
I Can Get Some Satisfaction: Fuzzy Ontologies for
Partial Agreements in Blockchain Smart Contracts

Ignacio Huitzil
University of Zaragoza

Zaragoza, Spain
ihuitzil@unizar.es

Álvaro Fuentemilla
University of Zaragoza

Zaragoza, Spain
699678@unizar.es

Fernando Bobillo
Aragon Institute of Engineering Research (I3A)

University of Zaragoza
Zaragoza, Spain

fbobillo@unizar.es

Abstract—This paper proposes a novel extension of blockchain
systems with fuzzy ontologies. The main advantage is to let the
users have flexible restrictions, represented using fuzzy sets, and
to develop smart contracts where there is a partial agreement
among the involved parts. We propose a general architecture
based on four fuzzy ontologies and a process to develop and run
the smart contracts, based on a reduction to a well-known fuzzy
ontology reasoning task (Best Satisfiability Degree). We also in-
vestigate different operators to compute Pareto-optimal solutions
and implement our approach in the Ethereum blockchain.

Index Terms—fuzzy ontologies, blockchain, smart contracts

I. INTRODUCTION

In recent years, there is a growing interest in the use of the
blockchain paradigm in distributed transactional applications,
including payments using cryptocurrencies, electronic voting,
or managing medical histories [1]. The blockchain is a data
structure (a linked list) and a protocol (a consensus algorithm)
so that records are stored in a verifiable and permanent way.
One of the key features of the blockchain are smart contracts,
pieces of software that automatically process the terms of a
contract. They can be seen as a set of rules that must be
validated before accepting or refusing a transaction.

Ontologies have become a standard for knowledge repre-
sentation. An ontology is an explicit and formal specification
of the concepts, individuals, and relationships that exist in
some area of interest, created by defining axioms that de-
scribe the properties of these entities [2]. The advantages of
using ontologies include adding semantics to data, making
knowledge maintenance, information integration, and reuse of
components easier, or discovering implicit knowledge than
can be derived from the knowledge explicitly represented.
Ontologies are usually based on Description Logics (DLs) [3].
Extensions with elements of fuzzy logic and fuzzy set theory
(fuzzy ontologies and fuzzy DLs [4]) have also been proposed
to deal with imprecise or vague knowledge.

The objective of this paper is to extend existing blockchain
systems by using fuzzy ontologies. Firstly, this makes it
possible to add knowledge into the process, taking profit
of the advantages of ontologies, such as promoting reuse
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and interoperability or avoiding disambiguations. More im-
portantly, this makes it possible to make smart contracts more
flexible, including terms represented using fuzzy sets that can
be partially satisfied, leading to partial agreements among two
or more involved parties.

For example, in an electronic commerce scenario, the seller
and the customer can define their desired delivery time using
a right-shoulder and a left-shoulder function, respectively. The
longer the delivery time, the more the seller is satisfied, and
the shorter the delivery time, the more the buyer is satisfied.
Sometimes one cannot find a solution that completely satisfies
both parts, but it is often possible to find a partial agreement,
where the delivery time is acceptable for everybody.

While there are some previous attempts to combine
blockchain systems with semantic technologies such as on-
tologies (see Section V), this is to the best of our knowledge
the first work extending them with fuzzy ontologies.

We proceed as follows. Section II recalls some prelimi-
naries on fuzzy ontologies and blockchain technologies. Sec-
tion III describes our proposal to combine fuzzy ontologies
and blockchain smart contracts. Next, Section IV provides a
concrete use case as an illustrating example. Then, Section V
compares our approach with the related work. Finally, Sec-
tion VI sets out some conclusions and ideas for future research.

II. BACKGROUND

A. Fuzzy ontologies

This section overviews some results on fuzzy ontologies and
fuzzy DLs that will be used in this paper. We assume that the
reader is familiar with fuzzy logic [5], [6] and with classical
DLs [3]. For further details, we refer to [4].

