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Abstract—Research of the deep-learning has been applied to
several problems, such as image recognition, voice recognition,
and natural language processing. Those are achievement results
in the world. At the same time, it is used in various applica-
tions and research fields. This technology is expected for using
embedded systems of IoT devices such as smartphones and tablet-
pc. This technology is expected for using the embedded system
of IoT devices such as smartphones and tablet-pc. Deep-learning
requires large computational resources and high power consump-
tion. GPU is a kind of solution to computational resources. In
general, most systems need to use GPU acceleration. However, it
is a hard point to implement on tiny embedded devices under the
required GPU. Also, in recent years, FPGAs have been applied
to image processing technology fields such as defect inspection of
automobiles, security systems, and industrial products. Hardware
acceleration is one of the techniques to improve processing speed.
This technique is often used in the field of image processing. Our
research tried to design the hardware acceleration approach for
the convolutional neural network and we compared the software
processing approach and our hardware approach. The software
processing approach is conventional. As a result, our hardware-
based convolutional layer can show high-speed performance than
the software-based design. These hardware-based modules were
implemented on FPGA. We used HDL(Hardware Description
Language) to implement on FPGA. By using this, you can create
a logic circuit like programming. It is usually used when designing
the FPGA circuit. In this paper, we show the detail of the
architecture and the comparison result of processing time with
CPU.

Index Terms—Convolutional Neural Network, FPGA, Pipeline

I. INTRODUCTION

Deep learning is a method of machine learning that the
computer is able to learn the tasks that humans naturally per-
form. This technology supports the development of artificial
intelligence (AI), and this technology is beginning applicate
in various fields. In recent years, deep learning has been
applied to various problems such as image recognition, voice
recognition, and natural language processing, and has achieved
results.At the same time, it is used in various applications in
any field and is expected to be used in embedded systems such
as IoT devices [1]–[3]. Accelerators for deep learning include
CPU, GPU, FPGA, and ASIC. Basically, AI technology, which
like deep learning, is hard to implement on small embedded
devices such as low power systems.

Because deep learning has a high computational cost, and
generally requires a GPU [4]–[6]. Most computing libraries of
AI technology has designed for using a GPU system. Thus,
target architecture should implement a GPU as the acceleration
of AI. Especially, GPU is indispensable for real-time object
detection by the currently deep learning technology. As a
reason, the largest amount of processing in deep learning
is convolution processing and matrix operation by GPU ar-
chitecture. Additionally, High-speed execution requires high-
speed memory access and parallel computing performance of
multiplication and addition. Embedded systems have become
very important because they are this system is supporting in
the backside of our life. It can be easy to find everywhere
our daily lives. For example, consumer electronics, heating
control systems, traffic lights, engine control systems, etc. As
a requirement for embedded systems, it is necessary to balance
power consumption and performance. Also, FPGAs have been
applied to image processing technology fields such as defect
inspection of automobiles, security systems, and industrial
products [7]–[9]. FPGAs have better power performance than
CPUs and GPUs, and their significance is increasing, day by
day. Hardware acceleration is one kind of technique to improve
the processing speed and it is often used in the field of image
processing. Because each processing such as image processing
filters and feature extractions are usually independent.

There are many studies related to FPGAs, and it has
been reported that FPGAs perform as the processing speed
[10]–[13]. Those perform are better compared to CPUs by
implementing hardware image processing filters using FPGAs
in most cases. It is able to describe the differences between
the processing methods of FPGA and CPU. In the case of
processing RAW data directly from a camera, CPU and GPU
is necessary to store all camera data to RAM once. But,
FPGA don’t need to store all data to RAM once as shown
in Fig .1. The time to access the memory can be reduced, and
the data from the camera can be processed directly. So, image
processing can be performed at the register transfer level. Also,
when performing real-time processing using a camera, speed
up can be expected by using pipeline processing.

Therefore, in this study, we aim to improve the calculation
speed by designing a Convolutional Neural Network, as shown
Fig .2.
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Convolutional Neural Networks in the field of image recog-
nition works have achieved great performance in many tasks
and are attracting attention. In particular, the features extracted
from the hidden layer in CNN, that is trained using a large-
scale object recognition data set represented by ImageNet.
This algorithm is extremely versatile and is possibly useful
in various fields.

