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Abstract—Implications and k-Lipschitz condition have been
recurrent topics of studies in fuzzy theory. Additionally, they
play a singular role concerning the robustness of rule-based
fuzzy reasoning. Therefore, in this paper, we investigate the
properties required for fuzzy negations N, t-norms T and
(T,N)-implications satisfying the k-Lipschitz condition for a
specific, and arbitrary, k. Besides, we generate new Lipschitzian
implications from (T,N)-implications using automorphisms.

Index Terms—Fuzzy operators, k-lipschitz condition, (T,N)-
implications.

I. INTRODUCTION

Implication functions play a significant role in a logical
system and, in a fuzzy context, they are used to represent
imprecise knowledge as well as to perform inferences in a
vague space of truth. So, fuzzy systems may have distinct
behaviors depending on their fuzzy implication definitions.
Therefore, since Zadeh’s seminal work [1], fuzzy operators,
specially the fuzzy implications, have been the subject of much
research over the past decades [2]–[9].

In this sense, fuzzy implication classes have been defined
and investigated, amongst other things, in order to: 1) find out
some properties they satisfy and under which conditions they
satisfy them; 2) generate and map fuzzy implications to each
fuzzy implication class and to the intersections between those
classes; and 3) with the theoretical knowledge of the previous
items, to adapt fuzzy system’s behavior (e.g. in a fuzzy control
or in an image processing) through the election of an adequate
fuzzy implication.

There are various ways and motivations to define a fuzzy
implication class. Generally, they are generated by a specific
generator function, or obtained by other fuzzy operators.
These ones are based on t-norms, uninorms, aggregations,
quasi-copulas, etc. In this paper, particularly, we introduce
the best comprehension about the relation between (T,N)-

implications and k-Lipschitz condition. The former is a N -
dual implication of T [10] and can also be obtained from
a (S,N)-implication, if (T, S,N) satisfies De Morgan’s Law
[4]. The Lipschitz condition of aggregation functions has good
advantages in a practical point of view: it is reasonable to
model dynamic process, found on fuzzy neural networks [11],
and for rule-based fuzzy reasoning [12]. That condition has
been well studied with respect to triangular norms, but not
so much related to fuzzy implications. Moreover, there is no
previous work relating the Lipschitz condition and the (T,N)-
implications.

Therefore, in the following section, we briefly mention basic
notions about fuzzy negations, t-norms, fuzzy implications,
automorphisms and k-Lipschitz condition. Then, we demon-
strate results relating T , N and INT – a (T,N)-implication
– to the k-Lipschitz condition, as well as we demonstrate
under which conditions Φ-conjugate functions of T , N and
INT maintain their properties, including the k-Lipschitz one.
Finally, in section IV we summarize the main contributions of
this paper.

II. PRELIMINARIES

In this section we recall some definitions and results already
known in the literature.

Definition 2.1: [6] A function T : [0, 1]2 → [0, 1] is a
triangular norm, t-norm for short, if the following properties
are satisfied:

(T1) Symmetry: T (x, y) = T (y, x), for each x, y ∈ [0, 1];
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z), for each

x, y, z ∈ [0, 1];
(T3) Monotonicity: If x ≤ y then T (x, z) ≤ T (y, z), for

each x, y, z ∈ [0, 1];
(T4) Boundary condition: T (x, 1) = x, for each x ∈ [0, 1].
Follow examples of some basic t-norms:
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• Gödel or minimum: TM (x, y) = min(x, y);
• Product: TP (x, y) = x · y;
• Łukasiewicz: TL(x, y) = max(0, x + y − 1).
Proposition 2.1: [6] Let T be a t-norm. Then T (0, y) = 0

for each y ∈ [0, 1].
Definition 2.2: A function N : [0, 1] → [0, 1] is a fuzzy

negation if
(N1) N is antitonic, i.e., N(x) ≤ N(y) whenever y ≤ x;
(N2) N(0) = 1 and N(1) = 0;

In addition, a fuzzy negation N is
1) strict if (N3) N is continuous and (N4) N(x) < N(y)

whenever y < x;
2) strong if (N5) N(N(x)) = x, for each x ∈ [0, 1];
All strong fuzzy negation is strict but not all strict fuzzy

negation is strong. For example, N(x) = 1 − x2 is strict but
not strong whereas the standard fuzzy negation NS(x) = 1−x
is strong (and therefore strict) [3], [13].

