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Abstract—This paper proposes new original solutions for the
use of interpretable flexible fuzzy systems for identity verification
based on an on-line signature. Such solutions must be scalable
because the verification of the identity of each user must be
carried out independently of one another. In addition, a large
number of system users limit the possibilities of iterative system
learning. An important issue is the ability to interpret the system
rules because it explains how the similarity of test signatures
to reference signature templates is assessed. In this paper, we
propose an approach that meets all of the above requirements
and works effectively for the on-line signatures’ database used
in the simulations.

Index Terms—flexible fuzzy system, interpretability, identity
verification, on-line signature, IT systems security

I. INTRODUCTION

On-line signature is a biometric attribute which is com-
monly used to verify the identity of an individual. It is acquired
by using a digital input device, e.g. a graphic tablet. This
kind of signature is described by signals which tend to change
over time and which contain characteristic information about
dynamics of the signing process, and can be very useful in
the verification phase. Moreover, this biometric attribute is
commonly accepted in the society, and hence it can be used
in many areas of life.

Unfortunately, identity verification using on-line signature
is a difficult process. This is due to the fact that the signatures
of an individual are characterized by relatively high intra-
class variance. Moreover, in the learning phase of the classifier
false signatures created by qualified forgers (so-called skilled
forgeries) are not available. We also cannot use genuine
signatures of other users as forgeries because they differ too
much from skilled forgeries and in this case, accuracy of the
classifier would be too low. In addition, a large number of
system users limits the possibilities of iterative learning. Due
to this, we propose the use of an interpretable fuzzy system for
on-line signature scalable verification. The proposed system is
a one-class classifier and does not require the use of forged
signatures in the learning phase.

This paper was financed under the program of the Minister of Science and
Higher Education under the name ’Regional Initiative of Excellence’ in the
years 2019-2022 project number 020/RID/2018/19 the amount of financing
12 000 000 PLN.

In the literature, we can find three main groups of methods
for the on-line signature verification - global, local and re-
gional ones [7], [9], [16]. In this paper we focus on the regional
approach based on descriptors created in regions (partitions)
of the signature. The descriptors are determined individually
for each user in the learning phase of the system and on that
basis a proper signature template is created. During the test
phase, descriptors created from the test signature are compared
to the template and identity verification is performed.

A. Motivation

The problem of the on-line signature verification is specific.
This is primarily due to the fact that each user must be
analyzed individually. Such analysis is performed in the so-
called learning phase but forged signatures are not available in
this phase. Due to the scalability of the approach, such analysis
also should not include signatures of other users because in this
case, the accuracy of the approach would be dependent on the
number of signatures in the database. For this reason, using a
properly designed fuzzy system to assess the similarity of on-
line signatures seems to be a very interesting idea. The system
is a non-linear one-class classifier. This means that in both
the learning and testing phases, it does not take into account
information about other users’ signatures. The use of these
signatures would definitely simplify the problem considered
in this paper and allow the use of known classification meth-
ods and learning algorithms of fuzzy systems (e.g. gradient
or population-based algorithms [6], [20], [24]). However, it
would definitely limit the practical use of the proposed method.
The assumptions adopted in this work are widely accepted in
biometric applications because they allow for easy expansion
of new users and new signatures in the biometric system
(they ensure scalability). Our previous experience with such a
system confirms this thesis (see e.g. [27]).

The solutions proposed in this paper have been developed
on the basis of our experience regarding: dynamic signature
verification (DSV), fuzzy systems (FSs) and their combina-
tions. First of all, in our previous works [27]–[29] we did
not choose the number of fuzzy rules in the system used for
identity verification for each user. This is important from the
point of view of the rule base interpretability, as it allows
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minimizing the number of rules and adjusting it individually
to the specifics of the individual signatures of each user.

Secondly, we used a modified defuzzification formula in the
fuzzy system for identity verification. This formula makes the
number of rules in the rule base independent of the number
of discretization points of the defuzzification formula. We
proposed and used such solutions in our previous works [5],
but we did not use them in the problem of identity verification.

B. Novel elements of the proposed approach

The elements of novelty described in this paper can be
summarized as follows:
• We propose the use of a fuzzy system for assessing

the similarity of test signatures to reference signatures
acquired in the learning phase. It is performed inde-
pendently for each user and scalable-independent of the
number of users. The fuzzy system does not require
learning, its rule base is selected taking into account the
criteria of interpretability. The novel element proposed in
this paper is the possibility of individual selection of the
number of fuzzy system rules for each user. This solution
has not been considered in our papers so far. At the same
time, it is important that the architecture and method of
determining the rule base of the system are consistent for
all users, which greatly facilitates the implementation of
the algorithm and the analysis of how the system works.

