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Abstract—We characterize the structure of the automorphism
groups of finitely generated free algebras in locally finite vari-
eties constituting the algebraic semantics of well-known many-
valued propositional logics, such as Gödel logic and the logic
of Gödel hoops, Nilpotent Minimum logic, n-valued Łukasiewicz
logic, Drastic product logic. We introduce the subalgebras of
automorphism invariant elements of the free algebras, and study
their structure in the case of Gödel algebras.

Index Terms—automorphism group, Lindenbaum algebra, free
algebra, algebraic semantics of many-valued logics.

I. INTRODUCTION

In this paper we characterize the automorphism groups
of finitely generated free algebras in varieties forming the
algebraic semantics of some well-known many-valued propo-
sitional logics. Further, we introduce the subalgebras of auto-
morphism invariant elements of finitely generated free Gödel
algebras.

A variety, (or, equivalently, an equational class) V of al-
gebras is locally finite iff its finitely generated free algebras
are finite. In this paper we deal with propositional many-
valued logics L having a locally finite variety L as equivalent
algebraic semantics, which means that the Lindenbaum algebra
of formulas of L is the free L-algebra over ω generators. In the
same way, for each natural n ≥ 0, the Lindenbaum algebra
of formulas of L built using only the first n propositional
letters x1, x2, . . . , xn is isomorphic with the free n-generated
L-algebra.

A substitution σ over {x1, . . . , xn} is displayed as

x1 7→ ϕ1, . . . , xn 7→ ϕn

for ϕ1, . . . , ϕn formulas built over {x1, . . . , xn}, with the
obvious meaning that σ(xi) = ϕi. The substitution σ extends
naturally to each formula over {x1, . . . , xn}, via the following
inductive definition:

σ(∗(ψ1, . . . , ψk)) = ∗(σ(ψ1), . . . , σ(ψk))

for each k-ary connective ∗ and k-tuple of formulas
(ψ1, . . . , ψk). As it is clear that if ϕ ≡ ψ then σ(ϕ) ≡ σ(ψ),

then the substitution σ can be identified with an endomorphism
of the n-generated free algebra:

σ : Fn(L)→ Fn(L) .

The set of all substitutions over {x1, . . . , xn}, equipped
with functional composition, forms the monoid of endo-
morphisms End(Fn(L)) of Fn(L), having the identity
id : xi 7→ xi as neutral element. The bijective endomor-
phisms in End(Fn(L)) are clearly the same as isomor-
phisms of Fn(L) onto itself, and form the group of au-
tomorphisms Aut(Fn(L)) of Fn(L). In terms of substitu-
tions, Aut(Fn(L)) is the group of invertible substitutions
over {x1, . . . , xn}, that is, those σ such that there exists a
substitution σ−1 such that σ ◦ σ−1 = σ−1 ◦ σ = id.

Notice, that in Boolean propositional logic, if σ is an
automorphism, then ϕ and σ(ϕ) are satisfied by exactly the
same number of truth-value assignments, and, on the other
hand, if two formulas ϕ and ψ are satisfied by exactly the
same number of truth-value assignments, then there is an
automorphism σ such that ψ ≡ σ(ϕ). The last connection is
lost in the many-valued logics considered in this paper: auto-
morphisms preserve more information than just the number of
satisfying truth-value assignments, which pieces of additional
information are preserved depending on the chosen logic.

In an earlier co-authored work [13] we have characterised
the automorphism group of finite Gödel algebras — the
algebraic semantics of propositional Gödel logic — by means
of a dual categorical equivalence. In this paper we shall
apply and generalise those techniques to a bunch of many-
valued propositional logics and their algebraic semantics.
We take here the opportunity to correct a nasty mistake in
the introduction of [13]: for a quirk of carelessness, there
we erroneously declared that automorphisms preserve logical
equivalence, which is clearly not the case (this mistake does
not invalidate any technical result in the paper). In that paper
we had in mind the more algebraic notion of equivalence
given in the following Proposition, enucleating the fact that
automorphisms preserve all relevant algebraic information of
logical equivalence between the formulas.
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Proposition 1: Let L be a locally finite variety constituting
the algebraic semantics of a logic L. Then σ is an automor-
phism of Fn(L) if and only if for all pair of formulas ϕ,ψ:

ϕ ≡ ψ if and only if σ(ϕ) ≡ σ(ψ) .

(Or, equivalently for the logics considered, |= ϕ ↔ ψ iff |=
σ(ϕ)↔ σ(ψ).)

Proof: Clearly the property holds for automorphisms.
Pick then σ ∈ End(Fn(L))\Aut(Fn(L)). Since L is locally
finite, we assume σ is not injective. Then, there are ϕ 6≡ ψ
such that σ(ϕ) ≡ σ(ψ).

Actually, in classical Boolean propositional logic, those
formulas which are logically equivalent with their images
under any automorphism σ:

|= ϕ↔ σ(ϕ) ,

are an interesting class, as they form the set which is the
union of tautologies and contradictions, that is, exactly those
formulas whose behaviour is independent from truth-value
assignments. As we shall see, in the logics that we are going to
study, the class of formulas which are logically equivalent to
their images under all automorphisms form a more structured,
and nuanced, subalgebra of the corresponding Lindenbaum
algebra.