Definition 2.3: Let k ∈ [0,∞). A function f : [0, 1]n →
[0, 1] is k-Lipschitzian if for all xi, yi ∈ [0, 1],∣∣f(x1, · · · , xn)− f(y1, · · · , yn)

∣∣ ≤ k

(
n∑

i=1

|xi − yi|

)
. (1)

Evidently, if f is k-Lipschitzian, then is also p-Lipschitzian
for any p > k. The smallest constant k satisfying (1) is called
Lipschitz constant.

Theorem 2.1: [14] Let N be a 1-Lipschitzian negation. Then
N = NS .

Proposition 2.2: [14] Let N be a k-Lipschitzian fuzzy
negation. Then k ≥ 1.

That is, there is an unique negation whose Lipschitz constant
is less than or equal to 1, namely N(x) = 1− x.

We denote by Φ the family of all increasing bijections
ϕ : [0, 1] → [0, 1], called automorphisms. We say that func-
tions f, g : [0, 1]n → [0, 1] are Φ-conjugate (see Kuczma [15],
p. 156), if there exists ϕ ∈ Φ such that g = fϕ, where

fϕ(x1, . . . , xn) = ϕ−1(f(ϕ(x1), . . . , ϕ(xn))),

for all x1, . . . , xn ∈ [0, 1].
Proposition 2.3: [11] Let ϕ be an automorphism. Then ϕ−1

also is an automorphism.
Proposition 2.4: [3, Proposition 1.4.8] If ϕ ∈ Φ and N is a

fuzzy (strict, strong) negation, then Nϕ is also a fuzzy (strict,
strong) negation.

Proposition 2.5: [6, Proposition 2.28] If ϕ ∈ Φ and T is a
t-norm, then Tϕ is also a t-norm.

Proposition 2.6: [11] Let ϕ : [0, 1]→ [0, 1] be an increasing
function. Then ϕ is bijective if and only if ϕ(1) = 1, ϕ(0) = 0
and ϕ is continuous and strictly increasing.

Definition 2.4: A function f : [0, 1]2 → [0, 1] is called
convex if:

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y),

for all x, y ∈ [0, 1]2 and t ∈ [0, 1].

Definition 2.5: [3], [5], [7] A function I : [0, 1]2 → [0, 1]
is a fuzzy implication if, for all x, y, z ∈ [0, 1], the following
properties are satisfied:

(I1) If x ≤ z then I(x, y) ≥ I(z, y);
(I2) If y ≤ z then I(x, y) ≤ I(x, z);
(I3) I(0, y) = 1;
(I4) I(x, 1) = 1;
(I5) I(1, 0) = 0.
We denote by FI the set of all fuzzy implications.
Among the various classes of fuzzy implications, such as

(S,N), R- and QL-implication, we highlight a new class of
fuzzy implication named (T,N)-implications. This implica-
tion was firstly presented by Bedregal in [10], and the idea
was to provide an implication by the composition of a fuzzy
negation and a t-norm. The (T,N)-implications were later
investigated in [16]–[19]. The (T,N)-implication is defined
as follows.

Definition 2.6: Let T be a t-norm and let N be a fuzzy
negation. The function INT defined by

INT (x, y) = N(T (x,N(y)))

is called (T,N)-implication.

III. k LIPSCHITZIAN (T,N)-IMPLICATIONS

In [12], Chen et. al. deeply investigated the implications
from the perspective of Lipschitz condition and copula char-
acteristic. In addition, some k-Lipschitzian implications were
found. Another work was developed by Kolesárová and Mesiar
in [20], in which they showed that there is a duality between
the classes of all quasi-copulas and 1-Lipschitzian fuzzy
implications.

In this sense, we will now study the Lipschitz condition for
the (T,N)-implications from the t-norm and fuzzy negation
that define it.

Proposition 3.1: Let INT be a (T,N)-implication. Then, INT
satisfy 1-Lipschitz condition if and only if N and T satisfy
the 1-Lipschitz condition.
PROOF: Indeed,
(⇒) Since INT satisfy 1-Lipschitz condition, then∣∣N(T (x,N(z)))−N(T (y,N(w)))

∣∣ ≤ |x− y|+ |z − w|, (2)

for all x, y, z, w ∈ [0, 1]. In particular, for z = w = 0∣∣N(T (x, 1))−N(T (y, 1))
∣∣ ≤ |x− y|,

by (T4), ∣∣N(x)−N(y)
∣∣ ≤ |x− y|.