• We propose the use of a modified defuzzification formula
in the fuzzy system to assess the similarity of test
signatures to reference signatures. In this formula, the
number of discretization points of a fuzzy inference from
the rule base does not have to be equal to the number of
fuzzy rules, as in the case of e.g. the standard center of
area formula [23]. We used this approach in our previous
works on fuzzy systems and their interpretability [3],
[5], but it was not considered in relation to the specific
problem of identity verification.

• We propose a clear, detailed and corrected notation of
the identity verification algorithm based on the on-line
signature. One of the features of this algorithm is that it
divides each signature into P parts. Each part corresponds
to a different time moment of signing. For example, in
the case of P = 3, these parts correspond to the initial,
middle and final moment of signing. Evaluation of the
consistency of the signing process in these time moments
allows us to determine their weights of importance. These
weights are taken into account when comparing the shape
of the test signature to the reference signatures - those
parts of the test signature in which the user signs in
a more stable way (with similar dynamics) are more
important. Such notation has not been presented in our
previous works.

Summary of main characteristics of the algorithms for the
on-line signature verification based on the regional approach
is presented in Table I. These features are denoted as follows:
f1 - Does the method divide the signature into the parts
in order to increase the efficiency of signature verification

TABLE I
MAIN CHARACTERISTICS OF THE ALGORITHMS FOR THE ON-LINE
SIGNATURE VERIFICATION BASED ON THE REGIONAL APPROACH.

Characteristics of the method f1 f2 f3 f4 f5 f6 f7
Khan et al. [18] yes no yes no no no no
Ibrahim et al. [16] yes no yes no no no no
Fierrez et al. [10] yes no no no no no no
Huang and Hong [15] yes no yes yes no no no
Faúndez-Zanuy and Pascual-Gaspar [8] yes yes no no no no no
Pascual-Gaspar et al. [21] yes yes no no no no no
Cpałka and Zalasiński [4] yes no yes yes yes yes no
Zalasiński and Cpałka [27] yes no yes yes yes yes no

our method yes no yes yes yes yes yes
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Fig. 1. Adopted interpretation of parameters {pL, pR} of the Gaussian mem-
bership function (1).

accuracy? f2 - Does the method focus on fast performance?
f3 - Does the method evaluate the stability of the signature
in selected parts of the signature? f4 - Does the method take
into account the hierarchy of selected parts of the signature
in the classification process? f5 - Is the way of classification
interpretable? f6 - Does the method select the most important
parts of the signature and does it verify the test signatures on
their basis? f7 - Does the method select the number of fuzzy
rules of the system to assess the similarity of the signatures?

C. Structure of the paper

The paper consists of five sections. Section II contains
description of FSs for on-line signature verification. Section III
presents a detailed description of the proposed algorithm.
The simulations are described in Section IV. Finally, the
conclusions are drawn and presented in Section V.

II. DESCRIPTION OF THE FS
FOR ON-LINE SIGNATURES VERIFICATION

In this paper, we consider a Mamdani-type flexible fuzzy
system [2]. The information on the implementation of its
individual components is presented in Sections II-A - II-C.

A. Notation of fuzzy sets

Fuzzy sets of different types can be used in FSs. In this
paper, we focus on the Gaussian sets. In our previous works
we analyzed in detail interpretability criteria of fuzzy systems
with the Gaussian function [5], which are briefly summarized
in Section II-D.

A typical notation of the Gaussian function [23] does not
allow us, for example, to model the case in which the value
of the membership function above a certain limit value of a
linguistic variable should have a constant value equal to 1. In
this case, a different membership function can be used, e.g.
the sigmoid-type. However, in this case, the consistency of the



membership function type is not maintained and interpretation
can be more difficult [5], [12]. Therefore, in this paper, we
used a modified notation of the Gaussian function:

µA
(
x, xA, σA, pL, pR

)
=

max


sgn

(
−x+ xA

)
− (1− pL) ,

exp

(
−
(
x−xA
σA

)2
)
,

sgn
(
+x− xA

)
− (1− pR)

 ,
(1)

where
{
xA, σA

}
are the middle and width of the Gaussian

function, and {pL, pR} are the parameters indicating the way
of saturating the function (see Fig. 1).

B. Notation of fuzzy rules
The considered FS works on the basis of the nRules

fuzzy rules {rule1, rule2, . . . rulenRules}. Each rulem has
the following form:

rule(m) :

IF

(
xp=1 is Ap=1,m

with wp=1

)
AND(

xp=2 is Ap=2,m

with wp=2

)
AND . . .(

xp=P is Ap=P,m
with wp=P

)
THEN (y is Bm)


,

(2)

where x1, x2, . . . xP are the inputs of the system, y is the
output of the system,

{
Ap=1,m, Ap=2,m, . . . , Ap=P,m

}
are the

input fuzzy sets of rule m, Bm is the output fuzzy set of rule
m,
{
wp=1, wp=2, . . . , wp=P

}
are the weights of input fuzzy

sets (wAp ∈ 〈0, 1〉). Please note that in the standard notation
of fuzzy rules, parameters wAi,k are not available. Their use
increases the flexibility of rules notation and introduces the
hierarchy of importance of input fuzzy sets. In our previous pa-
pers each input fuzzy set has its own weight of importance [4].
In this paper weights are common within the sets associated
with the same inputs.