We focus on the implementation of hardware the Con-
volutional Neural Networks. Additionally, we report on the
implementation of the convolution layer and pooling layer
using FPGA, and the result of the comparison of processing
time with CPU.
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Fig. 1. Differences between CPU and FPGA processing. In case of processing
RAW data directly from a camera, CPU and GPU is necessary to store all
camera data to RAM once. But, FPGA don’t need to store all data to RAM
once.
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Fig. 2. The purpose of this research. Aim to improve the calculation speed
by replacing the convolutional layer with FPGA.

II. HARDWARE ARCHITECTURE

A. SoC FPGA and pipeline processing

This section explains an overview of the FPGA and details
of the processing implemented. FPGA is an abbreviation of
Field Programmable Gate Array. Users can design any circuit
in HDL or circuit diagram, and write a program to FPGA. The
flexibility of rewriting makes logical circuits of algorithms.
There is possible to support new algorithms. Also, it is possible
to adjust the granularity of pipeline processing and parallel
processing. Because it is possible to design at the hardware
level. CPU and GPU is necessary to store all camera data
to RAM once. But, FPGA don’t need to store all data to
RAM once The method of executing processing one by one
in time series is called sequential processing. CPU processing
corresponds to this. Describes pipeline processing. For exam-
ple, if the processing result of the instruction 1 is the input
data of the instruction 2. Instead of waiting for the completion
of the execution of the instruction 1 for all data, instruction
2 is executed the data for instruction 1 processing has been
completed is sequentially performed. Although FPGAs have

lower operating frequencies than CPUs and GPUs, they are
expected to exhibit better performance than CPUs and GPUs
by making good use of parallel and pipeline processing as
shown Fig .3.
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Fig. 3. Pipeline Processing. FPGA is expected to exhibit higher performance
than CPUs and GPUs at lower frequencies by utilizing pipeline processing.

To realize the pipeline processing with the image processing
filter, we used a line buffer structure [14]. The line buffer is
a memory that stores the pixels of one horizontal line of one
image. If the filter that performs image processing is 3× 3, it
is necessary to prepare three line buffers. Behavior of pipeline
processing is shown in Fig .4. One pixel data sent from the
camera is stored in Buf0. At the same time, the pixel data
stored at address 0 of Buf0 is shifted to address 1 of Buf0.
Similarly, the pixel data stored at the address 1 of Buf0 is
shifted to the address 2 of Buf0. The process of shifting the
pixel data to the next address is performed for all addresses.
Each time data of one pixel is transferred from the camera,
filter processing is performed on the pixel data in the part
surrounded by the broken line frame. Each time one pixel of
data is sent from the camera, filter processing is performed on
the pixel data in the area enclosed by the broken line frame.
It is possible to execute the filtering process in pixel units, not
frame units. Because, the pixel data stored in the line buffer
shifts.

In this study, we used Intel Cyclone V SoC (5CSE-
MAF31C6) [15]–[18]. We used the board of Terasic DE1-SoC
as shown in Fig .5. This SoC FPGA is equipped with a CPU
(ARM-A9 processor) that can execute the OS and 1GB of
DDR3 SDRAM. It means that it can realize hardware-software
(HW/SW) co-design. It can make the most of the strengths
of hardware and software. For example, by sharing the DDR3
SDRAM between the HPS side and the FPGA side, the image
processing result on the FPGA can be confirmed from the HPS
side usign OpenCV etc.

B. Overview of image processing system

In this section, Explain the image processing system that we
designed. Fig .6 shows the image processing circuit designed
for the FPGA in this experiment. In this experiment, two
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Fig. 4. Line Buffer. The pixel data stored in the line buffer shifts in
synchronization with the camera clock, so, it is possible to execute the filtering
process not on a frame basis but on a pixel basis.

Fig. 5. FPGA DE1-SoC platform interfaced with the TRDB-D5M GPIO
camera module.

convolutional layers were designed. When implementing a
deeper layer model, the number of arithmetic units may
be enormous. In addition, the implementation of the fully-
connected layer involves floating-point arithmetic and may
use a lot of memory. It may become insufficient hardware
resources. This may affect the operation speed. Therefore,
one layer was implemented with one FPGA, and a total of
two convolutional layers were implemented using two FPGAs.
This means that there are multiple Linux systems. It also
makes it easier to analyze the output results in each layer.