Therefore, N satisfy 1-Lipschitz condition. So, by the Theo-
rem 2.1 and (2),∣∣T (y,N(w))− T (x,N(z))

∣∣ ≤ |x− y|+ |z − w|,

i.e.,∣∣T (x,N(z))− T (y,N(w))
∣∣ ≤ |x− y|+ |z − w|,



for all x, y, z, w ∈ [0, 1]. Again, by the Theorem 2.1,∣∣T (x, z)− T (y, w)
∣∣=∣∣T (x,N(1− z))− T (y,N(1− w))

∣∣
≤|x− y|+ |(1− z)− (1− w)|
= |x− y|+ |z − w|,

for all x, y, z, w ∈ [0, 1]. Therefore, T satisfy 1-Lipschitz
condition.
(⇐) Since N is 1-Lipschitzian, we have by the Theorem 2.1
that N(x) = 1− x. So, for all x, y, z, w ∈ [0, 1]∣∣INT (x, z)− INT (y, w)

∣∣=∣∣N(T (x,N(z)))−N(T (y,N(w)))
∣∣

=
∣∣T (y,N(w))− T (x,N(z))

∣∣,
now, since T is 1-Lipschitzian,∣∣INT (x, z)− INT (y, w)

∣∣ =
∣∣T (y,N(w))− T (x,N(z))

∣∣
(1)

≤ |y − x|+ |N(w)−N(z)|
= |x− y|+ |z − w|.

Therefore, INT is 1-Lipschitzian.
Corollary 3.1: Let INT be a (T,N)-implication. If INT satisfy

1-Lipschitz condition then N = NS .
PROOF: It follows straight from Proposition 3.1 and Theorem
2.1.

Remark 3.1: From Corollary 3.1 we can see that a necessary
condition for INT to be 1-Lipschitzian is that N is the standard
negation, i.e., N = NS .

The following theorem guarantees another necessary condi-
tion for INT to be 1-Lipschitzian, where the condition depends
on the t-norm and fuzzy negation.

Theorem 3.1: Let INT be a (T,N)-implication. If INT is 1-
Lipschitzian then:

(i) T (x, y) ≥ TL(x, y) for all x, y ∈ [0, 1], where TL is the
Łukasiewicz t-norm;

(ii) INT (x, y) ≥ NS(x), for all x, y ∈ [0, 1].
PROOF: Indeed,

(i) as INT is 1-Lipschitzian, then by the Proposition 3.1, N
is 1-Lipschitzian and, in particular,∣∣INT (x, z)− INT (y, z)

∣∣ ≤ |x− y|,

for all x, y, z ∈ [0, 1]. So by making x = 1 we get∣∣N(N(z))− INT (y, z)
∣∣ ≤ |1− y|.

Since N is 1-Lipschitzian, by the Theorem 2.1, N(x) =
1 − x for all x ∈ [0, 1]. So, N(N(z)) = z and, by the
Remark 1.5 in [6], T (y, 1−z) ≤ 1−z, so 1−T (y, 1−z) ≥
z, i.e., INT (y, z) ≥ z, hence for all y, z ∈ [0, 1]∣∣z − INT (y, z)

∣∣ ≤ 1− y⇒INT (y, z)− z ≤ 1− y

⇒1− T (y, 1− z)− z ≤ 1− y

⇒T (y, 1− z) ≥ y − z.

For all x, y ∈ [0, 1],

T (x, y) = T (x,N(N(y))) ≥ x−N(y) = x + y − 1.

Now, since T (x, y) ≥ 0 for all x, y ∈ [0, 1], so T (x, y) ≥
max(0, x + y − 1), i.e., T (x, y) ≥ TL(x, y).

(ii) Since INT satisfy 1-Lipschitz condition, in particular,∣∣N(T (x,N(y)))−N(T (z,N(y)))
∣∣ ≤ |x− z|,

for all x, y, z ∈ [0, 1]. So, for z = 0, we have, by the
Proposition 2.1,∣∣INT (x, y)− 1

∣∣ ≤ x,

for all x, y ∈ [0, 1]. Hence, INT (x, y) ≥ NS(x) for all
x, y ∈ [0, 1].