II. PRELIMINARIES

A. MTL-algebras and the like
A t-norm is an operator ∗ : [0, 1]2 → [0, 1] which is asso-

ciative, commutative, monotonically non-decreasing in each
argument, and having 0 and 1, as, respectively, absorbent
and neutral elements. The t-norm ∗ is left-continuous (in
the euclidean topology) if and only if it admits an associate
residuum ⇒ : [0, 1]2 → [0, 1], that is an operator satisfying:

x ∗ z ≤ y if and only if z ≤ x⇒ y . (1)

Esteva and Godo’s monoidal t-norm based logic MTL [19]
is proved in [22] to be the logic of all left-continuous t-norms
and their residua. MTL can be axiomatized with a Hilbert style
calculus: for the reader’s convenience, we list the axioms of
MTL:

(ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(ϕ&ψ)→ ϕ

(ϕ&ψ)→ (ψ&ϕ)

(ϕ ∧ ψ)→ ϕ

(ϕ ∧ ψ)→ (ψ ∧ ϕ)

(ϕ&(ϕ→ ψ))→ (ψ ∧ ϕ)

(ϕ→ (ψ → χ))→ ((ϕ&ψ)→ χ)

((ϕ&ψ)→ χ)→ (ϕ→ (ψ → χ))

((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

⊥ → ϕ

As inference rule we have modus ponens:
ϕ ϕ→ ψ

ψ

Usually introduced derived connectives are ¬ϕ := ϕ → ⊥,
> := ¬ϕ, ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ) and
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ).

Clearly, t-norms are not the only algebraic models of MTL:
as a matter of fact, the algebraic semantics of MTL is the
variety of MTL-algebras.

A system (A, ∗,⇒,∧,∨, 0, 1) is in MTL if and only if:
• (A,∧,∨, 0, 1) is a bounded distributive lattice with min-

imum 0 and maximum 1.
• (A, ∗, 1) is a commutative monoid;
• (∗,⇒) forms a residuated pair: that is (1) holds for them;
• prelinearity holds: (x⇒ y) ∨ (y ⇒ x) = 1.
A formula ϕ is a tautology of MTL ( |= ϕ) if and

only if the identity ϕA = >A holds in any MTL-algebra
A = (A,&A,→A,∧A,∨A,⊥A,>A). Equivalently, if ϕ is
written over the variables x1, . . . , xn, then |= ϕ if and only
if ϕ ∈ >/ ≡ in the Lindenbaum MTL-algebra of formulas
over x1, . . . , xn. Recall that the latter algebra is the algebra
whose universe is the set of classes of logically equivalent
formulas, where ϕ ≡ ψ iff |= ϕ ↔ ψ, equipped with the
operations given by the connectives. In equivalent terms, The
Lindenbaum MTL-algebra of formulas over x1, . . . , xn is the
free MTL-algebra over n free generators Fn(MTL).

A variety is locally finite iff its finitely generated free
algebras are finite. In this paper we shall deal with some
locally finite subvarieties of MTL-algebras, as, in those cases,
the automorphism groups of finitely generated free algebras
are finite, too, and we can describe their structure via com-
binatorial means. The general problem of describing those
automorphism groups can be really tough. See the paper
[14] for such a result for a particular class of MTL-algebras
(actually, a class of MV-algebras), which is not locally finite.

The usual signature for MTL-algebras is (A, ∗,⇒,∧, 0) as
the other operations are definable from the selected ones.

The subvariety of Gödel algebras G is formed by idempotent
MTL-algebras, that is those satisfying the identity x = x ∗ x.
As in this case ∗ = ∧, we drop ∗ from the signature when
dealing with G-algebras.

Gödel hoops are the 0-free subreducts of Gödel algebras.
They form a variety of algebras, denoted GH, which clearly
is not a subvariety of MTL, but it is a subvariety of prelinear
semihoops which in turn are the 0-free subreducts of MTL-
algebras. The signature used for Gödel hoops is ∧,⇒, 1.

The subvariety of Nilpotent Minimum algebras ( [8], [12])
NM is formed by the MTL-algebras satisfying (x ⇒ 0) ⇒
0 = x and ((x ∗ y)⇒ 0) ∨ ((x ∧ y)⇒ (x ∗ y)) = 1.

Basic Logic algebras BL form the algebraic semantics of
Hájek’s Basic fuzzy logic [21], that is, the logic of all con-
tinuous t norms and their residua. They are obtained as those
MTL-algebras further satisfying x ∗ (x ⇒ y) = x ∧ y. MV-
algebras form the algebraic semantics of Łukasiewicz logic
[17], and are those BL algebras satisfying (x⇒ 0)⇒ 0 = x.
MV and BL are not locally finite varieties (see resp. [17] and
[4] for a description of free algebras in these varieties), but
their n-contractive members —those satisfying xn+1 = xn —
form locally finite subvarieties.



Finally, we shall consider also the subvariety of MTL given
by Drastic Product algebras, DP [3]. whose members satisfy
the identity x ∨ ((x ∗ x)⇒ 0) = 1.

A filter F of an MTL-algebra A is an upward closed subset
A, that is closed under ∗, too. Filters are in bijection with
congruences via ΘF = {(a, b) | a ⇔ b ∈ F} and FΘ = {a |
(a, 1) ∈ Θ}. A filter p of A is prime iff it is proper (p 6= A),
and a ⇒ b ∈ p or b ⇒ a ∈ p for all a, b ∈ A. The set of
prime filters of A is called the prime spectrum of A, written
SpecA.

