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Abstract—In this study, we propose an approach based on
the advanced fuzzy techniques such as Fuzzy C-Means and
Fuzzy Cognitive Maps to cluster the birds species, based on
the information of first arrival date, into more coherent and
uniform groups. The birds are very suitable subject for modelling
the climate changes. Very popular indicator to forecast bird
migration dynamic is the first arrival date. In many reported
studies, this indicator is shown as very useful. However, there
is still a lack of precise methods grouping the birds into the
classes in satisfying manner producing detailed information
about species and the relations between them. As evidenced in
the experimental series section, the proposed approach enables
the researchers and practitioners working with that important
area of ecology to observe subtle dependencies between various
bird species. Moreover, this work sheds the light on the novel
application of both Fuzzy C-Means and Fuzzy Cognitive Maps
as the efficient tools to analyse the ecological data collected in
changing climatic environment.

Index Terms—fuzzy clustering, bird migration, arrival date,
forecasting

I. INTRODUCTION

Studies considering phenological changes in response to
climate change are numerous and concern of many groups
of biota [1]. One of the most-used scientific research models
in the context of climate changes are birds. It is assumed
that climate change will affect the shape and dynamics of
periodic processes of bird populations, such as migration and
breeding. One of the most popular indicators used to study bird
migration is first arrival date (FAD) to the breeding areas [2]-
[4]. Many previous comparative studies from various regions
of the world, including Europe, indicate that FAD has changed
significantly in recent decades, but the rate and significance of
these changes is generally higher in short distance migrants
than in long distance ones [2], [4]-[6]. As a result, pheno-
logical changes of FAD could cause mismatching in food
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chains, thus inducing important perturbations in ecosystem
functioning, for example, by breaking the relationship between
parasitic birds and their avian hosts, particularly in relation to
short distance migrants [7], [8].

II. DESCRIPTION OF THE PERIODS OF BIRD MIGRATION

Despite many studies showing the usefulness of FAD in
recording the consequences of climate change, there are also
critical papers showing that first appearance dates behave
as a very inaccurate and biased estimator regarding any
phenological data set [7]. For example, a frequently raised
argument is that population size could impact on the detection
of bird arrival time as there is a higher probability of observing
earlier arrival when the population size is greater and the
song activity of birds is increased, as occurs with a larger
population [9]. Therefore, new statistical tools are constantly
being sought to reduce the limitations of the methods used to
collect data and the indicators calculated on their basis. The
use of fuzzy numbers can be one such solution. Therefore,
the aim of the work was the introduction of fuzzy classes
dividing bird species into smaller, more uniform and coherent
groups. Thanks to this division, it will be possible to use close
relationships between species within individual classes and to
develop models forecasting arrival dates of birds based on data
from representatives of each class.

III. Fuzzy C-MEANS (FCMEANS) CLUSTERING

In this section, we recall a well-known classic method of
data clustering as proposed by [10] settled in the nomen-
clature of a spatio-temporal time series. Let us assume that
the data is a set of the form xq,zo,...,x,, where x; =
Ti1, Ti2, - Tim,t = 1,2,...,n,m > 1. Here, the elements
of the vector x; can be identified as the changing values in



the discrete time intervals marked by m. This kind of data
can obviously be an input to the FCM algorithm. Its goal is
to find c clusters, also called information granules, namely
v1,V2,...,0. and a fuzzy partition matrix U = [up,],p =
1,2,...,¢,q = 1,2,...,n, with values in-between 0 and 1.
Moreover, Y i, ujq = 1 for each ¢ and 0 < D", up; < n
for each p. The matrix U elements u,,, are obtained as a result
of the following optimization task: to minimize the following

function sum
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with an arbitrary M > 1 sought as a fuzzification coefficient.
In most of the applications it is assumed M = 2, d is a distance
measure, usually a Euclidean one because of the easiness of
the next calculations. The result of the FCMeans is described
as the following two formulas:
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for the participation matrix entities. These two formulas are
used in a series of iteration to get the optimized result. The
algorithm is stopped after a certain number of iterations or if
the distance between two successive partition matrices is small
enough.