Proposition 3.2: Let INT be a (T,N)-implication, where N
is 1-Lipschitzian. Then INT is k-Lipschitzian if and only if∣∣INT (x, z)− INT (y, z)

∣∣ ≤ k|x− y|, (3)

for all x, y, z ∈ [0, 1].
PROOF: Indeed, if INT is k-Lipschitzian then (3) follows
straight. Now, considering that the inequality (3) is satisfied,∣∣INT (x, z)− INT (y, w)

∣∣ ≤ ∣∣INT (x, z)− INT (y, z)
∣∣

+
∣∣INT (y, z)− INT (y, w)

∣∣
(3)

≤ k|x− y|+
∣∣INT (y, z)− INT (y, w)

∣∣
for all x, y, z, w ∈ [0, 1]. Now, since N is 1-Lipschitzian, by
the Theorem 2.1, we have that N(x) = 1− x, so∣∣INT (y, z)− INT (y, w)

∣∣ =
∣∣T (y,N(w))− T (y,N(z))

∣∣
(T1)
=
∣∣T (N(w), y)− T (N(z), y)

∣∣
=
∣∣INT (N(z), N(y))−INT (N(w), N(y))

∣∣
(3)

≤ k|N(z)−N(w)| = k|z − w|.

So, for all x, y, z, w ∈ [0, 1],∣∣INT (x, z)− INT (y, w)
∣∣ ≤ k|x− y|+ k

∣∣z − w
∣∣

≤ k(|x− y|+ |z − w|).

Therefore, INT is k-Lipschitzian.
Proposition 3.3: Let INT be a (T,N)-implication, where N

satisfy 1-Lipschitz condition. Then T is k-Lipschitzian if and
only if INT is k-Lipschitzian.
PROOF: Indeed, by the Theorem 2.1, N(x) = 1 − x for all
x ∈ [0, 1], so
(⇒) for all x, y, z ∈ [0, 1]∣∣INT (x, z)− INT (y, z)

∣∣ =
∣∣T (y,N(z))− T (x,N(z))

∣∣
≤ k(|x− y|),

since T is k-Lipschitzian. Therefore, by the Proposition 3.2,
INT is k-Lipschitzian.
(⇐) Now, since INT is k-Lipschitzian, then for all x, y, z, w ∈
[0, 1]∣∣INT (x, z)− INT (y, w)

∣∣ ≤ k(|x− y|+ |z − w|),

and so, again by the Theorem 2.1,∣∣T (x,N(z))− T (y,N(w))
∣∣ ≤ k(|x− y|+ |z − w|).



Thus, for all x, y, z, w ∈ [0, 1]∣∣T (x, z)− T (y, w)
∣∣=∣∣T (x,N(1− z))− T (y,N(1− w))

∣∣
≤k(|x− y|+ |z − w|).

Therefore, T is k-Lipschitzian.
Proposition 3.4: Let INT be a (T,N)-implication. If INT is

k-Lipschitzian, then N is k-Lipschitzian. In addition if N is
a strict concave negation then T also is k-Lipschitzian.
PROOF: Indeed, since INT is k-Lipschitzian, then for all
x, y, z, w ∈ [0, 1]∣∣N(T (x,N(z)))−N(T (y,N(w)))

∣∣ ≤ k(|x− y|+ |z − w|),

for all x, y, z, w ∈ [0, 1]. In particular, for z = w = 0,∣∣N(T (x, 1))−N(T (y, 1))
∣∣ ≤ k|x− y|,

by (T4), ∣∣N(x)−N(y)
∣∣ ≤ k|x− y|.

Therefore, N is k-Lipschitzian. On the other hand, if N is a
concave strict negation then N−1 is a convex strict negation
and therefore

|N(x)−N(y)| ≥ |x− y| (4)

and

|N−1(x)−N−1(y)| ≤ |x− y| (5)

for each x, y ∈ [0, 1]. Then, since N is k-Lipschitzian,∣∣T (x, z)−T (y, w)
∣∣=∣∣T (x,N(N−1(z)))− T (y,N(N−1(w)))

∣∣
(4)

≤
∣∣N(T (x,N(N−1(z)))−N(T (y,N(N−1(w))))

∣∣
≤ k(|x− y|+ |N−1(z)−N−1(w)|)
(5)

≤ k(|x− y|+ |z − w|),

for all x, y, z, w ∈ [0, 1]. Therefore, T is k-Lipschitzian.
Corollary 3.2: Let INT be a (T,N)-implication. If INT is

k-Lipschitzian, then k ≥ 1.
PROOF: It follows straight from Propositions 3.4 and 2.2.

Corollary 3.3: Let INT be a (T,N)-implication. If k1 is the
Lipschitz constant of INT and k2 is the Lipschitz constant of
N , then k2 ≤ k1.
PROOF: Suppose k2 > k1. Since k1 is the Lipschitz constant
of INT , then∣∣INT (x, z)− INT (y, w)

∣∣ ≤ k1(|x− y|+ |z − w|).