B. Automorphism groups

With each algebraic structure A we can associate its monoid
of endomorphisms End(A) = ({f : A → A}, ◦, id), having
as universe the set of all homomorphisms of A into itself,
where ◦ is functional composition, and id : a 7→ a for each
a ∈ A is the identity. The invertible elements of End(A),
that is, those f such that there exists f−1 ∈ End(A) with the
property f ◦ f−1 = id = f−1 ◦ f , constitute the universe of
the group of automorphisms Aut(A) of A.

Let Sym(n) denote the symmetric group over n elements,
that is, the group of all permutations of an n-element set.

Let B denote the variety of Boolean algebras. We prove the
well-known fact stated in Proposition 3 by means of a dual
categorical equivalence, since we will constantly be using this
approach throughout the paper. We start stating the following:

Fact 2: The category Bfin of finite Boolean algebras and
their homomorphisms is dually equivalent to the category
Setfin of finite sets and functions between them.

Proof: This is just the restriction to finite objects of the
well known Stone’s duality between Boolean algebras and
Stone spaces.

Let us call Sub: Setfin → Bfin and Spec: Bfin → Setfin
the functors implementing the equivalence. It is folklore that
SubS is the Boolean algebra of the subsets of S, and SpecA
is the set of maximal filters of A. On arrows, Sub and Spec
are defined by taking preimages.

Clearly, for each Boolean algebra A, Aut(A) ∼=
Aut(SpecA).

Proposition 3: Aut(Fn(B)) ∼= Sym(2n).
Proof: Just recall that SpecFn(B) is the set of 2n ele-

ments, and an automorphism of a finite set is just a permutation
of its elements.
From now on, we shall write P(n) to denote SpecFn(B).

To deal with the structure of the automophism groups
of Lindenbaum algebras of other logics we shall introduce
some constructions from group theory. We refer to [23] for
background.

Definition 4: Given two groups H and K and a group
homomorphism f : k ∈ K 7→ fk ∈ Aut(H), the semidirect
product Hof K is the group obtained equipping H×K with
the operation:

(h, k) ∗ (h′, k′) = (hfk(h′), kk′) .

Theorem 5: Let G be a group with identity e and let H,K
be two subgroups of G. If the following hold:

• KCG (K is a normal subgroup of G);
• G = H ×K;
• H ∩K = {e},

then G is isomorphic with the semidirect product of H and
K with respect to the homomorphism f : k ∈ K → fk ∈
Aut(H) where for each h ∈ H, fk(h) = khk−1. Hence
|G| = |H| · |K|.
In the following, we shall simply write H o K instead of
Hof K, as in any usage we assume f is as in Theorem 5.

C. Dual categorical equivalences
As we have done in Proposition 3, to describe automorphism

groups of Lindenbaum algebras we shall make use of dual
categorical equivalences. We recall that two categories C and
D are dually equivalent iff there exists a pair of contravariant
functors F : C→ D and G : D→ C whose compositions FG
and GF are naturally isomorphic with the identities in D and
C.

In this paper we shall consider categories dual to the
algebraic categories Lfin, whose objects are the finite L-
algebras and whose arrows are the homomorphisms between
them.

For sake of convention, we shall name Sub: Lopfin → Lfin
and Spec: Lfin → Lopfin the pair of functors implementing the
desired equivalence, as, in all our cases, Spec maps an algebra
to its prime spectrum, suitably enriched, and Sub makes an
L-algebra out of subparts of the enriched prime spectrum.

Clearly, given an object X ∈ Lopfin we can speak of its group
of automorphisms Aut(X), and, by duality it obviously holds
that for each algebra A ∈ L,

Aut(A) ∼= Aut(SpecA) .

We shall use this fact without further notice. Further, Sub and
Spec are defined contravariantly on the arrows of L and Lop.
Usually they are defined by taking preimages, or slight variants
thereof. In this paper, however, we are only interested in the
object part of the dualities. We shall detail the full definition of
the functors Sub and Spec only for the cases of Gödel algebras
and Gödel hoops (see next Section). In the other Sections we
only refer to the existing literature, and we just use black
box the fact that there are such pair of contravariant functors
implementing the desired dual equivalence.

We are particularly interested in automorphism groups of
free algebras. To this purpose we recall that, in any variety
L, the n-generated free algebra Fn(L) is the nth copower of
F1(L). By duality,

SpecFn(L) ∼= (SpecF1(L))n .

Whence, in the following Sections we shall focus on the
structure of the objects dual to finitely generated free algebras
in the varieties considered.

III. AUTOMORPHISMS OF GÖDEL ALGEBRAS AND OF
GÖDEL HOOPS

In [13] we described the automorphism groups of finite
Gödel algebras, using the following dual categorical equiv-
alence.



A forest F = (F,≤) is a poset such that the downset ↓ x =
{y ∈ F | y ≤ x} is totally ordered by ≤. A map f : F → G
between finite forests is order-preserving if x ≤F y implies
f(x) ≤G f(y) and it is open if y ≤G f(x) implies that there
is z ∈ F , with z ≤F x, such that f(z) = y. Open maps
carry downward closed sets to downward closed sets. Let Ffin
denote the category of finite forests and order-preserving, open
maps between them.

Proposition 6: The category Gfin of finite Gödel algebras
and homomorphisms between them is dually equivalent to
Ffin.

Proof: The functors implementing the dual equivalence
act on objects as follows. SpecA = (SpecA,⊇) (the prime
spectrum of A, equipped with reverse inclusion), and SubF =
({G ⊆ F | G =↓ G},∩,⇒, ∅), where X ⇒ Y = F\ ↑ (X \
Y ), for all downward closed subsets X,Y of F . On arrows,
Spech : SpecB→ SpecA is given by (Spech)(p) = h−1[p]
for all p ∈ SpecB, and analogously Sub f : SubG→ SubF
is given by (Sub f)(X) = f−1[X] for all X ∈ SubG. For
details see, for instance [10].