In our case, x;s are the vectors containing the series of bird
incoming times each of the m years. Therefore, the clustering
is seen as the initial division onto the group of birds in relation
to the time of migration.
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IV. Fuzzy COGNITIVE MAPS

Fuzzy cognitive maps (FCM) are a very effective tool for
modelling complex structures and data. In general, a fuzzy
cognitive map [11], [12] is a directed graph in which nodes
are factors such as (for example): operating principles, events,
and branches reflect causal relationships. In FCM there is
interconnection between each two concepts C; and C;. Two
concepts are connected with the directed edge w;;, which
indicates the strength of relationships between concepts. There
are three possible cases for the weight value:

e w;; > 0 indicates a positive causality between two
concepts, and means that an increase or decrease in the
value of concept C; and leads to the increase or decrease
of the value of concept C},

e w;; < 0 indicates a negative causality between concept
two concepts, meaning that an increase in the value of
concept C; leads to a decrease of the value of concept
C; or a decrease of one value causes an increase in the
other,

e w;; = 0 indicates no relationship between concepts.

Each concept in a fuzzy cognitive map has the value A;
which express a concept strength. Each subsequent value of the
causal state is calculated by Kosko [11] using previous state
and weight matrix. The relationship is given by the formula:
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The value of the particular concept strength is calculated
during each step of simulation taking into consideration the
influence of other concepts in weight matrix.

In this formula f is the threshold function which can be:
bivalent, trivalent, sigmoid and hyperbolic tangent [13]. In our
case the threshold function was sigmoid and expressed below:
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Parameter A in our case was set to 1.
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V. Fuzzy RULE CLASSIFIER

Fuzzy classifiers are a very broad class of algorithms that
share a common denominator: we call the fuzzy classifier
”Any classifier that uses fuzzy sets or fuzzy logic in the course
of its training or operation” [14].

The simplest fuzzy rule-based classifier is a fuzzy if-then
system, analogous to that used in fuzzy control. The fuzzy
classifier can be specified using a sequence of rules. Consider
the example in which the coordinates of points (z,y) € R? in
two-dimensional space will be classified. In this case, we can
specify sample rules

IF x is small AND y is medium THEN class number 1

IF x is small AND Yy is large THEN class number 2

IF x is medium AND vy is small THEN class number 3

IF x is medium AND Yy is large THEN class number 4

The x,y coordinates are numeric here, but the classification
rules use linguistic descriptors. It should be noted that if we
allow the use of N descriptors and the number of features
(coordinates) of the point is k, then using a logical conjunction
and N* different results can be obtained.

If the fuzzy classifier includes all such rules, then it turns
into a simple lookup table. However, unlike lookup tables,
fuzzy classifiers can provide results for combinations of lan-
guage values that are not included as one of the rules. Each
language value is represented by a membership function Fig. 1.
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Fig. 1. Examples of membership functions for the descriptors considered.



Consequently, the classification rules described above can
be expressed in the notation of membership function
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Superscripts are necessary because the range of individual
descriptors for each coordinate may be different. The AN D
operation is typically implemented as minimum but any other
t-norm may be used. The rule “votes” for the class of the
consequent part. The weight of this vote is 7(x, y). To find the
output of the classifier, the votes of all rules are aggregated.
An algorithm [15] implemented in the KNIME environment
was used in the experiments.

VI. EXPERIMENTAL RESULTS
A. Data description

The dates and first arrival date (FAD) were examined.
The considerations are limited to birds of close migration,
presented together with their Latin names in Table 1. The
data were recorded in the years 1996-2016 by the large group
of ornithologists belonging to the Polish Society for Bird
Protection (PTOP).

TABLE I
NUMBERS, ENGLISH NAMES AND LATIN NAMES OF THE BIRDS
Bird number English name Latin name

1 Eurasian bittern Botaurus stellaris
2 Marsh harrier Circus aeruginosus
3 Lapwing Vanellus vanellus
4 Wood pigeon Columba palumbus
5 Eurasian blackcap Sylvia atricapilla
6 Black redstart Phoenicurus ochruros
7 Spotted crake Porzana porzana
8 Common redshank Tringa totanus
9 Common snipe Gallinago gallinago
10 European serin Serinus serinus
11 Woodlark Lullula arborea
12 Coot Fulica atra
13 Great crested grebe Podiceps cristatus
14 Red-necked grebe Podiceps grisegena
15 Common chiffchaff Phylloscopus collybita
16 White wagtail Motacilla alba
17 Dunnock Prunella modularis
18 Reed bunting Schoeniclus schoeniclus
19 Eurasian penduline-tit Remiz pendulinus
20 Eurasian skylark Alauda arvensis
21 Eurasian woodcock Scolopax rusticola
22 Black-headed gull Chroicocephalus ridibundus
23 Song thrush Turdus philomelos
24 Meadow pipit Anthus pratensis
25 Western water rail Rallus aquaticus
26 Common crane Grus grus