We will recall the syntax, semantics, and main reasoning
tasks of a fuzzy DL. Although our approach supports a more
expressive language, for illustrative purposes we will consider
a relatively simple one: fuzzy ALCF(D) extended with fuzzy
aggregated concepts.

a) Syntax: In fuzzy DLs there are three pairwise disjoint
alphabets of individuals, fuzzy concepts and fuzzy properties
(or roles). Fuzzy concepts are fuzzy sets of individuals, and
fuzzy properties are fuzzy binary relations. There two types of
properties: an object property relates a pair of individuals, and
a data property (or attribute) relates an individual and a fuzzy
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datatype (defined using fuzzy membership functions). We will
assume that all data properties are functional.
In ALCF(D), concepts (denoted C) of the language can be
built inductively from atomic concepts (A), top concept >,
bottom concept ⊥, object properties (R), data properties (T ),
and fuzzy datatypes (d) as follows:

C1, C2 → > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C |
∀R.C | ∃R.C | ∃T.d | ∀T.d | @(C1, C2)

d → left(q1, q2) | right(q1, q2) | tri(q1, q2, q3) |
trap(q1, q2, q3, q4)

where @ is a fuzzy aggregation operator (such as the Ordered
Weighted Averaging (OWA) operator [7], the weighted sum,
or the strict weighted sum [8]), and left, right, tri, trap stand
for left-shoulder, right-shoulder, triangular and trapezoidal
membership functions [9] (see Figure 1). Note that a singleton
crisp set can be trivially defined as tri(q, q, q), and that
the conjunction, the disjunction and the aggregation can be
trivially defined as n-ary operators.

Strict weighted sum is a weighted sum having 0 as an
absorbing element, i.e., the value is 0 if some argument is 0,
and the weighted sum of the arguments otherwise [8]. Given a
vector of weights w = [w1, . . . , wn] such that wi ∈ [0, 1] and∑n
i=1 wi = 1, the strict weighted sum @sws

w of n arguments
x1, . . . , xn is given by:

@sws
w (x1, . . . , xn) =

{
0 if

∏n
i=1 xi = 0∑n

i=1 wixi otherwise. (1)

A Fuzzy Ontology (or fuzzy knowledge base) O = 〈A, T 〉
contains a fuzzy ABox A with facts (axioms about individuals)
and a fuzzy TBox T with a conceptualization of the domain
(axioms about concepts and roles).

A fuzzy ABox contains a finite set of fuzzy assertions of
two types: concept assertions of the form 〈a:C ≥ α〉, with
α ∈ [0, 1] and stating that individual a is an instance of concept
C with degree is greater than or equal to α, and role assertions
of the form 〈(a1, a2):R ≥ α〉, α ∈ [0, 1], meaning that the pair
of individuals (a1, a2) is an instance of role R with degree
greater than or equal to α.

A fuzzy TBox consists of a finite set of fuzzy General
Concept Inclusions (fuzzy GCIs), which are expressions of the
form 〈C1 v C2 ≥ α〉, α ∈ [0, 1], meaning that the degree of
concept C1 being subsumed by C2 is greater than or equal to
α. A concept definition C1 ≡ C2 is a shorthand for the pair of
axioms 〈C1 v C2 ≥ 1〉 and 〈C2 v C1 ≥ 1〉. A particular case
of GCI that will be mentioned in the rest of this paper is a
range axiom of the form 〈> v ∀R.C ≥ 1〉,

We assume that the TBox is acyclic (or it can be converted
into an equivalent acyclic TBox using an absorption algo-
rithm) [10]. The reason is that it has been shown that reasoning
is undecidable for several fuzzy DLs in the presence of GCIs,
e.g. in Łukasiewicz [11] and Product fuzzy DLs [12].