An endomorphism f : F → F is called an order preserving
permutation iff f is bijective and x ≤ y implies f(x) ≤ f(y).

Lemma 7: For each algebra A ∈ Gfin, Aut(A) is the group
of order preserving permutations of SpecA.

Proof: See [13].
To elucidate the structure of Aut(Fn(G)) we have to

recall the structure of SpecFn(G), and how to determine
order preserving permutations over it. We start recalling some
properties of Ffin that will be useful throughout the paper.

A tree T is a forest with minimum, called root of T . Given
any forest F , we write F⊥ for the tree obtained appending to
F a fresh root. Clearly, each tree T can be thought of as F⊥
for a uniquely determined forest F = T \{minT}. We denote
Tfin the full subcategory of Ffin whose objects are trees.

Lemma 8:
1) The singleton, denoted 1, is the terminal object in Ffin;

the empty forest ∅ is the initial one. In Tfin, 1 is both
initial and terminal.

2) The coproduct F +G of two forests F,G ∈ Ffin is the
disjoint union of F and G. The coproduct of two trees
F⊥, G⊥ ∈ Tfin is given by (F +Ffin G)⊥.

3) In Ffin, product distributes over coproduct: F × (G +
H) ∼= (F ×G) + (F ×H).

4) In both Ffin and Tfin, F⊥ ×G⊥ ∼= ((F⊥ ×G) + (F ×
G) + (F × G⊥))⊥, where products and coproducts in
the right hand side are computed in Ffin.

Proof: See [9].
Lemma 8 allows to compute recursively the object in the
product of any two finite forests, and of any two finite trees.
See [9] for the description of the associated projection maps.

Proposition 9: The category GHfin of finite Gödel hoops
and homomorphisms between them is dually equivalent to
Tfin.

Proof: The functors implementing the dual equivalence
act on objects as follows. SpecA = (SpecA ∪ {A},⊇) and
SubF = ({∅ 6= G ⊆ F | G =↓ G},∩,⇒, F ), where X ⇒

Y = F\ ↑ (X \ Y ), for all non-empty downward closed
subsets X,Y of F . On arrows, Spec and Sub are defined
by taking preimages, as in Proposition 6. For details, see, for
instance [7].

The following results in this section are taken from [13] for
what regards G. They are here straightforwardly adapted also
to the case GH.

Lemma 10: Let F and G be forests. Then the following
hold.

1) Aut(F⊥) ∼= Aut(F ).
2) If F⊥ and G⊥ are non-isomorphic trees then Aut(F⊥+

G⊥) ∼= Aut(F )×Aut(G).
3) Aut(n(F⊥)) ∼= Sym(n) o (Aut(F ))n.
We now define by recurrence a family of finite forests. We

set

H0 = ∅, Hn =

n−1∑
i=0

(
n

i

)
(Hi)⊥ .

We further define

Gn = Hn + (Hn)⊥ .

We observe that SpecF1(G) ∼= G1 and SpecF1(GH) ∼=
(H1)⊥.

Theorem 11: For any integer n ≥ 0,

SpecFn(GH) ∼= (Hn)⊥ and SpecFn(G) ∼= Gn .

Further,
Aut(Fn(GH)) ∼= Aut(Hn) ∼=

∼=
n−1∏
i=1

Sym

((
n

i

))
o (Aut(Hi))

(ni) .

and
Aut(Fn(G)) ∼= (Aut(Fn(GH)))2 .

Given integers a1, a2, . . . , am ≥ 0, their multinomial coef-
ficient, written (

a1 + a2 + · · ·+ am
a1, a2, . . . , am

)
,

is the quantity

(a1 + a2 + · · ·+ am)!

a1!a2! · · · am!
.

For any i ≤ n, let bni be the set of all multinomial coefficients
of the form (

n
i1, i2, . . . , im

)
,

for i1 = i and ih > 0 for all h ∈ {1, 2, . . . ,m}.
Theorem 12: For every integer n ≥ 0,

|Aut(Hn)| =
n−1∏
i=1

(
n

i

)
! |Aut(Hn)|(

n
i) ,

and,

|Aut(Fn(GH))| =
n−1∏
i=1

(n
i

)
!
∏
h∈bni

i−1∏
j=1

(
i

j

)
!

h
 .



IV. AUTOMORPHISMS OF NILPOTENT MINIMUM
ALGEBRAS

A finite labeled tree is a pair (T, j) where T ∈ Tfin and j ∈
{0, 1}. Let {(Ti, ji) | i = 1, . . . , k} be a set of finite labeled
trees. Then its associated finite labeled forest is the pair (F, b)
where F =

∑k
i=1 Ti and b : {T1, . . . , Tk} → {0, 1} maps Ti

to ji. A morphism of finite labeled trees f : (T, i)→ (S, j) is
a map f : T → S in Tfin, provided that i ≤ j. A morphism of
finite labeled forests g : (F, b)→ (G, c), where F =

∑k
i=1 Ti

and G =
∑h
i=1 Ui, is a map g : F → G in Ffin, provided that

b(Ti) ≤ c(Uj), where (i, j) is the pair of indices determined
by the fact that g maps Ti into Uj . Let LFfin be the category
of finite labeled forests with the described morphisms.