B. Fuzzy C-Means

In this section we describe the results of clustering using the
Fuzzy C-Means method to obtain three groups of birds divided
according to arrival times. The cluster centres are presented
in Fig. 2. We observe that the clusters are mostly relatively
far to each other. However, in some years it may be relatively
difficult to find three different groups of birds. However, these
are sporadic cases. Moreover, it cannot be observed that one of
the groups (1-3) of migrating birds tends more to other group.
Therefore, the division into three groups is relatively stable and
gives clear results. Table II presents the results of clustering
of the above listed birds. One can observe that in general each
bird species belongs to mainly one group of birds. Only one
species, namely #16, is somewhere in-between of two groups
(1 and 2). However, the trend clearly shows that it is more in
the first group.
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Fig. 2. Cluster centres of groups of migrating birds.

TABLE II
MEMBERSHIPS OF PARTICULAR BIRD SPECIES IN MIGRATION GROUPS
Bird number | Group 1 | Group 2 | Group 3
1 0.09 0.34 0.57
2 0.12 0.75 0.14
3 0.89 0.09 0.03
4 0.22 0.69 0.09
5 0.06 0.13 0.81
6 0.12 0.68 0.21
7 0.05 0.11 0.84
8 0.05 0.89 0.06
9 0.06 0.89 0.05
10 0.04 0.14 0.82
11 0.30 0.63 0.07
12 0.22 0.67 0.11
13 0.12 0.67 0.21
14 0.03 0.10 0.87
15 0.03 0.10 0.87
16 0.48 0.42 0.09
17 0.04 0.16 0.80
18 0.87 0.11 0.03
19 0.05 0.13 0.82
20 0.79 0.15 0.06
21 0.16 0.67 0.17
22 0.87 0.10 0.03
23 0.37 0.52 0.11
24 0.26 0.66 0.07
25 0.07 0.19 0.74
26 0.94 0.05 0.01




C. Fuzzy Cognitive Maps

An important input for a fuzzy cognitive map is the weight
matrix, which represents the relation between the elements
(concepts). In this research the weight matrix was calculated
as a modified matrix of correlation coefficients between a set
of 26 birds. This was done with an algorithm implemented in
the rcorr function. function of the R language. The matrix of
Pearson correlation coefficients and asymptotic P-values were
obtained. Later, with the use of code written by the authors, the
matrix values were modified in the following way: diagonal
has been set to 0 to remove the self loops in the fuzzy cognitive
maps, and only the values of correlation coefficients for which
P-values smaller than 0.05 were taken into consideration.

Next we used the fcm package in the R environment [16] to
calculate the strength of the elements. The activation vector for
each bird was set to 1 and the number of iteration was 25. For
better explanation the results of calculations were presented
in the form of energy Fruchterman Reingold graphs shown
in Fig. 3 to Fig. 5. In this kind of graph the energy of the
whole system is minimised and the nodes are moving until
the system reaches its equilibrium state. The diameter of the
circle is proportional to the concept strength and the thickness
of the line is proportional to the relation between elements.
The colours of the lines show positive (black) or negative (red)
relation between the graph elements.

Additionally we checked how the clustering with Fuzzy C-
Means correlates with fuzzy cognitive maps. We performed
the calculations for the 3, 4 and 5 clusters of birds emerging
with the fuzzy C-Means. These clusters were shown with
different colours i.e: yellow (cluster 1), green (cluster 2), blue
(cluster 3), brown (cluster 4), teal blue (cluster 5). Membership
of the bird in the cluster was assumed according to the
maximum value obtained from the fuzzy C-Means calculations
(for example for 3 clusters, bird No 6 belong to the second
cluster as shown in Table II).

The results of analysis were shown in Figures 3 — 5. It
can be noticed that, due to the fuzzy C-Means analysis, birds
change the membership in the clusters. However the fuzzy
cognitive map analysis shows that birds stay in the same graph
energy region.

There are some birds which stay always in the same cluster
and in the same energy region, e.g.: common crane, black-
headed gull, Eurasian skylark, lapwing and reed bunting. This
can be seen in Figures 3 — 5: 3 — marked in yellow, 4 and 5
— marked in green.