Fuzzy OWL 2 [13] is a popular fuzzy ontology language.
Fuzzy OWL 2 ontologies can be developed using a Protégé
plug-in [13]. A common problem is how to obtain the parame-
ters of the fuzzy datatypes. A possible solution is to use Datil
tool to learn the definition from numerical data [14].

b) Semantics: The semantics of the logic is defined using
a fuzzy interpretation. A fuzzy interpretation I = (∆I , ·I)
consists of a nonempty set ∆I (the domain) and of a fuzzy
interpretation function ·I that assigns:
• To each individual a an element aI ∈ ∆I .
• To each fuzzy concept C a function CI : ∆I → [0, 1].
• To each fuzzy object property R a function RI : ∆I ×

∆I → [0, 1].
• To each fuzzy functional data property T a partial func-

tion T I : ∆I × ∆D → {0, 1} such that for all u ∈ ∆I

there is an unique v ∈ ∆D on which T I(u, v) is defined,
where ∆D is the domain of the fuzzy datatypes.

Given a t-norm ⊗, t-conorm ⊕, negation function 	 and
implication function⇒, the interpretation function is extended
to complex concepts and fuzzy axioms as in Table I.

Concept Semantics
(>)I(x) = 1
(⊥)I(x) = 0
(A)I(x) = AI(x)

(C1 u C2)
I(x) = CI

1 (x)⊗ CI
2 (x)

(C1 t C2)
I(x) = CI

1 (x)⊕ CI
2 (x)

(¬C)I(x) = 	CI(x)
(∀R.C)I(x) = infy∈∆I{RI(x, y)⇒ CI(y)}
(∃R.C)I(x) = supy∈∆I{RI(x, y)⊗ CI(y)}
(∃T.d)I(x) = supv∈∆D

{T I(x, v)⊗ dD(v)}
(∀T.d)I(x) = infv∈∆D{T

I(x, v)⇒ dD(v)}
@(C1, C2)

I(x) = @(CI
1 (x), C

I
2 (x))

Axiom Semantics
(a:C)I = CI(aI)

((a1, a2):R)I = RI(aI
1 , a

I
2 )

(C1 v C2)
I = infx∈∆I{CI

1 (x)⇒ CI
2 (x)}

TABLE I
SEMANTICS OF FUZZY CONCEPTS AND AXIOMS

Table II recalls the fuzzy operators in the main four fuzzy
logics, namely Gödel, Łukasiewicz, Product, and Zadeh.

Gödel Łukasiewicz Product Zadeh
α⊗ β min(α, β) max(α+ β − 1, 0) α · β min(α, β)
α⊕ β max(α, β) min(α+ β, 1) α+ β − α · β max(α, β)

α⇒ β

{
1 if α ≤ β
β otherwise

min(1− α+ β, 1)

{
1 if α ≤ β
β/α otherwise

(	α)⊕ β

	α
{
1 if α = 0

0 otherwise
1− α

{
1 if α = 0

0 otherwise
1− α

TABLE II
COMBINATION FUNCTIONS OF VARIOUS FUZZY LOGICS

Let φ ∈ {a:C, (a1, a2):R, C v D}. A fuzzy interpretation
I satisfies (is a model of) a fuzzy axiom τ = 〈φ ≥ α〉, denoted
I |= τ , iff φI ≥ α. An interpretation satisfies (is a model of)
a fuzzy ontology, denoted I |= O, if it satisfies each axiom in
it. A fuzzy ontology O entails an axiom τ , denoted O |= τ ,
if any model of O satisfies τ .

c) Reasoning tasks: Common reasoning tasks on classi-
cal DLs include consistency (checking if an ontology has a
model), concept satisfiability (checking if a concept can have
instances), or entailment (checking if an ontology necessarily



(a) (b) (c) (d)
Fig. 1. (a) Trapezoidal; (b) Triangular; (c) Left-shoulder; (d) Right shoulder functions.

entails an axiom). In fuzzy DLs, those tasks are extended
but there are also some new reasoning services, such as
the Best Entailment Degree (BED) of an axiom or the Best
satisfiability degree (BSD) of a fuzzy concept. The BED of
φ ∈ {a:C, (a1, a2):R, C v D} is the maximal degree α such
that every model of the fuzzy ontology entails 〈φ ≥ α〉. The
BSD of a fuzzy concept C with respect to a fuzzy ontology
O is defined as the maximal degree α such that C can have
instances that belong to it with degree α, i.e.,

bsd(O, C) = sup
I|=O

sup
x∈∆I

CI(x) . (2)