C. Notation of the fuzzy system
In our previous papers we presented different varieties of

FSs and ways of deriving dependencies describing their output
signals [4], [28], [29]. Since for the system proposed in this
paper it is performed analogously, we decided not to present
these derivations.

In the case of using the singleton type fuzzification and
center of area method for defuzzification [23], the output
signal ȳ (in the paper we use one output) of the FS working
on the basis of rules (2) has the following form:

ȳ =

R∑
r=1

ȳdef
r ·

nRules
S

m=1

T


τm (x̄) ,

µBm

(
ȳdef
r , xBm, σB,
pLm, pRm

) 


R∑
r=1

nRules
S

m=1

T


τm (x̄) ,

µBm

(
ȳdef
r , xBm, σB,
pLm, pRm

) 


,
(3)

where τm (x̄) is the activation level of rule rulem determined
as follows:

τm (x̄) =
P

T ∗
p=1

(
µAp,m

(
xp, xAp,m, σAp,
pLm, pRm

)
;wp

)
. (4)

In formulas (3) and (4) the following notation is used:
x̄1, x̄2, . . . x̄n are the signals given to the inputs of the
system, {µAp,m

(·) , µBm
(·)} are the membership functions

of the fuzzy sets (parameter σB is common to all rules),
R is the number of discretization points of the FS in the
defuzzification formula using the center of area method, ȳdef

r

(r = 1, 2, . . . R) are the points in which discretization of the
fuzzy set being inference from the rule base is performed, T (·)
is the t-norm [22] being the inference operator, T ∗ (·) is the
t-norm with weights of arguments [22] being the aggregation
operator of rules’ predecessors (2), S (·) is the t-conorm being
the aggregation operator of fuzzy inferences from rules (2).
Operator T ∗ (·) with weights of arguments which we proposed
in paper [22] in order to take into account importance of
predecessors in the rule base. These operators were also
used for reduction of the rule base [23]. The relationship
between the triangular norms and their variants with weights
of arguments is as follows:

T ∗ (a; w) =
n

T
i=1

(S (ai, 1−wi))

S∗ (a; w) =
n

S
i=1

(T (ai, wi)) ,
(5)

where ai ∈ 〈0, 1〉 (i = 1, 2, . . . n) are the arguments of
operators of form (5), and wi ∈ 〈0, 1〉 are the weights of the
arguments. It is easy to notice that when in dependencies (5),
for example, triangular norms of the algebraic type are used,
they take the following form:

T ∗ {a; w} =
n∏
i=1

(1 + (ai − 1) · wi)

S∗ {a; w} = 1−
n∏
i=1

(1− ai · wi).
(6)

The operators of form (5) meet the following conditions,
which result from the boundary conditions for triangular
norms: 

T ∗ (a1, a2; 1, 1) = T (a1, a2)
T ∗ (a1, 0;w1, w2) = S (a1, 1−w1)
S∗ (a1, a2; 1, 1) = S (a1, a2)
S∗ (a1, 0;w1, w2) = T (a1, w1) .

(7)

More details about the operators of form (5) and their uses in
FSs can be found in our earlier papers [4], [22]. The method of
determining parameters of the FS (3) for the on-line signature
scalable verification problem is described in Section III.

D. Interpretability of fuzzy system

Interpretability is a feature that makes it easier to understand
the rule base (2) and how the FS (3) works. It can be ensured
by taking into account the assumptions about the FS already at



TABLE II
SAMPLE CRITERIA FOR ASSESSING THE INTERPRETABILITY OF

SYSTEM (3) WITH THE GAUSSIAN FUZZY SETS (1).

No. Description
1 The criterion for assessing the complexity of the system takes into

account the total number of fuzzy sets, fuzzy rules and discretization
points relative to the maximum value. It assumes that a less complex
system is easier to interpret.

2 The criterion for assessing the location of neighboring fuzzy sets
takes into account intersection points of adjacent sets. It assumes that
they should intersect at points x, for which µ(x) = 0.5. This condition
can be easily met by appropriate determination of value σ. For two
adjacent Gaussian functions with the centers at points x1 and x2, this
can be done by solving equation µ (0.5 · (x1 + x2) , x1, σ) = 0.5.
Then, σ = (x2 − x1) /

(
2 ·
√

log (2)
)

.
3 The criterion for assessing the coverage of input data by input

sets determines for each set from the learning sequence the sum of its
memberships to the input fuzzy sets. It assumes that the determined
sum should be equal to 1.

