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Abstract—In the case of computer aided diagnosis it is ad-
vantageous to apply such computational intelligence methods,
that can be related to direct measured data by means easily
understandable to medical experts. Fuzzy reasoning, if the
rulebase is generated from plausible statistical parameters of the
image to be analysed, is easy to understand thus can be easily
accepted by the society.

In the case of colorectal polyps, which might develop into
colorectal cancer, thus the population-wide screening would be
advisable, more methods are available, but none of them is
accepted as standard and effective method. A method based on
simple statistical parameters and entropies of image segments is
presented, and the effect of determining the rulebase parameters
on the efficiency of finding the polyp segment is studied for
stabilized Koczy-Hirota rule interpolation.

Index Terms—Colorectal polyp, entropy, fuzzy rule interpola-
tion, wavelet analysis

I. INTRODUCTION

In medical practice the role of computer aided diagnosis
(CAD) increases continuously. Although there are still a lot
of medical experts as well as patients who have reservations
about artificial intelligence, intelligent image processing and
classifying methods gain application fields and appliers. It
is usually complicated to understand what a medical expert
wants from a computation based diagnosing aid, and also it is
not simple to make them understand what an algorithm does.
Although convolutional neural networks and deep learning
methods are usually effective in image processing, in the case
of medical diagnosis, there are several reasons why other
methods for classification, such as a fuzzy sets based inference,
are more advisable. One of the main reasons is that there are
a lot of manifestations of the same kind of illness, and more

types of lesions can look very similar on medical images.
Usually the number of the samples for training and testing
is limited, too. The reason for this can be the rareness of
some diseases, the expensiveness of the medical experts to
prepare the raw images and at least supervise the preparation
of the samples from these raw images, the fact that the medical
instrument providers usually make it complicated to extract
good quality, processable images from their devices and also
the legal, societal and ethical aspects of handling personal data,
of proper anonymization. There are various picture databases
for testing diagnosing methods, however, they are often either
hard to access, or of rather low quality. The number of
accessible databases and diagnosing challenges increases and
most of the challenges concentrate on automatic segmentation
of the images to detect as precise contour of the objects –
usually one single kind of tumour –, or to detect, whether a
pattern appears on the picture or not.

Colorectal polyps are such lesions that might develop into
cancer very slowly, and usually they can be detected and clas-
sified according to dangerousness years before the malignity to
appear. This means that if the population would be screened on
annual or bi-annual basis, most of the colorectal cancer cases
could be prevented by removing the polyps prone to develop to
malign lesions. However, screening the population from about
50 years of age is hard to achieve for multiple reasons. One of
the main reasons is that the most effective diagnosing device
is the colonoscope – and endoscope used in the last part of the
bowel –, which requires colonoscopes, personnel who is able
to handle the endoscope, and cooperation of the patient not
only during the examination, but also beforehand in cleaning
the colorectal tract. A visual aid for detecting various polyp
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types would be welcome in order to decrease the number of
missed polyps.

The polyps can be classified according to their shapes and
locations related to the bowel wall layers as mucosa, muscular
mucosa and submucosa. The classification was developed in
Japan in the 1960s, and lately revised in Vienna and Paris
[1], [2]. Based on molecular and microscopic properties of a
large number of polyps, the morphological classification has
3 main classes, protruded, flat-elevated and flat, with multiple
sub-classes [3], which means that there are a lot of types of
shapes that should be detected by a CAD for colonoscopes. In
the case of protruding polyps, also the pit pattern can be used
for determining the malignity of the lesion, a classification
scheme was developed by Kudo and his coworkers [4], thus
the possibility for further analysis of polyps is also open for
medical image processing [5].