B. Blockchain and associated technologies

Blockchain is a recent paradigm for distributed transactional
systems [1]. While in traditional distributed transactional sce-
narios a trusted intermediary is needed, in the blockchain
paradigm this is replaced by the use of a consensual distributed
protocol. This protocol makes it possible to guarantee that the
transactions, grouped in blocks, are stored in a verifiable and
permanent way. Blockchain is a data structure composed by
a linked list (or chain) of blocks using cryptographic tools,
so that it is not possible to modify data already stored in the
blockchain. In particular, each block has a hash value that
depends both on the own contents of the block and on the
hash of the predecessor block in the chain. One of the most
popular applications of the blockchain are crypto-currencies
(in particular, Bitcoin1 was the first blockchain).

Another popular blockchain is Ethereum [15]2. Ethereum is
based on a cryptocurrency called Ether (ETH or Ð), with a
subunit called Wei (1 ETH = 10−18 Wei). Ethereum includes
networks with real money converted into Ethers, but also test
networks (or testnets) with virtual Ethers, like Rinkeby.3

A key feature of the blockchain paradigm are smart con-
tracts. A smart contract (SC) is a piece of software that
automatically processes the terms of a contract. For example,
it can control cryptocurrencies (like ETH) or other valuable
digital assets. SCs can be encoded in a procedural (imperative)
or logical (declarative) language. They include a collection of
rules (constraints) that are validated, in such a way that every

1http://bitcoin.org
2http://www.ethereum.org
3https://www.rinkeby.io

party than executes the contract gets the same result. The SC
can be agreed (in this case, typically, new transactions are
added to the blockchain) or refused.

Note that all the constraints in a smart contract are hard, so
they must be fully satisfied. Instead, we will propose to replace
some of them with soft constraints, so that they can be partially
satisfied. When some constraint is partially satisfied, we say
that there is a partial agreement between the involved parts.

Solidity is the most popular high-level language to write
smart contracts [16].4 It is an object-oriented imperative lan-
guage that should be compiled to a bytecode that permits to
run it on decentralized environments such as Ethereum.

While it is possible to store data on Ethereum transactions,
this is not recommended for large volumes of data. An external
method to store data on Blockchain is the InterPlanetary File
System (IPFS) [17]. IPFS is an open source, decentralized,
peer-to-peer distributed file system for storing and accessing
files [18].5 IPFS addresses a file by its content, not by its
location. Each file stored in IPFS has a cryptographic hash
code that can be seen as a unique content identifier. IPFS
contents are persistent and immutable. IPFS uses several
technologies like Distributed Hash Table (DHT) to access file
contents, BitTorrent protocols to transfer data between nodes
in the network, or Merkle Tree (a data structure similar to the
one used by Git) as a version-control system.

III. FUZZY ONTOLOGIES FOR SMART CONTRACTS

This section details our proposal to combine fuzzy ontolo-
gies and smart contracts. Firstly, Section III-A details the
architecture of our system and some implementation details.
Then, Section III-B investigates Pareto optimal agreements.

A. Architecture and implementation

Our proposal is based on four types of fuzzy ontologies, as
illustrated in Figure 2:
• A schema fuzzy ontology with the vocabulary of the

domain, such as classes, data properties, or range defi-
nitions. For example, the price and the delivery time.

• A fuzzy ontology with the personal definitions of the
main part of the contract (e.g., the seller of a product).

4http://solidity-es.readthedocs.io/es/latest
5http://ipfs.io



Fig. 2. Ontology schema and the instances files

Fig. 3. An excerpt of our ontology schema

This ontology imports the schema ontology. Definitions
are of the form ∃T.d, where T is a data property and
d is a fuzzy datatype. In general, definitions are flexible
(i.e, defined using a fuzzy set), but they can be strict if
d is replaced with a singleton crisp set. For example, as
already mentioned, the expected price could be modeled
using a left-shoulder function.

• A fuzzy ontology with the personal definitions of the
secondary part, similar to the previous one.