4 The criterion for assessing the activation of fuzzy rules determines
the activation level of each from nRules rules for each set in the
learning sequence. It assumes that only one from τm (·) (m =
1, 2, . . . nRules) should be close to 1, while the others should be
close to 0. The rules that meet this condition are easier to analyze.

5 The criterion for assessing the shape consistency of fuzzy sets of
form (1).

the stage of its construction (learning). In this paper we would
like to: (a) ensure the readability of the rule base (fuzzy sets
and rules) of system (3), (b) ensure consistency of system (3)
components (e.g. unification: the shape of fuzzy sets, etc.), and
(c) minimize the structure of system (3) without compromising
its performance. In our previous papers [3], [19], [25] we used
dedicated criteria to assess the interpretability of system (3).
They are used for subjective evaluation of the readability of
various system (3) components. For example, if they return
a value from the range 〈0, 1〉, then it can be interpreted
as follows: 0 means the most favorable value, and 1 - the
most unfavorable value. However, the more important goal
of the criteria is their use in the design process (selection
of structure and parameters) of the fuzzy system (3). The
considered criteria are presented in Table II and their detailed
implementation can be found e.g. in [5]. We take into account
the criteria mentioned in Table II in the application of the
interpretable fuzzy system to the problem of scalable on-line
signature verification.

III. DETAILED DESCRIPTION OF THE ALGORITHM

The on-line signature partitioning algorithm proposed in this
paper uses the notation described in Appendix A. It works in
two modes: the learning phase (Section III-A) and the test
phase (Section III-B). Algorithms, described in Sections III-A
and III-B are presented in Appendix. General idea of the
algorithm is shown in Fig. 2.

A. Learning phase

At the beginning of the learning phase user i creates J
reference signatures (Alg. 1, line 1) and a parameter describing
the tolerance of the verification process is determined (Alg. 1,
line 2). Introduction of parameter δi allows the algorithm,

preprocessing

creation of
partitions

creation of
the template

algorithm for the on-line signature

scalable verification

creation of
descriptors

test
signature

creation of
descriptors

test
signature

verification

creation of
the classifier

reference
signatures

selection of
the number

of fuzzy rules

Fig. 2. General schema of the algorithm for the on-line signature scalable
verification.

among others, to adjust the way of its operation to specific
fields of its application and to take into account the trend of
changes in the signature of each user occurring over time [27].

Next, the base signature with index jBase is selected
from all reference signatures (Alg. 1, line 3). It is one of
the reference signatures created in the acquisition phase,
whose distance from the remaining reference signatures is
the smallest according to the adopted distance measure (e.g
Euclidean). The remaining reference signatures, in the training
phase, (Alg. 1, line 4) and the test signatures, in the test
phase, (Alg. 5, line 3) are adjusted to the base signature in the
standard normalization procedure [11]. It uses, among others,
the Dynamic Time Warping algorithm [1].

After the normalization performed in the training phase,
normalized trajectories of the base signature are stored in the
database. They are used to normalize the test signatures in the
test phase (Alg. 1, line 5).

Next, partitioning of the base signature jBase for a fixed
number of vertical sections equal for all the users P ∈ [1, 3]
is performed (Alg. 1, line 6 and Alg. 2). The maximum value
of P has been limited because its increase causes excessive
decomposition of the signatures and reduces the ability to
interpret partitions.

In the partitioning procedure, determination of the vertical
sections is performed (Alg. 2, lines 1-6). Variable pvi stores
indexes of assignment of points included in the base signature
(the number of points is Ki) to the respective vertical sections.
In turn, variable kvi stores the number of points in each
vertical section. Partitions are selected taking into account
the base signature, which is the most representative of the
reference signatures. Other reference signatures use it later in
the learning phase.

After partitioning, in algorithm Alg. 1 determination of the
shape templates for J reference signatures and parameters of



the fuzzy classifier for the evaluation of the similarity of the
reference and test signatures is performed (Alg. 1, line 7 and
Alg. 4). In the first part of this procedure, the templates of
the reference signatures’ shapes are determined (Alg. 4, line
6). They are created independently for each signal describing
the dynamics of signing (v and z) and each shape trajectory
(x and y).

After the determination of the templates, they are compared
to the reference signatures. On this basis, Euclidean distances
between them are calculated (Alg. 4, lines 8 and 13). Values
of these distances are important in assessing user i’s way
of signing. For the reference signatures that are similar (as
they should be), the distance values are close to zero. Then,
the tolerance for evaluating the test signatures of the users
claiming to be i is small. If the reference signatures are less
similar, then the tolerance of evaluating the test signatures of
the users claiming to be user i must be higher, although this is
unfavorable from the point of view of the verification process
effectiveness.