In particular, for z = w = 0,∣∣N(x)−N(y)
∣∣ ≤ k1|x− y|,

for all x, y ∈ [0, 1]. Contradiction, since k2 is the Lipschitz
constant of N .

Proposition 3.5: Let INT be a (T,N)-implication. If INT is
k-Lipschitzian, then N(x) ≥ 1− kx for all x ∈ [0, 1].
PROOF: Since INT is k-Lipschitzian, for all x, y, z ∈ [0, 1]∣∣INT (x, z)− INT (y, w)

∣∣ ≤ k(|x− y|+ |z − w|).

Doing x = z = w = 0, by the Proposition 2.1, we get:∣∣1− INT (y, 0)
∣∣ ≤ ky.

So, 1 − N(T (y, 1)) ≤ ky, therefore N(y) ≥ 1 − ky, for all
y ∈ [0, 1].

Proposition 3.6: Let INT be a (T,N)-implication. If N
is k1-Lipschitzian and T is k2-Lipschitzian, then INT is k̃-
Lipschitzian, where k̃ = k21 · k2.
PROOF: Indeed, since N is k1-Lipschitzian and T is k2-
Lipschitzian, then, for all x, y, z, w ∈ [0, 1]∣∣INT (x, z)− INT (y, w)

∣∣≤ k1|T (x,N(z))− T (y,N(w))|
≤ k1 · k2(|x− y|+ |N(z)−N(w)|)
≤ k1 · k2(|x− y|+ k1|z − w|).

Now, by the Proposition 2.2 we have that k1 ≥ 1, so∣∣INT (x, z)− INT (y, w)
∣∣ ≤ k21 · k2(|x− y|+ |z − w|),

for all x, y, z, w ∈ [0, 1].
Corollary 3.4: Let INT be a (T,N)-implication, where T

satisfy 1-Lipschitzian condition. If N is k-Lipschitzian then
INT is k2-Lipschitzian.
PROOF: Let k1 = k and k2 = 1 in the previous proposition.

In the next result, we show some relationships between
(T,N)-implications and their conjugates.

Proposition 3.7: Let INT be a (T,N)-implication and ϕ be
an automorphism. Then,

(INT )ϕ(x, y) = I
Nϕ

Tϕ
(x, y),

for all x, y ∈ [0, 1].
PROOF: Given the automorphisms ϕ and an (T,N)-
implication INT , we have by the Proposition 2.4 that Nϕ is a
fuzzy negation and by the Proposition 2.5 that Tϕ is a t-norm.
So, INϕ

Tϕ
is an (T,N)-implication. Moreover, for x, y ∈ [0, 1],

(INT )ϕ(x, y) =ϕ−1(INT (ϕ(x), ϕ(y)))

=ϕ−1(N(T (ϕ(x), N(ϕ(y)))))

=ϕ−1(N(ϕ(ϕ−1(T (ϕ(x), ϕ(ϕ−1(N(ϕ(y)))))))))

=Nϕ(ϕ−1(T (ϕ(x), ϕ(Nϕ(y)))))

=Nϕ(Tϕ(x,Nϕ(y)))

= I
Nϕ

Tϕ
(x, y).

Proposition 3.8: Let INT be a (T,N)-implication and
(INT )ϕ its Φ-conjugate. If ϕ is kϕ-Lipschitzian, ϕ−1 is kϕ−1 -
Lipschitzian and INT is k-Lipschitzian, then the (T,N)-
implication (INT )ϕ is k̃-Lipschitzian, where k̃ = k · kϕ · kϕ−1 .



PROOF: Indeed, since INT is k-Lipschitzian, ϕ is kϕ-
Lipschitzian and ϕ−1 is kϕ−1 -Lipschitzian, then, for all
x, y, z, w ∈ [0, 1]∣∣(INT )ϕ(x, z)− (INT )ϕ(y, w)

∣∣ =

=
∣∣ϕ−1(INT (ϕ(x), ϕ(z)))− ϕ−1(INT (ϕ(y), ϕ(w)))

∣∣
≤ kϕ−1

∣∣INT (ϕ(x), ϕ(z))− INT (ϕ(y), ϕ(w))
∣∣

≤ kϕ−1 · k(|ϕ(x)− ϕ(y)|+ |ϕ(z)− ϕ(w)|)
≤ kϕ−1 · k · kϕ(|x− y|+ |z − w|).