• A common fuzzy ontology including only the personal
definitions of each part (main and secondary) that are
relevant for a transaction. The other ontologies are not
imported as usual, but the relevant information is physi-
cally stored in the ontology to make it self-contained.

Note that the fuzzy ontology model does not restrict to just
having one main part and one secondary part. We require that
there are at least two parts, but there can be zero or more main
parts, and zero or more secondary parts.

An excerpt of the schema ontology is shown in Figure 3,
where classes are denoted in yellow, object properties in blue,
and data properties in green. The main classes are Contract,
Transaction, Product, MainPart, and SecondaryPart.

Figure 4 shows the class hierarchy and the property hierar-
chies of the fuzzy ontology schema. Data properties associated
to a contract or a transaction are always present, but product
attributes depend on the application.

Fig. 4. Class and property hierarchies in the ontology schema

We focus on the specific case of smart contracts managing
transactions where ether is transferred from a secondary part
to a main part. Our smart contracts execute the terms of a
contract: they firstly check if there is a (possibly partial agree-
ment) between the involved parts, i.e., if all their constraints
can be (possibly partially) satisfied. In that case they actually
perform the transaction with the parameters that maximize the
mutual satisfaction. We assume that both parts have already
agreed on the codeProduct, e.g., the event for which a ticket
is being sold is fixed.

The complete architecture of the developed system is de-
tailed in Figure 5. Let us detail the steps of the process.

1) The involved parts (typically, a main part and a sec-
ondary part, but recall that there could be n involved
parts) submit their personal fuzzy ontologies, developed
in Fuzzy OWL 2, including their definitions for a
previously agreed transaction. For example, the desired
delivery time or the expected price. Some information
regarding the transaction is also needed, e.g., product id
or number of units.

2) The system computes a self-contained common fuzzy
ontologyO is computed. To manipulate the input ontolo-
gies, we use the OWL API, in Java. The common fuzzy
ontology is encoded using fuzzyDL syntax (extension
.fdl) [8]. For each of the n involved parts, the common
fuzzy ontology includes a concept defined as a combi-
nation of the definitions of the m attributes that will
be considered in the agreement. The combination uses a
function f1 : [0, 1]m → [0, 1], and we suggest computing
a conjunctive combination using Łukasiewicz t-norm, or
an aggregated combination using strict weighted sum (in
Section III-B the choice will be justified). Recall again
that the restrictions can be flexible or strict. For example,
we could create a concept Main defined as follows:

Main ≡ ∃T1.d1 u ∃T2.d2 u · · · u ∃Tm.dm . (3)

Note that it is important that both parts define the
same attributes. For example, assume that the buyer
defines that he wants a pink product, but the seller
does not define the color. Because of the Open World



Fig. 5. Architecture of our system

Assumption, the result could be satisfiable (there could
be a model of the ontology satisfying it), but the seller
has not confirmed that he has actually that product in
store. This restriction also affects other matchmaking
scenarios, e.g., [19].

3) A (possibly partial) agreement is computed. Firstly, the
global satisfaction degree is computed as the BSD of
a combination of the constraints of the n parts, using a
function f2 : [0, 1]n → [0, 1]. We use the fuzzy ontology
reasoner fuzzyDL using its Java API [8]. For example,
for the typical case n = 2:

bsd(O, f2(Main,Secondary)) . (4)

We suggest a conjunctive combination bsd(O,Main u
Secondary) using Łukasiewicz t-norm, or an ag-
gregation bsd(O,@(Main,Secondary)) using strict
weighted sum. Note that it is not only interesting to
obtain the satisfaction degree (BSD) but also the model
of the fuzzy ontology (i.e., the values of the attributes)
that makes it possible.

4) The system creates a smart contract with the values in
the model of the partial agreement. It is encoded in
Solidity (version 0.5.12). To create and compile it, we
use the development environment Remix IDE 6. We also
use the Web3j7 library to translate a Solidity binary file
(with extension .sol) into Java.