The determined distances, which are a measure of the
heterogeneity of the reference signatures, are the basis for
determining the parameters of system (3) for assessing the sim-
ilarity of the test signatures to the reference signatures. They
are determined individually for each user. These parameters
are the boundaries of inclusion of the reference signatures in
partitions (Alg. 4, line 15), weights of importance of partitions
(Alg. 4, line 17), parameters of fuzzy sets (Alg. 4, lines: 19,
21, 28, 30), additional parameters of the shapes of fuzzy sets
(Alg. 4, lines: 26 and 27; see Fig. 1), and discretization points
of system (3) (Alg. 4, lines: 31-33). The number of points R
increases the precision of defuzzification by the center of area
method and is an algorithm parameter (common for all users).

In order to determine the values of weights, it is necessary
to determine the standard deviation for the borders of inclusion
of the reference signatures in partitions (Alg. 4, line 16).
The value of the weight of importance should be directly
proportional to the value of the similarity of the reference
signatures shape in the partition. Therefore, small weight
values relate to the partitions associated with the signature
fragments clearly differing from each other within reference
signatures.

After the determination of the system parameters for as-
sessing the similarity of the test signatures to the reference
signatures, the parameters are saved to the database for use in
the test phase (Alg. 4, line 34).

The last step in the learning phase is the selection of the
number of fuzzy rules of system (3) for user i (Alg. 1,
line 8) and storing it in the database (Alg. 1, line 9). The
procedure for selecting the number of rules is performed in
Algorithm 3. At the beginning of this algorithm, the number of
rules changes within the allowable range (Alg. 3, line 1). For
the number of rules indicated by m, all reference signatures,
treated as the test signatures, are used sequentially as input
values of the fuzzy system (Alg. 3, line 3). At the same time,
system (3) responses are summed (Alg. 3, line 7) and average
sum SumTmp is determined (Alg. 3, line 9). The goal of

the system is the fuzzy determination of the similarity of the
signatures, therefore the number of rules is chosen for which
average sum SumTmp has the lowest value (Alg. 3, lines
10-18).

B. Test phase

At the beginning of the test phase, the test signature of
the user and information about his/her potential identity are
acquired (Alg. 5, line 1). The selected user will be further
marked with index i. Next, the reference signatures’ parame-
ters of user i are read from the database (Alg. 5, line 2).

Later in the verification phase, the shape and length of
the test signature are normalized taking into account the base
signature of the user i (Alg. 5, line 3). This is implemented in
the same way as in the learning phase. After this step, the test
signature is represented by a set of normalized trajectories:
xtst

{v}
i , ytst

{v}
i , xtst

{z}
i , and ytst

{z}
i .

After the normalization, distances dtst{s,a}i,p between nor-
malized trajectories of the test signature and templates of the
reference signature of user i are determined (Alg. 5, lines
4-14). In practice the distances are used as input values of
system (3) in order to assess the similarity of the test signature
to the reference signatures. Therefore, the notation of fuzzy
rules (2) has the following form:

rulem :

IF

(
dtst

{s=v,a=x}
i,p=1 is A

{s=v,a=x}
i,p=1,m

with w
{s=v,a=x}
i,p=1

)
AND(

dtst
{s=v,a=x}
i,p=2 is A

{s=v,a=x}
i,p=2,m

with w
{s=v,a=x}
i,p=2

)
AND . . .(

dtst
{s=z,a=y}
i,p=P is A

{s=z,a=y}
i,p=P,m=nRules

with w
{s=z,a=y}
i,p=P

)
THEN (yi is Bm)


.

(8)

Notation (8) also takes into account the parameters deter-
mined in Algorithm 4. Formula (3) can be written in the same
way.

During the signatures verification (Alg. 5, line 16) coeffi-
cient cth ∈ [0, 1] is used. Its value is common for all users of a
biometric system and it is usually close to 0.5 (this value was
adopted in the simulations). The use of this coefficient allows
us to eliminate disproportions between the FAR and FRR
coefficients (see e.g. [26]) and to adapt the system operation
to the expectations arising from the area of its application.

IV. SIMULATIONS

In this section we present the results of the simulations
performed using the authorial test environment implemented
in C# programming language. In the simulations we used
commercial DS2 Signature database distributed by the BioSe-
cure Association [13]. It contains signatures of 210 users. The
signatures were acquired in two sessions using a digitizing
tablet. Each session contains 15 genuine signatures and 10
skilled forgeries per person.



A. The course of the simulations

In the simulations the following assumptions were adopted:
(a) During the training phase 5 genuine signatures of each
signer from session number one were used. During the test
phase 10 genuine signatures and 10 forged signatures of
each signer from session number two were used. (b) Number
of partitions P = [2, 3, 4]. (c) Maximum number of rules
nRulesMax = 4. (d) The test was carried out five times
for all signers, taking into account different number of par-
titions, with the use of randomly chosen training and test
signatures. (e) The simulation results were evaluated using
FAR (False Acceptance Rate), FRR (False Rejection Rate),
and EER (Equal Error Rate), which are commonly known in
biometrics [17].