In [8] we prove the following.
Theorem 13: NMfin is dually equivalent to the category

LFfin.
Clearly, automorphisms of finite labeled forests must pre-

serve the labels: given such a forest (F, b) with F =
∑k
i=1 Ti,

then f : (F, b) → (F, b) is in Aut((F, b)) if and only if
f ∈ Aut(F ) and b(Ti) = b(Tj) for (i, j) be determined by
the fact that f maps Ti onto Tj .

Now, SpecF1(NM) is the labeled forest (2(H1)⊥+H1, b),
with b(H1) = 0 and b((H1)⊥) = 1 for both copies of (H1)⊥.

By duality, for any integer n > 0, the dual of the n-
generated free NM-algebra SpecFn(NM) is the nth power
of SpecF1(NM). That is:

Lemma 14:

SpecFn(NM) ∼=

(
n∑
i=0

2i
(
n

i

)
(Hi)⊥, bn

)
,

where bn((Hn)⊥) = 1, for all 2n copies of (Hn)⊥, while
bn((Hi)⊥) = 0 for all 2i copies of (Hi)⊥ for each 0 ≤ i < n.

Proof: In LFfin, (F, b)×(G, c) ∼= (F×FfinG, b·c), where
b · c is pointwise bit multiplication, that is (b · c)(Ti × Uj) =
b(Ti) · c(Uj).

Lemma 14 shows that in considering automorphisms of
free NM-algebras the condition on the labels is automatically
granted, as Hi 6∼= Hj if i 6= j. Whence:

Theorem 15: For any integer n ≥ 0,

Aut(Fn(NM)) ∼=
n∏
i=0

Sym

(
2i
(
n

i

))
o (Aut(Hi))

2i(ni) .

and |Aut(Fn(NM))| =

=

n∏
i=0

(
2i
(
n

i

))
!

∏
h∈bni

i−1∏
j=1

(
i

j

)
!

h2i
 .

As we have seen the categorical dualities that allow us to
deal with Gödel hoops and with Nilpotent Minimum algebras
are minor variants of Ffin. There are several other varieties
either in MTL, or in other ways related to many-valued
logics, which offer dual categorical equivalences that can be
considered minor variants of Ffin as well. In particular there
are varieties that are dually equivalent to Ffin itself, the only

difference at dual level being the structure of the dual of the
free 1-generated algebra in each of these varieties. See [11]
for a thorough investigation of this topic. In the paper [7], we
provide a dual categorical equivalence for the variety of Gödel
Nelson paraconsistent residuated lattices whose objects are
pairs made of a tree and one of its subtrees. In [16] the authors
provide a duality for RDP-algebras, and in [15] the locally
finite variety of EMTL-algebras is introduced. In these cases
we are in a position to describe the group of automorphisms of
free finitely generated algebras studying the automorphisms of
the corresponding dual objects. The case of the large locally
finite variety of WNM-algebras may be harder to take, due to
the sheer complexity of the structure of its free algebras [6].

V. AUTOMORPHISMS OF DRASTIC PRODUCT ALGEBRAS

In [1] e [2] the authors prove categorical dualities for the
class of finite Gödel∆ algebras and of finite Drastic Product
algebras.

Let MCfin be the category whose objects are finite mul-
tisets of nonempty finite chains, and whose arrows satisfy
the following constraint: Let C = {C1, . . . , Cm}, D =
{D1, . . . , Dn} ∈ MCfin. Then h : C → D is given as
h = {hi | i = 1, . . . ,m}, where each hi is an order preserving
surjection hi : Ci � Dj for some j = 1, . . . , n.

Let further MC>fin be the (non-full) subcategory of Cfin
which has the same objects of Cfin, but whose arrows
h : C → D satisfy additionally: for each i = 1, . . . ,m
if the codomain Dj of hi is not isomorphic with 1 then
h−1
i (maxDj) = {maxCi}.
Theorem 16: DPfin is dually equivalent to MC>fin.
It is clear that for any multiset C = {C1, . . . , Cm} ∈ MC

or ∈ MC>, the morphism f = {fi | i = 1, . . . ,m} : C → C
is an automorphism of C if and only if for all i = 1, . . . ,m,
fi : Ci � Cj is such that |Cj | = |Ci| and if i1 6= i2 then
the codomains of fi1 and fi2 are distinct chains of C. Let
us express C = {C1, . . . , Cm} =

⋃
h∈ω C

(h), where C(h) is
the sub-multiset of C formed by the chains with h elements.
Then, if k is the maximum cardinality of chains in C:

Lemma 17:

Aut(C) ∼=
k∏
i=1

Sym(|C(i)|) ,

and

|Aut(C)| =
k∏
i=1

|C(i)|! .

For each integer n > 0, let n denote the chain of n elements.
Proposition 18: In MC> the coproduct C+D of two finite

multisets of chains is the disjoint union of C and D. The
terminal object is the singleton multiset with the one-element
chain {1}. Furthermore, products distribute over coproducts:
C × (D + E) ∼= (C × D) + (C × E). Moreover, let C> be
the chain obtained adding a fresh top element to C. Then, for
all i > 0:
• {i} × {1} ∼= {i} and {i} × {2} ∼= {i + 1}.



• {i + 2} × {j + 2} ∼= ({i + 2} × {j + 1}) + ({i + 1} ×
{j + 1}) + ({i + 1} × {j + 2}))>.

The dual of the free 1-generated DP-algebra is

SpecF1(DP) ∼= {1,3,2,1} .