5) The system runs the smart contract. To do so, we install
an Ethereum node and use the testnet Rinkeby, where
we run the contract [20]. The first time we create
two accounts (for the two parts) and get some Ethers
to simulate the transaction. To manage the transaction
of Ethers between the accounts, we use the wallet
MetaMask.8 When the smart contract finished, it emits
an event (Eventheum) to backend services or clients to
inform about the status of the execution.

6http://remix.ethereum.org
7https://docs.web3j.io
8https://metamask.io

6) If the smart contract does not run successfully (e.g., if
the secondary does not have enough ether), the process
finishes. Otherwise, the common fuzzy ontology is up-
dated with a hashcode of the transaction payment (where
ethers are transferred from the secondary to the main
part). This could be needed, for example, to return items
in the future.

7) The common ontology is uploaded to the IPFS net-
work, which guarantees the security (persistence and
immutability) and avoids storing large volumes of data
in the blockchain.

8) The personal fuzzy ontologies are updated with the IPFS
hash of the common ontology file and with the hash
of the contract (notified by the contract using another
Eventheum). This way, future access to them is possible.

B. Pareto optimality

An agreement on the terms of a smart contract is Pareto
optimal if it is not possible to improve the satisfaction degree
of one trader, without lowering the satisfaction degree of the
opponent’s one. Note that the BSD gets the maximum value
over all models, so in general it does not provide a Pareto
optimal solution, as the following example shows.

Example 1. If there is a solution S1 (a model of the fuzzy
ontology) where the satisfaction degree of the seller is 0.8 and
the satisfaction degree of the customer is 0.6, using Gödel
t-norm the common satisfaction degree is min{0.8, 0.6} =
0.6. However, there could be another solution S2 where the
satisfaction degree of the seller is 0.9 and the satisfaction
degree of the customer is 0.6, with a common satisfaction
degree min{0.9, 0.6} = 0.6. Although the mutual satisfaction
degree is the same, the latter solution is preferable.

Rather than using Zadeh or Gödel logics, we can use
Łukasiewicz or Product fuzzy DLs that do provide Pareto
optimal solutions. That is, if the satisfaction degrees of the
two parts are α and β, and the common satisfaction degree
γ = α⊗β > 0 is optimal, there cannot be another α′ > α such
that γ = α′⊗β. This result was already known for Łukasiewicz



Fig. 6. Example of common fuzzy ontology in fuzzyDL syntax

fuzzy DLs, but we will generalize it here, including among
others Product t-norm and strict weighted sum.

Proposition 1 ([19]). In Łukasiewicz fuzzy DLs, if the max-
imum of α ⊗ β, with 〈α, β〉 ∈ [0, 1] × [0, 1], is positive then
the maxima are also Pareto optimal.

Proposition 2. Let f : [0, 1]2 → [0, 1] be a strictly increasing
aggregation function having 0 as an absorbing element. If the
maxima maxα,β∈[0,1]2 f(α, β) > 0, then the maxima are also
Pareto optimal.

Proof. Firstly note that f(α, β) > 0 implies β > 0, as 0
is an absorbing element. Now let us assume that there is a
solution 〈α′, β〉 with α′ > α. Since f is strictly increasing,
f(α′, β) > f(α, β) follows, which contradicts the premise that
f(α, β) was a maximum.

Corollary 1. If the maxima maxα,β∈[0,1]2 f(α, β) > 0, then
the maxima are also Pareto optimal in the following cases:

• if f is Product t-norm,
• if f is a strict t-norm (isomorphic to the Product), or
• if f is a strict weighted sum.

Note in particular that this not hold for the usual weighted
sum, where it would be possible to have one the parts
completely unsatisfied, but a positive aggregated value.

In the following, we propose to use Łukasiewicz fuzzy logic
as it is supported by fuzzyDL reasoner. However, it is worth to
note that Łukasiewicz t-norm is nilpotent and easily collapses
to zero when aggregating several values. Therefore, in practice,
it should be used when satisfaction degrees of the attributes
are high or when the number of attributes is low.