B. Simulation results

We implemented and performed the simulations in accor-
dance with the assumptions presented in IV-A. In Table III
we present the results obtained by the method proposed in
this paper in comparison to the methods of other authors and
our previous methods for the dynamic signature verification
based on the regional approach (in this table the results of
our method were obtained for P = 2). Moreover, we present
information about the obtained classification results for each
variant of the number of partitions (see Table IV) and the
percentage value of the number of users for which a given
number of fuzzy rules was selected (see Table V).

TABLE III
COMPARISON OF THE ACCURACY OF DIFFERENT METHODS

FOR THE SIGNATURE VERIFICATION FOR THE BIOSECURE DATABASE. THE
BEST RESULT IS PRESENTED IN BOLD.

Method FAR FRR EER
Methods of other authors [14] - - 3.48-30.13%

Cpałka et al. [4] 3.36% 3.30% 3.33%
Zalasiński, Cpałka [27] 2.77% 3.50% 3.14%

Our method 2.16% 2.50% 2.33%

TABLE IV
COMPARISON OF THE ACCURACY OF OUR METHOD FOR A DIFFERENT

NUMBER OF PARTITIONS P . THE BEST RESULT IS GIVEN IN BOLD.

Number of partitions P FAR FRR EER
2 2.16% 2.50% 2.33%
3 3.03% 3.27% 3.15%
4 4.13% 4.67% 4.40%

TABLE V
PERCENTAGE VALUE OF THE NUMBER OF USERS FOR WHICH A GIVEN

NUMBER OF FUZZY RULES nRules WAS SELECTED. THE BEST RESULT IN
TERMS OF INTERPRETABILITY IS GIVEN IN BOLD.

Number of fuzzy rules nRules Percentage number of users
2 72.86%
3 24.76%
4 2.38%

The proposed algorithm can be evaluated as follows:

• It received the highest accuracy when the signature was
divided into 2 partitions, associated with the initial and
final moments of signing (see Table IV). Moreover, we
can see that increasing the number of partitions does not
result in increasing of the method accuracy.

• It received the highest accuracy in comparison to the
methods of other authors and our previous methods based
on signature partitioning (see Table III). In this case, the
key role was played by the mechanism for selecting the
number of fuzzy rules, which has not been implemented
previously.

• It most often selects 2 fuzzy rules for the flexible neuro-
fuzzy one-class classifier (see Table V); however, for
some users a different number of rules is selected. It can
mean that some users are characterized by a special way
of signing, which can be better analyzed when taking
into account a larger number of fuzzy rules. Moreover,
increasing the number of rules should not increase the
accuracy of the verification because 4 rules were selected
only for 2.38% of the users in the database. A small num-
ber of the selected rules also simplifies interpretability of
the system.

C. Weaknesses of the proposed approach

The weaknesses of the proposed algorithm are: a) its sen-
sitivity to changes of a handwritten signature occurring over
a very long period (this is a characteristic of most biometric
methods based on the behavioural attributesits), b) dependence
of its accuracy on the number of genuine signatures available
at the stage of the learning phase, c) greater number of pa-
rameters stored in the database in comparison to our previous
methods based on signature partitioning.

V. CONCLUSIONS

In this paper we have proposed an interpretable flexible
fuzzy system for on-line signature scalable verification. The
scalability of our solution makes the verification process for
each user independent from one another. The proposed system
is a type of a one-class classifier, so the use of forged
signatures is not necessary in the learning phase of the system.
The use of a novel mechanism for selection of the number of
the fuzzy rules increases the accuracy of the proposed classifier
in comparison to other methods presented in the literature.

Our future plan includes implementation of this mechanism
in the classifier determined on the basis of the predicted values
of signature descriptors.

APPENDIX

A. Adopted notation

The algorithm proposed in this paper is divided into four
parts: Alg. 1 - Alg. 5. The following variables are used in its
notation:
• xi,j=jBase = [xi,j=jBase,1, . . . , xi,j=jBase,Ki

] and
yi,j=jBase = [yi,j=jBase,1, . . . , yi,j=jBase,Ki ] - normal-
ized trajectories describing the shape of the reference base
signature of user i; j is an index of the signature, jBase



is an index of the base signature, Ki is the number of
the base signature discretization points.

• vi,j=jBase = [vi,j=jBase,1, . . . , vi,j=jBase,Ki ] and
zi,j=jBase = [zi,j=jBase,1, . . . , zi,j=jBase,Ki

] - normal-
ized signals describing the dynamics of the reference base
signature of user i (pen velocity v and pen pressure z).