Then (see [3], [2]):
Theorem 19: For each integer n ≥ 0: SpecFn(DP) ∼=

2n{1}+ (3n − 2n){2}+

+

n+2∑
h=3

(
h−2∑
i=0

(−1)i
(
h− 2

i

)
(h+ i− 1)n

)
{h} .

Whence, by Lemma 17,
Theorem 20: For each integer n ≥ 0:

Aut(Fn(DP)) ∼= Sym(2n)× Sym(3n − 2n)×

×
n+2∏
h=3

Sym

(
h−2∑
i=0

(−1)i
(
h− 2

i

)
(h+ i− 1)n

)
,

and |Aut(Fn(DP))| =

(2n)! (3n − 2n)!

n+2∏
h=3

(
h−2∑
i=0

(−1)i
(
h− 2

i

)
(h+ i− 1)n

)
! .

In mathematical fuzzy logic is customary to consider the
extension/expansion of algebraic models by adding the ∆
operator, which can be axiomatised (see [1], [2]) in such a
way that on totally ordered algebras its behaviour is to crispify
values, that is ∆1 = 1, ∆a = 0 for all a 6= 1. Adding ∆
to Gödel algebras provides us with the locally finite variety
of G∆ algebras, which is closely related to DP. As a matter
of fact (G∆)fin is dually equivalent to MCfin, and DP is
equivalent with a non-full subcategory of (G∆)fin. We are
in a position to adapt the content of this Section to G∆

algebras and derive the structure and cardinality of the group
of automorphisms of free finitely generated G∆-algebras. We
shall elaborate on this topic elsewhere.

VI. AUTOMORPHISMS OF n-VALUED MV-ALGEBRAS

The variety MV of MV-algebras constitutes the algebraic
semantics of propositional Łukasiewicz logic [17]. MV is
not locally finite, but the k-contractive MV-algebras form
a locally finite subvariety of MV. Here we consider the
subvariety MVk of k-valued MV-algebras, which constitutes
the algebraic semantics of k-valued Łukasiewicz logic. MVk
is axiomatised by imposing k-contractivity: xk = xk+1, and
Grigolia’s axioms [20] k(xh) = (h(xh−1))k for every integer
2 ≤ h ≤ k − 2 that does not divide k − 1.

For any integer d > 1 let Div(d) be the set of coatoms in
the lattice of divisors of d, and for any finite set of natural
numbers X , let gcd(X) be the greatest common divisor of
the numbers in X . Then let α(0, 1) = 1, α(0, d) = 0 for all
d > 1, and for all n ≥ 1,

α(n, d) = (d+ 1)n +
∑

∅6=X⊆Div(d)

(−1)|X|(gcd(X) + 1)n .

Then α(n, d) counts the number of points in [0, 1]n whose
denominator is d. It is known that

Fn(MVk) ∼=
∏

d|(k−1)

Łα(n,d)
d+1 ,

where Łm is the MV-chain of cardinality m.
Let MNkfin be the category whose objects are finite mul-

tisets of natural numbers dividing k − 1 and whose arrows
f : M → N are functions from M to N such that f(x) divides
x for any x ∈M .

Then MNkfin is dually equivalent to MVk. In particular,

SpecFn(MVk) ∼=
⋃

d|(k−1)

α(n,d)⊎
i=1

{d} ,

where
⊎m
i=1{t} denotes the multiset formed by m copies of

t.
It is clear that an automorphism f : M → M in MNkfin

must be a bijection such that each copy of x ∈M is mapped
to a copy of x ∈M . Then

Theorem 21:

Aut(Fn(MVk)) ∼=
∏

d|(k−1)

Sym(α(n, d)) ,

and
|Aut(Fn(MVk))| =

∏
d|(k−1)

(α(n, d))! .

In [5] the authors introduce a category dually equivalent
to finite Grigolia BL-algebras, denoted here (BLk)fin. These
are BL-algebras further satisfying k-contractivity and the
Grigolia’s axioms. Actually, the chains in (BLk)fin are ordinal
sums of a finite number of copies of chains in (MVk)fin. The
category dually equivalent to (BLk)fin is a full subcategory
of the category of finite weighted forests, whose objects are
finite forests such that each node is labeled with a positive
natural dividing k − 1, and whose morphisms are morphisms
f of the underlying forests that respect weights, meaning that
for each x in the domain there is y ≤ x such that f(x) = f(y)
and the weight of f(y) divides the weight of y.

In [5] the structure of the dual objects to finitely generated
free algebras in (BLk)fin is given through some recurrences.
It is possible to apply our approach to these algebras in order to
determine the structure and cardinality of their automorphism
groups. We shall pursue this task in another paper.

VII. THE SUBALGEBRA OF AUTOMORPHISM INVARIANT
ELEMENTS

Let ϕ be a formula over {x1, . . . , xn}. We say that the class
of formulas ϕ/ ≡ logically equivalent with ϕ in the logic L is
automorphism invariant if and only if, in L, |= ϕ↔ σ(ϕ), for
each automorphism σ ∈ Aut(Fn(L)). Equivalently, {σ(ϕ) |
σ ∈ Aut(Fn(L))} ⊆ ϕ/ ≡, and then (ϕ/ ≡) = (σ(ϕ)/ ≡).

With our standing assumption about the dual equivalences
implemented by functors Spec and Sub:

Lemma 22: |= ϕ ↔ σ(ϕ) if and only if Specϕ =
Specσ(ϕ).