Proposition 2 can be easily generalized to n involved parts,
and to use two functions f1 (to combine the constraints of
each of the parts) and f2 (to combine the local satisfaction

degrees). For example, f1 can be Łukasiewicz t-norm and f2

can be the strict weighted sum.

Proposition 3. Let f1 : [0, 1]m → [0, 1] and
f2 : [0, 1]n → [0, 1] be strictly increasing aggregation
functions having 0 as an absorbing element. If the maxima
maxα,β∈[0,1]2 f2

(
f1(x11, x12, . . . , x1m), f1(x21, x22, . . . , x2m),

. . . , f1(xn1, xn2, . . . , xnm)
)
> 0, then the maxima are also

Pareto optimal.

IV. USE CASE: COMMERCIAL TRANSACTIONS

In this section we will discuss a possible use case, a smart
contract modeling a commercial transaction between a seller
(Main part) and a customer (Secondary part). To make things
concrete, we will assume that the customer wants to buy a car.

The common schema needs to include properties unitPrice,
speed, and deliveryTime. For each property there is a
functionality axiom and a range definition. The unit price is
represented in Ether (ETH).9

Both the seller and the buyer define their restrictions
on their local files. Then, a common fuzzy ontology O is
computed. A possible fuzzy ontology is shown in Figure 6,
using fuzzyDL syntax. On the one hand, the buyer can define
some restrictions regarding these three properties, represented
using fuzzy datatypes CustomerPrice, CustomerSpeed, and
CustomerDeliveryTime, respectively. On the other hand,
the seller has some flexible restrictions regarding price and
delivery time (represented using fuzzy datatypes SellerPrice,
and SellerDeliveryTime, respectively), but a hard restriction
regarding the speed (250 km/h).

Now, Examples 2 and 3 discuss two possible ways to
compute the best agreement on the terms of the smart contract.

9On January 1st 2020, 1 ETH = 114.86 e = 128.86 $ = £97.84 £, according
to http://ethereumprice.org
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Fig. 7. Partial agreements on (a) unit price, (b) speed, and (c) delivery time

Example 2. To get the best agreement between the seller
and the customer according to the fuzzy ontology depicted in
Figure 6, we can compute the best satisfiability degree of the
intersection of their respective concepts, i.e., bsd(O,Main u
Secondary). Using fuzzyDL and Łukasiewciz fuzzy logic, we
get the following solution and model:

• Best satisfiability degree: 0.48
• Model (excerpt):

– unitPrice(x) = 169
– speed(x) = 250
– deliveryTime(x) = 14

The intuitive idea is the following:
• A unit price 169 satisfies the buyer with degree 0.8, and

the seller with degree 1, as shown in Figure 7 (a).
• A speed 250 satisfies the buyer with degree 0.875, and

the seller with degree 1, as shown in Figure 7 (b).
• A delivery time 14 satisfies the buyer with degree 0.8,

and the seller with degree 1, as shown in Figure 7 (c).
This solution leads to the following satisfaction degrees:
• The customer is satisfied with degree 0.8⊗0.875⊗0.8 =

max{0.8 + 0.875 + 0.8− 2, 0} = 0.475
• The seller is fully satisfied, i.e., with degree 1⊗1⊗1 = 1.
• Thus, the global satisfaction is 0.475⊗ 1 = 0.475.

Example 3. The agreement in Example 2 might be seen as a
little bit unfair as one part is very satisfied and the other is
not. To solve it, we can use strict weighted sum to aggregate
the constraints of the customer and the seller. If we compute
bsd(O,@zero

[0.25,0.75](Main,Secondary)), we get the following
solution and model:

• Best satisfiability degree: 0.6134
• Model (excerpt):

– unitPrice(x) = 169
– speed(x) = 250
– deliveryTime(x) = 10

Now we can see that:
• A delivery time 10 satisfies the buyer with degree 1, and

the seller with degree 0.4286.
• The customer is satisfied with degree 0.8⊗ 0.875⊗ 1 =

0.675

• The seller is satisfied with degree 1⊗1⊗0.4286 = 0.4286.
• Thus, the global satisfaction is 0.75 · 0.675 + 0.25 ·

0.4286 = 0.6134.