In grand endoscopy vision challenges a call about
colonoscopy was launched [6], with 8 participants and meth-
ods ranging from end-to-end learning convolutional neural
networks to handcrafted algorithm to find roundish objects
based on the lighting patterns of a hemisphere. The results are
still not acceptable as live video image processing CAD for
helping the screening of the population, however, it seems that
the handcrafted and hybrid methods can outperform end-to-
end learning methods, this is the reason we started to tune our
fuzzy classification method [7], [8] together with the previous
gastroenterological projects and cooperations of our working
group [5], [9], [10] to classify colonoscopy images [11], [12],
[13].

Two consecutive colonoscopy challenge used four databases
of protruding types of polyps, however, one of the databases
was video, and we remained at the still picture databases
CVC-Colo, [14], Etis-Larib, [15], and CVC-Clinic [16], [6].
The number of the pictures were 380, 195 and 612, the size
574×500, 1225×966, 384×288 pixels, the resolution 72, 72
and 96 dpi, and the colour depth of the RGB color pictures was
24 bit per pixel, respectively. All the images were provided
with a black-and-white mask of the polyp positions.

In the first tries we studied only the first database with less
success, then stated to use all three databases, separating them
to image groups of the same examinations, and preparing rule-
bases for all image groups separately [11], [12]. The method
was to cut the image into tiles, and determine, whether the
tile contains polyp by fuzzy classification based on statistical
parameters of the image and its wavelet transform [17], in
order to prepare a basic, rough contour for an active contour
method [18], [19] which can refine the results of the detection.

In the previous attempts the method for generating fuzzy
rules of the two outputs “contains polyp”, “does not contain
polyp” we used a very simple statistical approach; for the
training set we used the mean of the measured data as the
α = 1 cut point of the triangular rule, while the support
was generated from the minimum and maximum measured
value of the training set’s part corresponding to the respective
consequent. As the support of the resulting rules of the tiles
with polyp were very often included into the supports of

the non-polyp rules, and the α = 1 points were often also
near, we provide an analysis in the following article about the
histogram of the antecedents, and how a rulebase reproducing
the histogram better than the previous, very simple method
influences the output of the results. The results for the 81
image groups with the 81 different rulebases (all rulebases
tested for all the rules, the colors meaning the rulebase) are
presented in Fig. 1. Also the results of a joint, single rulebase
based on the statistical data of the training set consisting of the
training sets of all the image groups can be seen. It is visible
that in most of the cases the fuzzy inferences with rulebases of
separate image groups outperform that of the joint rulebase,
not only for the group the rules were generated from, but
also for most of the other groups. This implies that there are
some groups that need different method for classification, and
distort the statistics of the measured data, thus it seems to be
interesting to study the distribution of the antecedents, but it
is a task for a separate research. However, in this paper, as it
is easier to handle the uniform rulebase, and in the long-term
we are planning to apply a single, common rulebase, in the
present article we study only the performance of classification
the joint rulebase. The reason for trying to develop a uniform
classification scheme is in the application: live video image
classification needs very rapid and simple algorithms.

Fig. 1. True positive rates and false positive rates of the stabilized Kóczy-
Hirota fuzzy rule interpolation based colonoscopy image classification. First
column: the results for all the 81 image groups, of which the first 18 belongs
to CVC-Colon, the next 36 belongs to CVC-Clinic, and the last 36 belongs
ti ETIS-Larib. The different colors mean rulebases based on training sets
from different image groups. Second column: the results for a joint, common
rulebase. The magenta larger triangles of the second column are also visible
in the graphs of the first column, for comparison.

In the following consideration, after a short summary of
the applied rule interpolation method and the derivation of
the antecedents from the raw image tiles in Section II, the
histograms and the statistical parameters of the antecedents are
studied in Section III. The classification results are compared
in Section IV, and the conclusions are drawn in he last section.



II. METHODS

Zadeh’s fuzzy sets [20], [21] are often used not only in
control theory and applications, but in other branches of
inference, such as classification based on measured data.