Proof: It follows at once from (ϕ/ ≡) = (σ(ϕ)/ ≡).
Proposition 23: For each n ≥ 0, the automorphism invariant

elements of Fn(B) are exactly ⊥/ ≡ and >/ ≡.
Proof: Trivially, ⊥/ ≡ and >/ ≡ are automorphism

invariant as Spec⊥ = ∅ and Spec> = P(n). Let ϕ be
a formula over {x1, . . . , xn} not equivalent to ⊥ or to >.
Then ∅ ( Specϕ ( P(n). Pick p, q ∈ P(n) such that
p ∈ Specϕ while q 6∈ Specϕ. Let f : P(n) → P(n)
be any permutation of the points in P(n) exchanging p
with q. Such a permutation trivially exists, and it is such
that Sub f : Fn(B) → Fn(B) is an automorphism. To end
the proof notice that Specϕ 6= Spec ((Sub f)(ϕ)), since
p ∈ Specϕ and p 6∈ Spec ((Sub f)(ϕ)). By Lemma 22,
6|= ϕ↔ (Sub f)(ϕ).

Whence, the set of automorphism invariant elements of
Fn(B) is the universe of the two-element subalgebra of
Fn(B). Notice that those elements are characterised as the only
elements which are independent from truth-value assignments,
that is, their value under some fixed truth-value assignment
coincides with the value under any truth-value assignment.

When we move from classical Boolean propositional logic
to the many-valued logics considered in this paper, the situa-
tion gets more interesting. We shall deal with the case of Gödel
propositional logic, and we shall see that the set of automor-
phism invariant elements of Fn(G) is again the universe of
a subalgebra AutInvn(G) of Fn(G). But AutInvn(G) has
a far more complex structure than the two-element Boolean
algebra, and its elements are characterised in a more refined
way.

Given an element x of a forest F , its height H(x) is the
length of ↓ x. A subforest F ∈ SpecFn(G) is symmetric iff
for all x, y ∈ F with H(x) = H(y) it holds that if ↑ x ∼=↑ y
as subposets of SpecFn(G), then F∩ ↑ x ∼= F∩ ↑ y.

Lemma 24: ϕ/ ≡ is automorphism invariant if and only if
Specϕ is symmetric.

Proof: Assume ϕ, over the variables x1, . . . , xn, is not
symmetric. Let F = Specϕ. Then there are x, y ∈ F with
H(x) = H(y) and ↑ x ∼=↑ y such that F∩ ↑ x 6∼= F∩ ↑ y.
Clearly ↑ x can be mapped bijectively to ↑ y by an order-
preserving permutation f of SpecF(G). But obviously f does
not map F∩ ↑ x bijectively onto F∩ ↑ y. Whence F 6= f(F )
and ϕ is not automorphism invariant.

For the other way round, if ϕ is not automorphism in-
variant then there is an order-preserving permutation f of
SpecF(G) such that F 6= f(F ). Whence there must exist
x0 ∈ SpecF(G) such that x0 ∈ F but f(x0) 6∈ F . Clearly, if
f(x) = y then H(x) = H(y) and ↑ x ∼=↑ y and f(↑ x) ∼=↑ y.
But, F∩ ↑ x0 6∼= F∩ ↑ f(x0). Whence, ϕ is not symmetric.

Let AutInvn be the set of all automorphism invariant
classes of formulas over {x1, . . . , xn}.

Lemma 25: AutInvn is a subuniverse of SubGn.
Proof: Just notice that for any finite forest F , the opera-

tions of SubF preserve symmetric elements.
Let AutInvn(G) be the subalgebra of SubGm having

AutInvn as universe.

An ordered partition of x1, . . . , xn is a partition
B1, . . . , Bm of {0, x1, . . . , xn, 1} with m > 1, equipped with
the total order Bi � Bj iff i ≤ j, such that 0 ∈ B1 and
1 ∈ Bm. The set Ωn of all ordered partitions of x1, . . . , xn is
made into a poset stipulating that, for each pair π1, π2 ∈ Ωn,
π1 v π2 iff π1 = B1,1 � · · · � B1,u, π2 = B2,1 � · · · �
B2,v , with B1,j = B2,j for all j < u and B1,u =

⋃v
j=uB2,j .

Lemma 26: The poset (Ωn,v) is isomorphic with Gn.
Proof: See, for instance [18].

Notice that any ordered partition ρ of x1, . . . , xn can be
displayed as

0Eρ0 xτρ(1) E
ρ
1 xτρ(2) E

ρ
2 · · ·E

ρ
n−1 xτρ(n) E

ρ
n 1 ,

where τρ : {1, . . . , n} → {1, . . . , n} is a permutation and
Eρi ∈ {=, <} for all i = 0, 1, . . . , n. Then two ordered
partitions ρ and % are such that ρ v % iff there is i such that
Eρj = E%j for all 0 ≤ j ≤ i, while Eρj is = for all i < j ≤ n.
Whence, given an ordered partition ρ, letting iρ denote the
smallest index such that Eρj is = for all j > iρ, we have that
↑ ρ is the set of all ordered partitions χ where Eχj = Eρj and
τχ(j) = τρ(j) for all 0 ≤ j ≤ iρ.

Lemma 27: In (Ωn,v) two ordered partitions ρ and % are
such that H(ρ) = H(%) and ↑ ρ′ ∼=↑ %′ as posets for all ρ′ v ρ
and %′ v % with H(ρ′) = H(%′), iff iρ = i% and Eρj = E%j for
all 0 ≤ j ≤ iρ.