V. RELATED WORK

Some authors have studied the use of logic-based languages
in smart contracts. For example, G. Governatori et al. compare
the use of imperative and declarative languages, including a
retractable logic (deontic defeasible logic) [21]. An inference
engine is also used to check the correctness of a program.
In their particular case, this means checking whether a smart
contract is correct in terms of legal validity. In contrast, we
consider another family of logic-based languages, based on
fuzzy logic and Semantic Web technologies.

H. E. Ugarte is one of the first authors to envision the
combination of Semantic Web technologies and blockchain
systems [22], using the term “semantic blockchain”. He also
envisioned three possible ways to semantify the blockchain:
mapping Blockchain data to RDF, sharing RDF data on the
Blockchain, and building semantic-ready Blockchains. Our
proposal combines features of the two first ways. The author
also mentioned BLONDiE ontology to describe the blochchain
structure, some technologies to link blockchains, and JSON-
LD to encode smart contracts. We instead propose use a logic-
based language supporting fuzzy ontology reasoning.

Regarding smart contracts, D. McAdams develops a non-
OWL ontology to describe smart contracts [23] based on
states and transitions. A. Third and J. Domingue create a
Linked Data index to query and retrieve data stored on the
blockchain in disparate locations, to link data to other sources
of information [24], and (with some limitations) to index smart
contracts. Instead, our approach is more general and supports
a fuzzy extension of OWL, and therefore partial agreements.

H. M. Kim et al. use an ontology to describe the structure
of smart contracts in the government domain [25]. They
also encoded some axioms of a non-OWL ontology (TOVE
Traceabiliy Ontology) into smart contracts that could enforce
traceability constraints [26]. Our approach is more general,
independent of the domain, and supports partial agreements.

O. Choudhury et al. propose a methodology to auto-generate
smart contracts from ontologies (defining the domain-specific
knowledge) and SWRL rules (defining the constraints) [27].
Instead, our smart contracts take into account the ontologies



at running time, as solving a fuzzy ontology reasoning task is
needed to check if there is a partial agreement.

M. Ruta el al. use Description Logics for the discovery and
composition of services and resources in a blockchain based on
the semantic distance between terms [28]. Instead, we propose
to use standard fuzzy semantic reasoning services to compute
a (possibly partial) agreement among the involved parts.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a novel procedure to
integrate fuzzy ontologies (based on fuzzy Description Logics)
in blockchain systems. This way, the users of the system
can represent flexible restrictions using fuzzy sets, and it is
possible to develop smart contracts where there is a partial
agreement among the involved parts. For example, this is
useful for commercial transactions where some parameters are
not strict but flexible, such as the price or the delivery time.

Another advantages of our approach are that, because the
involved parts use a formal language (fuzzy OWL 2 ontolo-
gies) to represent the knowledge of an application domain, it
is possible to avoid the ambiguity of natural languages, as well
as to infer implicit knowledge or check for inconsistencies.

To that end, we have proposed an architecture based on
a common ontology schema, a personal fuzzy ontology for
each of the involved parts, and a common ontology including
the agreed values of the smart contract. Our approach has
been implemented in the Ethereum network, using fuzzyDL
ontology reasoner to obtain the partial agreements, and IPFS
P2P network to store the common ontology.

To compute partial agreements, we formulate our problem
as a fuzzy ontology reasoning task: computing the best satisfia-
bility degree of a combination of fuzzy concepts representing
the constraints of each of the parts, extending previous ap-
proaches [19]. We consider more general functions, showing
that Product t-norm, strict weighted sum, or a combination of
both, lead to Pareto-optimal solutions. Some advantages are
that we can control too unfair agreements by weighting the
importance of the involved parts. We have also noticed that
all parts should include restrictions about the same properties,
to deal correctly with the Open World Assumption.

Future work might include an evaluation of the security and
a vulnerability analysis of the smart contracts, as suggested
in [17]. Hopefully, the use of logical languages can also help
to improve the security of blockchain systems.
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