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Abstract—In this contribution the new method for selecting
classifiers to build an ensemble classifier is presented. Sometimes
we get many classifiers that classify an object based on various
premises (attributes). Many of them are of low quality, therefore
a new classifier is being built that takes into account the weight
of individual classifiers. In general, it gives better results than
individual classifiers. However, the use of all classifiers (especially
those of low quality) does not always give satisfactory results.
Therefore, we present a method that allows to eliminate some
classifiers while increasing the quality of classification.

Index Terms—aggregation function, classifiers

I. INTRODUCTION

The main task of the classification constituting one of the
important methods of data mining is the creation of models,
called classifiers (also classifying algorithms or decision al-
gorithms), describing dependencies between the given class
(category) of objects and their characteristics. Discovered
classification models are then used to classify new objects
of the unknown class membership (see e.g., [20], [3], [4]).
We will consider a classification problem based on a finite
set of observations, consisting in assigning to one of two
classes (e.g. positive and negative decision). This finite set
of observations will be represented using data tables. In this
representation individual observations correspond to rows of
a given data table and attributes to columns of a given data
table. In this paper, we consider decision tables of the form
T = (U,A, d) in Pawlak’s sense (cf. [22]) for representation
of data tables, where U is a set of objects (rows) in the data
table, A is a set of attributes or columns in the data table, and
d is a distinguished attribute from the set A called a decision
attribute (in this paper, we consider problems for the case of
a 2-class classification, e.g., for decision classes YES and NO
or for decision classes 1 and 0, etc.).

The classifier assigns to the object a certain weight (clas-
sification coefficient) to classify the object. For the threshold
parameter t ∈ (0, 1), if the classification weight of the test
object obtained from the classifier is greater than t, the object
is classified into the main class (e.g., YES). However, if the
weight is less than or equal to t, then the object is classified
into a subordinate class (e.g., NO).

When classifying objects, we can construct different classi-
fiers. Often the decisions obtained differ for a some elements.
Therefore, a conflict appears between the classifiers that op-

erate on the basis of different sources or parameters, which
must be resolved in order to finally classify the test object. For
this purpose we suggest aggregation of values obtained by the
individual classifiers using aggregation operators. As a result,
we build a new compound classifier. Such complex classifiers
are often called ensemble classifiers in the literature [25].

Moreover, sometimes many of constructed individual clas-
sifiers are of low quality, therefore a new classifier takes
into account the weight of individual classifiers. In general,
it gives better results than individual classifiers. However, the
use of all classifiers and their later aggregation is sometimes
very expensive. In addition, because some classifiers are of
low quality, they degrade the quality of the final classifier.
Therefore, we present a method that allows you to eliminate
some classifiers while increasing the quality of classification.

Well, our approach is characterized by, compared to the ma-
jority of existing ones, that classifiers are not only aggregated,
but dynamically selected when testing a particular test object.
The purpose of this selection is to improve the global quality
of the classification and it is based on the raw results of the
test object classification by all aggregated classifiers or based
on certain selection parameters learned from training data.

The paper is structured as follows. In Section II, notions
connected with aggregation operators are recalled. In Section
III, the motivation to consider new versions of classifier are
provided as well as a description of them is given.

II. AGREGATIONS OPERATORS

Firstly, we recall definition of an aggregation function. More
details can be found in [10], [16], [21], [6], [8], [12], [19], [24]

Definition 1 (cf. [9]). A function A : [0, 1]n → [0, 1], n ∈ N,
n ≥ 2, which is increasing in each variable, i.e.,

(∀1≤i≤nxi ≤ yi)⇒ A(x1, . . . , xn) ≤ A(y1, . . . , yn), (1)

for all x1, . . . , xn, y1, . . . , yn ∈ [0, 1] is called an aggrega-
tion function (aggregation operator) if A(0, . . . , 0) = 0,
A(1, . . . , 1) = 1.

Definition 2 ([9]). Let n ≥ 2. A : Rn → R is a mean
(average function) if it is increasing and idempotent, i.e., for
all x, y ∈ Rn (1) is satisfies and

∀x∈RA(x, ..., x) = x.
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Lemma 1. For every mean A we have

∀x ∈ Rn min
1≤k≤n

xk ≤ A(x1, ..., xn) ≤ max
1≤k≤n

xk. (2)

From the above lemma we see that the mean can be
restricted to any interval. Our domain of interest is the interval
[0, 1]. In this case, the mean is the aggregation function.

Example 1. Let ϕ : [0, 1] → [0, 1] be an increasing bijection
and x,w ∈ [0, 1]n. We remind here two important examples
of aggregation function: the quasi-arithmetic mean (cf. [1])

A(x1, ..., xn) = ϕ−1(
1

n

n∑
k=1

ϕ(xk)),

and the generalized weighted average (cf. [9])

A(x1, ..., xn) = ϕ−1(

n∑
k=1

wkϕ(xk)).