A. Fuzzy rule interpolation

However Mamdani-like fuzzy inference systems [24] are
proven to be successful in decision making, their possibilities
are limited. In case of sparse rule bases, when the observation
is between the supports of two neighbouring antecedent sets
of the same dimension the weight of all rules are 0, so these
applications are not able to provide any result different from
zero. Its reason is the monotonity of t-norms

a ≤ b→ t(a, b) ≤ a | a, b ∈ [0, 1],

where a and b are fuzzy membership values.
As the fuzzy rule base discussed in this paper is sparse,

Mamdani-like inference systems are not suitable. For our
problem the stabilized Kóczy–Hirota inference method (SKH)
[25] was used. Considering the nearest antecedent sets, SKH
creates temporary rules for the domains not covered by any
antecedent set for each observations. These new rules can be
used only for the cases they were created for. The method
calculates the infima and suprema of the characteristic α-cuts
of the new fuzzy conclusion B∗ according to the Euclidean
distances between the observation and the bounds of the char-
acteristic α-cuts of the original antecedent sets and conclusion.
The method itself is given by the following formulas

inf{B∗
α} =

2n∑
i=1

(
1

dαL(A∗, Ai)

)k
inf{Biα}

2n∑
i=1

(
1

dαL(A∗, Ai)

)k
and

sup{B∗
α} =

2n∑
i=1

(
1

dαU (A∗, Ai)

)k
sup{Biα}

2n∑
i=1

(
1

dαU (A∗, Ai)

)k ,

(1)

where i stands for the number of the rules, k denotes the num-
ber of the dimensions, A∗ the observation, Ai the antecedent
sets in rule i, dαL(A∗, Ai) and dαU (A

∗, Ai) the lower and
upper bounds of the distance between the α-cuts of observation
and the antecedents, and B∗ stands for the corresponding fuzzy
conclusion [26].

B. Antecedents

As the algorithm is to be used during live video investiga-
tion, it is necessary to have such antecedents that are easy
to compute. Also, as the medical expert and some of the
patients like to understand what a program in their device does,
it is advisable to have such input parameters that are easy

to understand. As the polyps are protruding into the bowel,
even if their native color is the same as the bowel wall, their
color representation is different due to lighting. The polyps
have a lighter side toward the little light source built into the
colonoscope, and a shadow at the opposite side. This suggests
to use both the average pixel intensity, and their differences
as input variables in the classification scheme.

Also the polyps have sharp contours, which can be seen on
edge filtered images [27], and in gradient filtered images. We
tried both the edge to pixel number ratio of the Canny filtered
version of the image, and the gradient filtered image’s mean
and standard deviation.

We also calculated the structural entropy and spatial filling
factor of the normalized pixel intensities, as these quantities
are proven to give information about the shape of the distri-
bution [29], [30], and it is effective in characterizing surfaces
[31]– [33]. It is also shown, that structural entropy is different
along a polyp-like object than in the case of the background
patterns probable in bowels [34].

The input variables are used in the order shown in Table I.

TABLE I
THE NUMBERING OF THE ANTECEDENT PARAMETERS. R, G, AND B

MEANS THE COLOR CHANNEL, STD THE STANDARD DEVIATION, Sstr IS
THE STRUCTURAL ENTROPY, ln q IS THE LOGARITHM OF THE SPATIAL

FILLING FACTOR FROM [29]. IN THE CASE OF THE WAVELET
TRANSFORMS, LL STANDS FOR THE LOW-PASS–LOW-PASS FILTER

BRANCH OUTPUT, I.E., THE ROUGH DETAILS, HH FOR THE OUTPUT OF
THE HIGH-PASS–HIGH-PASS BRANCH, I.E., THE FINE DETAILS, WHILE THE
LH AND HL COMBINATIONS DENOTE THE MIXED OUTPUTS, I.E., IF ONE

OF THE DIRECTIONS IS FILTERED WITH LOW-PASS, THE OTHER WITH
HIGH-PASS FILTER.