There are two types of design: HDL design and high-
level synthesis. In this study, we designed with HDL, due
to maximizing the performance of the chip. We used Verilog
HDL and System Verilog for the design on the FPGA side,
and we used a TRDB-D5M camera manufactured by Terasic.
Verilog HDL and System Verilog are one of the HDL. First,
the RAW data is transferred from the camera. This RAW
data is transferred by the Bayer pattern from the camera, so
it is necessary to convert. The RAW image captured from

the camera is converted to RGB and GRAY by a color
conversion circuit. In the image processing system designed
in this experiment, the camera operates at 25 MHz and the
FPGA operates at 50 MHz. A FIFO(First In First Out) was
used to absorb the difference between these two timings.
Convolution and MAX pooling processing is performed on
this GRAY image by the filter circuit. The filter size of the
convolution layer in this experiment is 3 × 3. Also, in the
pooling layer, 2× 2MAXpooling is performed. Then, the data
is transferred to the second FPGA and convolution and pooling
are performed. This output image that filtered is stored in
the On-Chip Memory provided inside the FPGA. On-Chip
Memory is a SRAM based small-capacity memory embedded
inside FPGA and it is used as a buffer to temporarily store
image-processed data. The result for one frame is DMA-
transferred from On-Chip Memory to DDR3 SDRAM via
HPS. DMA(Direct Memory Access) transfer is a method
that DMAC(DMA Controller) transfers data between main
memory and NIC instead of CPU. Uses the interface between
the main memory called the DMA channel and peripheral
devices without going through the CPU. As a result, the load
on the CPU is small and generally high speed is possible.
By storing one line of image data in On-Chip Memory. If
one line image data is stored, generates an interrupt signal. A
transfer instruction is issued from the Nios CPU to the DMA
controller and is transferred from the On-Chip Memory to the
DDR3 SDRAM via the HPS. The on-chip memory adopts a
double buffer method that prepares two. In this way, when one
on-chip memory is DMA transfer, processing results can be
stored to the other on-chip memory as shown in Fig .7. That
is, it can hide the delay.
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Fig. 6. Circuit diagram of the image processing system designed for this
experiment.

C. Camera interface

This section explains the camera module that we used.
The camera used was the TRDB-D5M manufactured by Intel
Corporation. This CMOS sensor support 2592H x 1994V
active pixels. In the case of a full resolution, the captured
output is in the RGB Bayer Pattern format and a frame rate
of up to 15 frames per second(FPS). These parameters can
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Fig. 7. Double buffer.When one on-chip memory is DMA transfer, processing
results can be stored to the other on-chip memory, it can hide the delay

be changed by manipulating the camera registers through I2C
communication. Fig .8 shown the block diagram that two parts
of the system, the D5M CMOS image sensor, and the camera
controller.
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Fig. 8. The camera interface block diagram.

III. EXPERIMENT

A. Experimental method

In this section, we describe experiments. In this experiment,
we measured the latency of the convolution layer and the MAX
pooling layer. It is the time from the end of image data capture
for one frame to the time the filter processing and transferred
to DDR3SDRAM. The Fig 9 shows the definition of CPU
latency. The Fig 10 shows the definition of the latency of
FPGA. A logic analyzer was used to measure the latency of
the FPGA. The size of the camera image is VGA (640x480), it
is a general resolution. Also, it is difficult to compare CPU and
FPGA that the camera used in this experiment under the same
conditions. Therefore, the CPU environment in this experiment
was made to read an image prepared in RAM in advance, and
process the image. The software image processing program
on the CPU side was created using C / C ++ language and
OpenCV library. We used GCC for compiling. The CPU is
Intel (R) Core (TM) i5-2400S CPU (2.5GHz). The processing
speed of the CPU measured the processing time from the end
of image reading to the end of image processing ten times,
and the average time was taken as the processing time.