So, (INT )ϕ is k · kϕ · kϕ−1 -Lipschitzian.
Corollary 3.5: Let INT be a k-Lipschitzian (T,N)-

implication and (INT )ϕ your Φ-conjugate. If ϕ is kϕ-
Lipschitzian and ϕ−1 is kϕ−1 -Lipschitzian, then Nϕ is k ·
kϕ · kϕ−1 -Lipschitzian.
PROOF: It follows straight from Propositions 3.8 and 3.4.

Corollary 3.6: Let INT be a k-Lipschitzian (T,N)-
implication and (INT )ϕ your Φ-conjugate. If ϕ is kϕ-
Lipschitzian, ϕ−1 is kϕ−1 -Lipschitzian and N is 1-
Lipschitzian, then Tϕ is k · kϕ · kϕ−1 -Lipschitzian.
PROOF: Since N is 1-Lipschitzian, by the Proposition 3.3, T
is k-Lipschitzian. So, for all x, y, z, w ∈ [0, 1]∣∣Tϕ(x, z) − Tϕ(y, w)

∣∣ ≤
≤ kϕ−1

∣∣T (ϕ(x), ϕ(z))− T (ϕ(y), ϕ(w))
∣∣

≤ kϕ−1 · k(|ϕ(x)− ϕ(y)|+ |ϕ(z)− ϕ(w)|)
≤ kϕ−1 · k · kϕ(|x− y|+ |z − w|).

Definition 3.1: Let f : [0, 1]n → [0, 1] be a function
and ϕ be an automorphism. We said that ϕ preserve f ,
if for each (x1, · · · , xn) ∈ [0, 1]n, ϕ(f(x1, · · · , xn)) =
f(ϕ(x1), · · · , ϕ(xn)).

Proposition 3.9: Let INT be a (T,N)-implication and ϕ be
an automorphism. If ϕ preserve the t-norm T and the fuzzy
negation N , then ϕ preserve INT .
PROOF: Indeed, since ϕ preserve T and N , then ϕ(T (x, y)) =
T (ϕ(x), ϕ(y)) and ϕ(N(x)) = N(ϕ(x)) for all x, y ∈ [0, 1].
So,

ϕ(INT (x, y))=ϕ(N(T (x,N(y)))) = N(ϕ(T (x,N(y))))

=N(T (ϕ(x), ϕ(N(y))))=N(T (ϕ(x), N(ϕ(y))))

= INT (ϕ(x), ϕ(y)).

Proposition 3.10: Let INT be a (T,N)-implication and ϕ be
an automorphism. If ϕ preserve INT then

(i) ϕ preserve the fuzzy negation N ;
(ii) If N is strict, then ϕ preserve the t-norm T .

PROOF: Indeed, since ϕ preserve INT , we have that

ϕ(N(T (x,N(y)))) = N(T (ϕ(x), N(ϕ(y)))) (6)

for all x, y ∈ [0, 1].
(i) In particular for y = 0, by the Proposition 2.6,

ϕ(N(T (x,N(0)))) = N(T (ϕ(x), N(0))).

So, by (N2) and (T4),

ϕ(N(x)) = N(ϕ(x)).

Therefore, ϕ preserve the N .
(ii) By previous item, ϕ preserve N , then by (6),

N(ϕ(T (x,N(y)))) = N(T (ϕ(x), ϕ(N(y)))).

So, since N is strict,

ϕ(T (x,N(y))) = T (ϕ(x), ϕ(N(y)))

and for each y′ ∈ [0, 1] there exists y ∈ [0, 1] such that
y′ = N(y), so

ϕ(T (x, y′)) = ϕ(T (x,N(y))) = T (ϕ(x), ϕ(N(y)))

= T (ϕ(x), ϕ(y′))

foa all x, y′ ∈ [0, 1]. Therefore, ϕ preserve T .

Corollary 3.7: Let INT be a (T,N)-implication and ϕ be an
automorphism. If N is strict, then ϕ preserve INT if and only
if ϕ preserve T and N .
PROOF: It follows straight from the Propositions 3.9 and 3.10.

IV. FINAL REMARKS

In function of the relevance of implications and k-Lipschitz
condition, this work aimed to develop the first study on
k-Lipschitz condition for the class of (T,N)-implications
which can be the start point for more wide research on k-
Lipschitzian implications considering theoretic and practical
aspects. Therefore, this paper brings a seminal investigation
of under which properties a (T,N)- implication satisfy the
k-Lipschitz condition for a specific and generic k. Moreover,
in order to promote the generation of new Lipschitzian impli-
cations from (T,N)-implications, we also demonstrate under
which conditions it could be done using automorphisms.
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