Number Antecedent
1–2 mean and STD, R
3–4 mean and STD, G
5–6 mean and STD, B
7 edge density, R
8 edge density, G
9 edge density, B

10–11 Sstr , ln q, R
12–13 Sstr , ln q, G
14–15 Sstr , ln q, B
16–30 as 1–15, wavelet transform LL
31–45 as 1–15, wavelet transform LH
46–60 as 1–15, wavelet transform HL
61–75 as 1–15, wavelet transform HH
76–77 gradient magnitude’s mean and STD, R
78–79 gradient magnitude’s mean and STD, G
80–81 gradient magnitude’s mean and STD, B
82–87 as 76–81, gradient direction
88–93 as 76–81, gradient x component
94–99 as 76–81, gradient y component

III. HISTOGRAMS

As a first step for finding the reason why the separate
rulebases of various image groups outperform the fuzzy clas-
sification with joint rulebase the histograms of the measured
antecedents were plotted for the complete training set. Lot
of the histograms seem very different from the shape of the
applied fuzzy rules as it can be seen in Figure 2.

Figure 2 shows examples of the typical distributions. The
mean value of the original tile has two wide peaks apart



Fig. 2. Examples of histograms of the measured data in the training sets. Red color lines mean the consequent “with polyp”, green color lines mean the
consequent “no polyp” cases. Continuous line denotes the original rules with the mean value being the α = 1 peak of the triangular rule, dotted line the
median centered ones, and dashed line the histogram-based rules with the center being the peak of the histogram and the support set to the location where the
histogram first meets the threshold level 10%. All the measured data are normalized so that the training set would be located into the closed interval [0, 1],
while the histogram peaks were scaled to be 1, for better visibility.



from each other for the two consequents (see No. 1, 3 and
5), while the standard deviations have almost the same peak
location (see No. 2), with one of the peaks being visibly
broader. The edge densities of the original form two almost
overlapping wide heaps (see No. 8), while the structural
entropy and the filling factor have only slightly different
thin peaks at the sides of the interval, sometimes with more
smaller peaks (see No. 10, 11 and 12). (This again suggests to
build a hierarchical classification scheme where these entropy-
based quantities play role only in some cases, even though a
hierarchical classification scheme would make the calculations
more complicated and time demanding.) The wavelet analysis
changes the histograms of the mean values to thinner and more
distinguishable peaks (see No. 20, 31 and 61), the standard
deviations to slightly more fluctuating (see No. 21, 32 and
51) and the edge densities to more distinguishable (see No. 22,
23, 38, and 52). The structural entropy and the filling factor
becomes even thinner (see No. 40 and 44). The gradients’
mean values are usually differ only slightly in either with or
peak location (see No. 90), while their standard deviations
have peaks at the lower values which can be located at almost
the same, or slightly different positions (see No. 87 and 91).

As the shape of the probability distributions in the train-
ing sets differ from the applied fuzzy rules very much, the
goal of this research became to determine whether selecting
fuzzy membership functions fitting more to the measured data
improves the classification properties. Two approaches were
used. First, instead of having the α = 1 point to the mean of
the measured values, it was moved to the median, which im-
proves the fitting only slightly, as it can be seen with the dotted
lines in Figure 2. This approach will be referred to as “median-
centered” one in the followings. Second, in order to achieve
better fitting the α = 1 peak of the triangular membership
function was set to the maximum of the histogram, while the
infimum and supremum of the support was set to those points,
where the histogram values first cross a given percentage of
its peak value, starting from both sides of the interval [0, 1].
In some cases, this also resulted in bad fitting (see antecedent
No. 52 in Figure 2), but mostly this fits the histograms rather
well. Later this method will be called “histogram fitted” rule
generation. This is the method, which produces very sparse
rules, especially if the threshold for the support is set to higher
levels, like the 10 % shown in Figure 2.

