models. The dataset contains 5 hourly average
variables, namely: Ambient Temperature (AT), Ambient Pres-
sure (AP), Relative Humidity (RH), Exhaust Vacuum (V) and
electrical energy output (EP). The dataset contains 9568 inputs
collected from a Combined Cycle Power Plant over 6 years
(2006-2011).

Our goal is to illustrate the interpretability of the output
as an approximation of a probability distribution. Accord-
ingly, for each α ∈ [0,1], we determine the percent of tuples
(xAT ,xAP,xRH ,xV ,xEP) ∈ T such that the real value of the
dependent variable belongs to the α-cut QFα . For example,
if the dependent variable is the electrical energy output (EP),
we determine the percent of tuples (xAT ,xAP,xRH ,xV ,xEP)∈T
such that xEP ∈ QFα . Let us recall that according to the
definition of the quantiles F-transforms, QF approximates the
probability distribution of the dependent variable and then,
each α-cut should contain approximately the α% of tuples.
With this purpose, we perform three experiments. For all
them, we split the data into 4 datasets of 2152 objects; one
for training and other three for testing. In the first experi-
ment, we consider PE as dependent variable and AT and V
as independent variables. For each independent variable we
consider a uniform fuzzy partition of 5 classes. Therefore, we
obtain 25 (5×5) rules of the type (AT and V )→ PE. Then,
for each dataset (including the training one), we compute the
respective inference for each object and determine whether the
real value of the variable PE (the real one) belongs to the α-
cut of the obtained inference for α ∈ {0.1,0.2, . . . ,0.8,0.9}.
Figure 5 shows the percent of objects for which its variable
PE belongs to the respective α-cut of the inferred fuzzy set
QF. The second experiment is similar to the first one, but
considering AT as dependent variable and, AP and RH as
independent variables. The results are displayed in Figure 6.

5available in https://archive.ics.uci.edu.

α− cut DTraining
1 D2 D3 D4

0.1 0.0566 0.0548 0.0613 0.0613
0.2 0.1398 0.1375 0.1589 0.1305
0.3 0.2551 0.2592 0.2611 0.2379
0.4 0.3717 0.3833 0.381 0.3638
0.5 0.5001 0.5051 0.5013 0.493
0.6 0.6273 0.6245 0.6333 0.6194
0.7 0.7476 0.7416 0.749 0.7425
0.8 0.8675 0.8601 0.8722 0.8605
0.9 0.9567 0.9456 0.9581 0.9512

Fig. 5. Percent of objects which real value for the variable PE belongs to
the respective α-cut of the fuzzy set obtained in the fuzzy inference that uses
25 rules (5×5) of the type (AT and V )→ PE.

α− cut DTraining
1 D2 D3 D4

0.1 0.0882 0.098 0.0975 0.1013
0.2 0.1923 0.1821 0.1807 0.196
0.3 0.2932 0.2806 0.2792 0.289
0.4 0.3986 0.3805 0.387 0.3977
0.5 0.4958 0.4697 0.4735 0.4855
0.6 0.5855 0.5743 0.5645 0.5757
0.7 0.6905 0.7026 0.6798 0.6868
0.8 0.815 0.8238 0.8145 0.8187
0.9 0.9233 0.9154 0.9196 0.9117

Fig. 6. Percent of objects which real value for the variable AT belongs to
the respective α-cut of the fuzzy set obtained in the fuzzy inference that uses
25 rules (5×5) of the type (AP and RH)→ AT .

In the third experiment we followed a similar procedure but
considering three independent variables (AT,AP and RH) an
as dependent variable to PE. In this latter case we considered
fuzzy partitions of 5 classes in each independent variable,
but only 111 rules of the 125 (5× 5× 5) potential rules had
support measure (supp) different from 0; that is, only 111 rules
are suitable for use. The results are displayed in Figure 7.
Note that the values on the three tables are clearly correlated,
actually, the Pearson correlation coefficient is greater than 0.99
in all cases. Therefore, we can conclude that the fuzzy sets QF
obtained as the output of the fuzzy inference can be interpreted
as an approximation of a conditional probability distribution.

α− cut DTraining
1 D2 D3 D4

0.1 0.0497 0.0497 0.0539 0.0576
0.2 0.131 0.1277 0.1491 0.1301
0.3 0.229 0.2332 0.2374 0.2197
0.4 0.3554 0.3605 0.3643 0.3368
0.5 0.4916 0.5041 0.4879 0.479
0.6 0.6259 0.6361 0.6231 0.618
0.7 0.756 0.763 0.7657 0.7448
0.8 0.8926 0.8847 0.8903 0.8763
0.9 0.9628 0.9577 0.9646 0.9577

Fig. 7. Percent of objects which real value for the variable AT belongs to
the respective α-cut of the fuzzy set obtained in the fuzzy inference that uses
125 rules (5×5×5) of the type (AT and AP and RH)→ PE.



V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented a method to construct fuzzy
association rules by means of direct quantile F-transforms.
Moreover, we have use this set of rules in a fuzzy inference
system where its inference engine is based on the inverse
quantile F-transforms. The procedure reminds the Takagi-
Sugeno inference but reporting a fuzzy set as the output of
the inference procedure. Finally, we have shown in a series of
experiments, that the set of association rules constructed by
quantiles F-transforms captures the dependencies between the
variables and that the output of the fuzzy inference system is
related to a probability distribution.

Due to the initial character of this approach, there are
different lines of future works. For example, the construction
of the knowledge database must be improved by putting effort
in the definition of the initial fuzzy partition, by combining
the creation of rules with decision trees or by reducing the
number of rules. The experimental analysis should be extended
in order to encourage the probabilistic interpretation of the
inference. Finally, we aim at the application of the proposed
fuzzy inference system in practical problems; for example in
a classification of anomalous data and/or in the analysis of
digital forensics data. For that last goals, we will need to
investigate also different defuzzication procedures.
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