• X
{v}
i = [x

{v}
i,1 , . . . ,x

{v}
i,J ] (x{v}i,j = [x

{v}
i,j,1, . . . , x

{v}
i,j,Ki

]),
Y
{v}
i = [y

{v}
i,1 , . . . ,y

{v}
i,J ] (y{v}i,j = [y

{v}
i,j,1, . . . , y

{v}
i,j,Ki

]),
X
{z}
i , and Y

{z}
i - trajectories describing shape of the

reference signatures of user i normalized on the basis
of his/her base signature jBase (signals xi,j=jBase,
yi,j=jBase, vi,j=jBase, and zi,j=jBase).

• xtst
{v}
i = [xtst

{v}
i,1 , . . . , xtst

{v}
i,Ki

], ytst
{v}
i =

[ytst
{v}
i,1 , . . . , ytst

{v}
i,Ki

], xtst
{z}
i , and ytst

{z}
i -

trajectories describing the shape of the test signature of
the user claiming to be user i normalized on the basis
of base signature jBase of user i (signals xi,j=jBase,
yi,j=jBase, vi,j=jBase, and zi,j=jBase).

• pvi = [pvi,1, . . . , pvi,Ki
] - indicators of the shape trajec-

tory membership to vertical sections.
• kvi = [kvi,1, . . . , kvi,P ] - the number of points in the

vertical sections; P is the number of vertical sections.
• tc

{s,a}
i = [tc

{s,a}
i,1 , . . . , tc

{s,a}
i,Ki

] - shape templates of the
reference signatures determined for normalized shape
trajectories a ∈ {x, y}, where x is a horizontal shape
trajectory and y is a vertical shape trajectory.

• d
{s,a}
i,j = [d

{s,a}
i,j,1 , . . . , d

{s,a}
i,j,P ] - descriptors of reference

signature j of user i.
• sd

{s,a}
i = [sd

{s,a}
i,1 , . . . , sd

{s,a}
i,P ] - values of the standard

deviation of the descriptors of the reference signatures of
user i.

• w
{s,a}
i = [w

{s,a}
i,1 , . . . , w

{s,a}
i,P ] - weights of partitions.

• dmax
{s,a}
i = [dmax

{s,a}
i,1 , . . . , dmax

{s,a}
i,P ] - boundaries

of inclusion of the reference signatures in partitions.
• XA

{s,a}
i,p = [xA

{s,a}
i,1 , . . . ,xA

{s,a}
i,P ] (xA

{s,a}
i,p =

[xA
{s,a}
i,p,1 , . . . , xA

{s,a}
i,p,nRulesi ]) - parameters of the centers

of the input Gaussian fuzzy sets of the system to assess
the similarity of the signature of the user claiming to be
user i to the reference signatures of user i.

• σA
{s,a}
i = [σA

{s,a}
i,1 , . . . , σA

{s,a}
i,P ] - parameters of the

widths of the input Gaussian fuzzy sets of the system to
assess the similarity of the signature of the user claiming
to be user i to the reference signatures of user i.

• xB = [xB1, . . . , xBnRulesi ] - parameters of the centers
of the output Gaussian fuzzy sets.

• σB-parameters of the widths of the output Gaussian fuzzy
sets.

• pL = [pL1, . . . , pLnRulesi ] and pR =
[pR1, . . . , pRnRulesi ] - parameters indicating the
way of saturating the Gaussian function (Fig. 1)

B. Algorithms used in the learning phase

Algorithm 1 Learning phase for user i
1: get J ≥ 1 reference signatures
2: get parameter δi > 0 describing the tolerance of the veri-

fication process
3: determine the base signature (determine jBase ∈ [1, J ])

represented by reference trajectories vi,j=jBase and
zi,j=jBase

4: normalize the shape and length J of the reference sig-
natures of user i on the basis of his/her base signature
jBase (trajectories xi,j=jBase, yi,j=jBase, vi,j=jBase,
and zi,j=jBase) - determine X

{v}
i , Y

{v}
i , X

{z}
i , and Y

{z}
i

5: store the reference trajectories of base signature jBase:
xi,j=jBase, yi,j=jBase, vi,j=jBase, and zi,j=jBase

6: perform partitioning of base signature jBase for P ver-
tical sections (Algorithm 2)

7: determine the shape templates for reference signatures J
and parameters of the fuzzy classifier for evaluating the
similarity of the signatures (Algorithm 4)

8: select the number of rules nRulesi ∈
{2, 3, . . . , nRulesMax} of system (3) for user i
(Algorithm 3)

9: save the number of rules nRulesi of system (3) for user i

Algorithm 2 Partitioning of base signature jBase for vertical
sections P for user i

1: kvi := 0
2: for k := 1 to Ki do

3: pvi,k :=


1 for 0 < k ≤ int

(
Ki

P

)
2 for int

(
Ki

P

)
< k ≤ int

(
2·Ki

P

)
...