Analysing the fuzzy cognitive map results we can say that
the most birds belong to the three cluster centres. Comparing
FCM with Fuzzy C-Means gives us more specific information
on membership of the birds in the same classes obtained from
both analyses. The results are presented in Table III.

D. Fuzzy Rules

Fuzzy classifiers for the analysed data were used in two
classification problems. On the one hand, the effectiveness of
classification of bird species by time of arrival was examined.
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Fig. 3. Fuzzy cognitive map representation as a Fruchterman Reingold graph
for 3 clusters emerging with the use of fuzzy C-Means.
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TABLE III
MEMBERSHIP OF PARTICULAR BIRD SPECIES IN CLUSTER GROUPS BASED
ON THE FUZZY COGNITIVE MAPS AND FUZZY C-MEANS

Cluster members
3, 18, 20, 22, 26
1 Lapwing, Reed bunting, Eurasian skylark, Black-
headed gull , Common crane
4, 11,24
Wood pigeon, Woodlark, Meadow pipit
1, 14, 17, 19
3 Eurasian bittern, Red-necked grebe, Dunnock,
Eurasian penduline-tit

Cluster number

On the other hand, the effectiveness of classification of in-
dividual years was examined, due to the arrival time of the
species studied, for warm years (birds arrive quickly) and for
cool years (late arrivals of birds).

In the case of classifying years into warm and cold ones,
based on the terms of bird arrivals, the results are not satisfac-
tory. The percentage of proper classification of objects (indi-
vidual years) for different numbers of elements in the training
set is presented in Fig. 6. For each of the cases considered,
3 independent tests of random selection of elements for the
learning set were carried out.
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Fig. 6. Efficiency of year classification based on bird arrival times.

The results obtained are characterised by great diversity
within the same number of learning sets, which suggests that
the right selection of elements is of decisive importance here.
The selection of elements for the learning set is still an open
problem and will be implemented as part of future work. The
values of the Cohen kappa coefficient for individual tests are
presented in the Fig. 7.

As one can see, in some cases a negative coefficient suggests
that random allocation to individual categories would be better.
In the case of classification of birds into species characterised
by early and late arrival, we receive much better results of
classification (see Fig. 8). In this case, also the selection of
elements for the learning set is important and will be tested
as part of future work.

Taking into consideration classification efficiency for Fuzzy
C-Means and Fuzzy Cognitive Maps shown in Fig. 9 and
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Fig. 7. Cohen’s kappa coefficient values for subsequent random elements of
the training set.

Fig 10 it is noticeable that the first method is much more
efficient.For threshold 20% Fuzzy C-Means has about 80%
classification efficiency while Fuzzy Cognitive Maps has about
60% efficiency. The full classification efficiency in the first
method is obtained for a threshold equal of 60% , while for
the second method for a threshold equal to 90%.
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Fig. 8. Efficiency of bird classification.
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Fig. 10. Classification efficiency for clusters designated by using Fuzzy
Cognitive Maps.

The results obtained suggest that the analysed method of
classifying birds based on their arrival dates in individual
years is very promising and opens new possibilities for avian
ecologists. It is enough to observe the arrival dates of only
a few bird species to most likely determine the approximate
arrival date of other species belonging to the same bird cate-
gory. Appropriate selection of predictors (bird species in the
development of which predictive models will be developed)
remains an open problem.

VII. CONCLUSIONS AND FUTURE WORK

The obtained results showed that analysing data of birds’
first arrival dates with the use of fuzzy classifiers gives us
additional information. It was possible to divide the whole
group of early coming birds into smaller clusters in which the
arrivals date depends on the coming of a few birds. The use of
fuzzy algorithms allows to form clusters (subgroups) of bird
species having similar relationship to the birds shown in Table
III, and to build forecasting models.

In further research the Fuzzy Cognitive Map classification
efficiency can be improved upon by incorporating sub maps
from other aspects, such as average winter temperature or
short distance migration information. Later the complexity of
introducing many concepts from fuzzy models can be verified
with the use of machine learning. It is worth noting that
this study is innovative and it is reported an early stage of
research here. In addition, due to changing climatic conditions,
it is difficult to forecast strongly stable future behaviour of
bird groups. Therefore, it is hard to find a ground truth for
obtained results. Hence, the task of determination of model
parameters which could serve as comparative values instead
of arbitrary numbers appearing in presented experiments will
be an interesting research field to explore in the nearest future.
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