IV. RESULTS COMPARED TO THE ORIGINAL METHOD

The performance of the method was studied by two direc-
tions: 1) how the selection of the threshold for the histogram
fitting, 2) how the selection of the antecedents influences the
classification results. The true positive rate (TPR), the false
positive rate (FPR), the true negative rate (TNR) and the
false negative rate (FNR) together classify the performance
rather well, so these are the quantities given in Table II. Three
representative threshold levels and 4 representative number
of antecedents were selected. For selecting antecedents they
were sorted according to the sum of difference magnitudes
of the 3 characteristic points of the triangular membership

functions, and the 66, 50 and 33 largest of these were used in
the classification, respectively.

It can be seen, that the positioning of the α = 1 point
of the triangular membership function to the median of the
measured data improves the performance slightly for the “yes
polyp” case but makes more tiles without polyp segment be
detected as polyp containing one. Also using the histogram
fitted rulebases gives a bit better performance, but only, if the
support is not selected to be too small.

Decreasing the number of antecedents, and thus getting rid
of those input parameters that have more similar probability
distributions for the two consequents can also improve the
results: the 3 antecedent setup with the lowest threshold
provides the best performance. The case was not studied
for individual image groups yet, and also the hierarchical
classification system needs to be developed in the future, as we
hope, that the relation between the behaviors of the individual
image-group based rulebases related to the joint rulebase is
similar to that of Figure 1.

TABLE II
CLASSIFICATION PERFORMANCE FOR THE DIFFERENT METHODS WITH

DIFFERENT NUMBER OF ANTECEDENTS SELECTED FOR THE
CLASSIFICATION.

Method TPRa TNRb FPRc FNRd

Number of antecedents: 99
Original 0.82 0.46 0.54 0.18

Median centered 0.94 0.27 0.72 0.06
Histogram fitted 1% 0.79 0.49 0.51 0.21
Histogram fitted 5% 0.92 0.28 0.71 0.08

Histogram fitted 10% 0.88 0.37 0.63 0.12
Number of antecedents: 66

Original 0.78 0.49 0.51 0.21
Median centered 0.94 0.24 0.76 0.06

Histogram fitted 1% 0.79 0.49 0.51 0.21
Histogram fitted 5% 0.93 0.30 0.70 0.08

Histogram fitted 10% 0.87 0.37 0.63 0.12
Number of antecedents: 50

Original 0.72 0.56 0.43 0.28
Median centered 0.77 0.53 0.47 0.23

Histogram fitted 1% 0.82 0.45 0.55 0.18
Histogram fitted 5% 0.77 0.52 0.48 0.23

Histogram fitted 10% 0.87 0.38 0.62 0.13
Number of antecedents: 33

Original 0.32 0.84 0.16 0.68
Median centered 0.32 0.84 0.16 0.68

Histogram fitted 1% 0.78 0.51 0.49 0.22
Histogram fitted 5% 0.73 0.56 0.44 0.27

Histogram fitted 10% 0.87 0.39 0.61 0.13
atrue positive rate,btrue negative rate,
cfalse positive rate,dfalse negative rate.

V. SUMMARY AND CONCLUSIONS

Stabilized Kóczy-Hirota rule interpolation based method
for classifying colonoscopy image segments based on their
polyp content was studied. The antecedents consisted of easily
calculable parameters of the image tile and its first wavelet
transform, like mean and standard deviation of the pixel in-
tensities, edge density and the Pipek–Varga structural entropy
and the gradient filtered image’s mean and standard deviation
values.



After studying the histograms, three rule generation methods
were tested, all three provided triangular rules. The first and
second method had supports for the membership functions
that are located between the minima and he maxima of the
measured data corresponding to the given antecedents, the
third between those points where the histogram values first
crossed a given threshold from both sides of the interval. The
α = 1 peak of the triangular membership functions were
located to the mean, median of the measured data, and to
the peaks of the histograms, respectively.

True positive and false positive rates were measured, for all
the 99 antecedents and also for lower number of antecedents,
where those antecedents were prioritized that had more differ-
ent membership functions for the two consequents. The con-
clusion can be that fitting the shape of the fuzzy membership
function does not improve the classification method so much
as it seemed to be promising.
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