P for int
(

(P−1)·Ki

P

)
< k ≤ Ki

4: kvi,p=pvi,k+ = 1
5: end for k
6: store in the database: pvi, kvi



Algorithm 3 Selection of the number of rules nRulesi ∈
{2, 3, . . . , nRulesMax} for system (3) for user i

1: for m := 2 to nRulesMax do . selection of nRulesi
2: SumTmp := 0
3: for j := 1 to J do
4: xtst

{v}
i := x

{v}
i,j ; ytst

{v}
i := y

{v}
i,j

5: xtst
{z}
i := x

{z}
i,j ; ytst

{z}
i := y

{z}
i,j

6: determine ȳi of fuzzy system (3) (Algorithm 5)
7: SumTmp+ = ȳi . eq. (3)
8: end for j
9: SumTmp := 1

J · SumTmp
10: if m == 2 then
11: SumTmpMax := SumTmp
12: nRulesi := m
13: else
14: if SumTmp > SumTmpMax then
15: SumTmpMax := SumTmp
16: nRulesi := m
17: end if
18: end if
19: end for m

Algorithm 4 Determination of the templates of the reference
signatures’ shape and parameters of fuzzy classifier (3) used
for evaluating similarity of the signatures for user i

1: for each a in {x, y} do
2: for each s in {v, z} do
3: tc

{s,a}
i := 0

4: d
{s,a}
i,j := 0; sd

{s,a}
i := 0; dmax

{s,a}
i := 0

5: for k := 1 to Ki do

6: tc
{s,a}
i,k := 1

J ·
J∑

j:=1

a
{s}
i,j,k

7: for j := 1 to J do
8: d

{s,a}
i,j,p=pvi,k

+ =
(
a
{s}
i,j,k − tc

{s,a}
i,k

)2

9: end for j
10: end for k
11: for p := 1 to P do
12: for j := 1 to J do
13: d

{s,a}
i,j,p :=

√
d
{s,a}
i,j,p ;

14: end for j
15: dmax

{s,a}
i,p := δi · max

j:=1,...,J

{
d
{s,a}
i,j,p

}

16: sd
{s,a}
i,p + =

J∑
j:=1

√√√√( 1
J ·

J∑
j:=1

d
{s,a}
i,j,p −d

{s,a}
i,j,p

)2

√
J

17: w
{s,a}
i,p := 1−

sd
{s,a}
i,p · 1J ·

J∑
j:=1

d
{s,a}
i,j,p

max
p2:=1,2,...,P

{
sd

{s,a}
i,p2 ·

1
J ·

J∑
j:=1

d
{s,a}
i,j,p

}
18: for m := 1 to nRulesi do
19: xA

{s,a}
i,p,m :=

(m−1)·dmax{s,a}
i,p

nRulesi−1
20: end for m
21: σA

{s,a}
i,p :=

xA
{s,a}
i,p,2 −xA

{s,a}
i,p,1

2·
√

log( 1
0.5 )

22: end for p
23: end for s
24: end for a
25: for m := 1 to nRulesi do
26: pLm :=

{
1 for m == 1
0 otherwise

27: pRm :=

{
1 for m == nRulesi
0 otherwise

28: xBm := m−1
nRulesi−1

29: end for m
30: σB :=

xB2−xB1

2·
√

log( 1
0.5 )

31: for r := 1 to R do . discretization points of system (3)
32: ȳdef

r := r−1
R−1

33: end for r
34: store in the database: tc

{s,a}
i , w

{s,a}
i , XA

{s,a}
i,p , σA

{s,a}
i ,

xB, σB, pL, and pR



C. Algorithms used in the test phase

Algorithm 5 Verification phase of the signature of the user
claiming to be user i for selected partitions of the reference
signatures of user i

1: get a test signature and index of user i
2: load from the database: tc

{s,a}
i , w

{s,a}
i , XA

{s,a}
i,p ,

σA
{s,a}
i , xB, σB, pL, and pR

3: normalize the shape and length of the test signature on the
basis of base signature jBase of user i-use ai,j=jBase,
si,j=jBase and determine atst

{s}
i

4: for each a in {x, y} do
5: for each s in {v, z} do
6: dtst

{s,a}
i := 0

7: for k := 1 to Ki do
8: dtst

{s,a}
i,p=pvi,k

+ =
(
atst

{s}
i,k − tc

{s,a}
i,k

)2

9: end for k
10: for p := 1 to P do
11: dtst

{s,a}
i,p :=

√
dtst

{s,a}
i,p

12: end for p
13: end for s
14: end for a
15: determine output signal ȳi of system (3) for the test

signature
16: if ȳi > cth then
17: the test signature was created by user i (it is genuine)
18: else
19: the test signature was not created by user i
20: end if
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