B. Results

Here, we explain the experimental results. Table .III shows
the processing results for one frame in each layer. Fig . 12
shows the timing chart measured by the logic analyzer. It
shows the end of camera capture and the end of DMA transfer
in the first layer. Indicates the time until the FPGA writes
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Fig. 9. Definition of CPU latency.
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Fig. 10. Definition of FPGA latency.

data to DDR3 SDRAM by DMA transfer. The filter size in
this experiment was 3 × 3 for both layers, and convolution
was performed with the filter shown in Fig .11. Fig .13 is
image data captured from the camera. Fig .15 shows the
processing results of the first-layer FPGA. And Fig .14 shows
the simulation results in the C language bu CPU. Comparing
these results, it can be confirmed that convolution processing
and MAX pooling processing are performed correctly in the
hardware circuit.
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Fig. 11. Filters that prepared in this experiment.
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Fig. 12. the timing chart measured by the logic analyzer in first layer.

IV. DISCUSSION

In this section, we verified real-time performance. Here,
real-time processing is defined as completing the processing



TABLE I
CPU EXPERIMENTAL CONDITIONS

CPU Language Compiler
Intel(R) Core(TM)

i5-2400S CPU(2.5GHz) C/C++ GCC

TABLE II
FPGA EXPERIMENTAL CONDITIONS

FPGA Language Environment

Cyclone V Verilog HDL
System Verilog

Quartus ii13.1
Web Edition

before the image transfer of the next frame image is completed.
The operation clock is converted to 12.5MHz by the color con-
version circuit used in this experiment, so, it is transferred at
12.5MHz to the first layer. Therefore, the transfer is performed
at 80 ns per pixel. It takes 1 ms from the end of capturing one
frame of image data to the first layer to the end of processing
and the end of DMA transfer. This means that the processing
is completed before the 12,500 pixels of the next frame image,
that is, 20 lines of pixel data are transferred from the camera.
The frame size(VGA) is 640×480, so one frame is 480 lines.
It is a 4% latency of one frame. It means that processing has
been completed by the end of the capture of the next frame
image as shown Fig 16. Also, real-time processing is possible
even if the number of layers is further increased. The model
implementation with multiple convolutional layers would be
possible. The FIFO is used between the color conversion
circuit and the filter circuit. It operates at 50 MHz after the
camera captures, so data is transferred in 20 ns to the second
layer. The line buffer structure used in this experiment has a
stride width of 1. MAX pooling is realized by skipping one
pixel and skipping one line and enabling the processing enable
signal. Therefore, the second and subsequent layers operate in
the synchronization signal of the MAX pooling circuit of the
first layer. In this experiment, only two convolutional layers
were implemented. However, if the number of layers is further
increased, the delay may increase. It needs to be considered.
By inserting FIFO between each layer and separating the clock
of each layer, processing speed can be increased.

V. CONCLUSION

In this paper, we implemented two convolutional layers on
FPGA. And we discussed the availability of implementation
CNN to FPGA. There are for the hardware implementation
of convolutional neural networks. Also, we designed layers
by software and compared them with CPU processing and
FPGA’s. About convolution and pooling operations, FPGA
processing speed was confirmed faster than CPU. Also, we
confirmed that the FPGA was able to perform real-time
processing. In this experiment, only the convolution layer
was implemented. The size of the convolution used in this
experiment is the smallest. The pooling is only the simplest

TABLE III
MEASUREMENT RESULTS OF THE PROCESSING SPEED OF FPGA AND CPU

Device Layer 1[ms] Layer 2[ms]
CPU 19 4

FPGA 1 2

Fig. 13. Camera data

implementation and verification of max pooling. It is necessary
to implement more convolutional layers and more pooling
layers for the multi-layered CNN. And we have to complicated
coefficients required for convolutional neural networks. Also,
the full connected layer has never designed yet. Thus, it is
necessary to implement a full connected layer. As future work,
implement more convolutional layers and evaluate the latency
for the camera. It is also necessary to consider the implemen-
tation of full connections. The general full connected layer
occurs floating-point processing. Also, the implementation of
an FPGA requires consideration. In recent years, it has been
conducted that an Adaptive Neuro-Fuzzy Inference System
(ANFIS) on FPGA [19]–[22]. In future plans, we would like
to implement ANFIS and verify its practicality. Also, in this
experiment, the camera speed was low. So, it is also necessary
to increase the speed of the camera to perform the experiment.
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