Proof: (Sketch) One direction is clear. For the other
assume first that iρ 6= i%. Then clearly | ↑ ρ| 6= | ↑ %|. Assume
then iρ = i% but there is j ∈ {0, . . . , iρ} such that Eρj 6= E

%
j .

Then H(ρ) 6= H(%) or there is ρ′ v ρ and %′ v % with
H(ρ′) = H(%′) such that ↑ ρ′ 6∼=↑ %′.
By Lemma 27, if ρ and % are such that H(ρ) = H(%) and
↑ ρ′ ∼=↑ %′ for all ρ′ v ρ and %′ v % with H(ρ′) = H(%′),
then, after suitable renaming of the variables (just take the
permutations r ◦ (τρ)−1 and r ◦ (τ%)−1, for r : i 7→ n+ 1− i),
both ρ and % can be displayed as

0Eρ0 xn E
ρ
1 xn−1 E

ρ
2 · · ·E

ρ
n−1 x1 E

ρ
n 1 .

A standard ordered partition is an ordered partition ρ with
τρ(i) = n+ 1− i for all i = 1, . . . , n.

Theorem 28: AutInvn(G) is isomorphic with Fn(G)/Θn,
for Θn being the congruence generated by {(xi+1 ⇒ xi, 1) |
i ∈ {1, . . . , n− 1}}.

Proof: The elements of AutInvn(G) are all the sym-
metric elements of SubGn. Take two ordered partitions ρ and
% such that H(ρ) = H(%) and ↑ ρ′ ∼=↑ %′ for all ρ′ v ρ and
%′ v % with H(ρ′) = H(%′), Then, ρ ∈ F iff % ∈ F , for any
symmetric element F ∈ SubGn. In particular, by Lemma 27,
the ordered partition ρ

0Eρ0 xτρ(1) E
ρ
1 xτρ(2) E

ρ
2 · · ·E

ρ
n−1 xτρ(n) E

ρ
n 1

belongs to F , iff the standard ordered partition χ(ρ) displayed
as

0Eρ0 xn E
ρ
1 xn−1 E

ρ
2 · · ·E

ρ
n−1 x1 E

ρ
n 1

belongs to F , too.



Let Sn be the subposet of Gn formed by all standard ordered
partitions. The map sending each ordered partition ρ to its
standard ordered partition χ(ρ) is a surjection of Gm onto
Sn. By duality, this corresponds to an embedding f of SubSn
into SubGn ∼= Fn(G). The embedding f sends each subforest
S ∈ SubSn to the subforest S′ ∈ SubGn given by all ordered
partitions ρ such that χ(ρ) ∈ S. By the above application of
Lemma 27 the image of f into SubGn is precisely AutInvn.

Further, by duality, the embedding of Sn into Gn also
corresponds to a surjection of Fn(G) over its homomorphic
image Fn(G)/Θ. Clearly, Θ is the congruence generated
by the relations holding in all standard ordered partitions,
which amounts to stipulate the validity of xi+1 ⇒ xi for all
i = 1, . . . , n − 1. Equivalently, Θ is generated by {(xi+1 ⇒
xi, 1) | i ∈ {1, . . . , n− 1}}.

For each i ≥ 0 let Ki be the forest inductively defined as
follows:

K0 = 1, Ki+1 = Ki + (Ki)⊥ .

Theorem 29: Kn
∼= Sn. Whence, AutInvn(G) is isomor-

phic with SubKn.
Proof: By induction on i. The base i = 0 is clear, as

the only ordered partition to consider is displayed as 0 <
1. Assume the statement true for i. Observe that to produce
all standard ordered partitions of x1, . . . , xi+1 we just have
to insert in all possible ways xi+1 into all standard ordered
partitions χ of x1, . . . , xi. This amounts to inserting = xi+1

or < xi+1 just between 0 and Eχ0xi for all χ. Ir is clear that
inserting = xi+1 produces Ki, as this action adds no block to
any χ, while inserting < xi+1 gives (Ki)⊥, as this corresponds
to adding a new common minimum block to all χ.

Corollary 30: The cardinality kn of AutInvn(G) is given
by the following recurrence:

k0 = 1, ki+1 = k2
i + ki .

Corollary 31: The forest Kn contains exactly 2n leaves.

VIII. CONCLUSION

Theorem 28 allows us to characterise interpretatively the
automorphism invariant elements of Fn(G). The kind of fuzzy
interpretation we provide here is suggestively compared with
the well-known temporal interpretation of formulas of Gödel
logic. While in classical Boolean propositional logic the truth
status of a formula under an assignment only depends on the
truth-value assigned to the variables, in Gödel propositional
logic we have to keep track of the order in which a variable
attains the truth-value true (x → y is true if y becomes
true not later than x does). When we restrict our attention
to automorphism invariant elements, we again have to keep
track of the order to truth, but we name variables according
to their position in the same order (xi becomes true not
later than xj , if i < j). This could be useful to recall in
designing applications based on this interpretation of Gödel
logic: if the desired model allows us to freely name variables
(observables) by the order in which they become true (occur),
then we can replace evaluation in Fn(G) by evaluation in

the much smaller subalgebra AutInvn(G). However, by
Corollary 31, the evaluation of a formula ϕ in AutInvn(G)
has the same complexity of the evaluation of ϕ in classical
Boolean propositional logic.

An analogous analysis of the algebra of automorphism
invariant elements can be conducted for all logics considered
in this paper, each logic providing some hints on viable natural
fuzzy interpretations of such elements.
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