In this paper we use the aggregation method based on the
arithmetic mean for experiments. The reason for this is that
this aggregation in practice gives good classification results
obtained by the ensemble classifiers based on it, very often
better than other aggregations known from the literature.

III. CLASSIFIERS

During classification, the classifier assigns a certain clas-
sification weight to the object (see Fig.1). For a set range
of the threshold parameters t ∈ (0, 1), the test objects are
tested in such a way that if the classification weight of the
test object obtained from the classifier is greater than t, the
object is classified into the main class (e.g., YES). However,
if the weight is less than or equal to t, then the object is
classified into a subordinate class (e.g., NO). In this way, we
obtain the decision value for the test object, which may be
correct (consistent with the actual decision in the test table)
or incorrect (we make a mistake in the classification).
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Fig. 1. Certain classification weights assigned by the classifier to the object
and the threshold parameter t ∈ (0, 1)

To calculate the global classification quality of a given
classifier with the fixed parameter t we use the accuracy (ACC)
of the classification which is the quotient of the number of
correct classifications to the number of all classifications.

Using the following notion:

• TP - True Positives - elements from the main class
classified into the main class

• TN - True Negatives - elements from the subordinate
class classified into the subordinate class

• FP - False Positives - elements from the subordinate class
classified into the main class

• FN - False Negatives - elements from the main class
classified into the subordinate class

• ACC - accuracy
we can calculate the accuracy according to the following
formula

ACC =
TP + TN

TP + FP + TN + FN

We can also put above information in the table, where the
rows contain elements from the main class and subordinate
class, respectively, while the columns contain elements classi-
fied by the classifier into the main class and subordinate class,
respectively.

TABLE I
TABLE OF PARAMETERS

Elements classified by the classifier as
from main class subordinate class

main class TP FN
subordinate class FP TN

Accuracy calculated for the test objects from the main class
is called sensitivity (TPR - true positive rate), and the accuracy
calculated for the test objects from a subordinate class we call
specificity (TNR - true negative rate). In addition, we will
consider FPR - false positive rate. Using the above notion we
can calculate mentioned parameters according to the following
formulas

TPR =
TP

P
=

TP

TP + FN

TNR =
TN

N
=

TN

TN + FP

FPR =
FP

N
=

FP

FP + TN

FPR = 1− TNR

If the sensitivity is unsatisfactory, e.g., in medicine when
trying to predict the occurrence of a disease of a patient, it may
turn out that the sensitivity of the classification to the main
class ”sick” is too low, we can balance between sensitivity
and specificity, i.e., increasing sensitivity at the expense of
decreasing specificity. This approach leads to the concept of
the ROC curve (receiver operating characteristic curve), where
each point of the ROC curve corresponds to one setting of the
classifier’s performance (the parameter t).

ROC shows the dependence of sensitivity on error of the
first type (FPR) during calibration of the classifier (at various
threshold settings).



AUC is the indicator of the quality of a classifier which
is the area under the ROC (cf. [14], [23]). The greater is the
AUC value the better is the classifier.

A. Classification algorithm

When classifying objects, we can construct different classi-
fiers (based on different systems or based on different data
sources, e.g., using several diagnostic devices). Often the
decisions obtained differ for a certain class of test elements.
Therefore, a conflict appears between the classifiers that op-
erate on the basis of different sources or parameters, which
must be resolved in order to finally classify the test object. To
get a final decision, we should create a new classifier that will
take into account previous results. For this purpose we suggest
aggregation of values obtained by the individual classifiers. As
a result, we build a new compound classifier.

In this article, we use aggregating of the classification
weights obtained by individual classifiers, and we propose
the Algorithm 1 (method WAS - weight arithmetic mean
selection). This algorithm uses M aggregation, which is based
on an arithmetic mean.

Algorithm 1: Classification of a test object by the M
classifier

Input:
1) training data set represented by decision table

T = (U,A, d),
2) collection C1, ..., Cm of classifiers,
3) test object u,
4) aggregation M ,
5) threshold parameter t, e.g., t = 0.6.

Output: The membership of the object u to the main
class or to the subordinate class

1 begin
2 for i := 1 to m do
3 Compute a certain weight (”main class”

membership probability) for the given test object
u using the classifier Ci and assign it to pi

4 end
5 Determine the final weight p for the object u by

aggregating (with a use of the aggregation operator
M e.g., arithmetic mean) the weights p1,...,pm.

6 if p > t then
7 return u belongs to the ”main class”
8 else
9 return u belongs to the ”subordinate class”

10 end
11 end

B. Modification of the algorithm

Some classifiers assigns a weight to an object that differ
from the weights of other classifiers or their aggregation
obtained in the Algorithm 1

That is why we decided to check their impact on the quality
of the classification. In other words, we decided to check
whether eliminating these classifiers would improve the quality
of the classification.

The problem that appeared here was the choice of classifiers
that we remove, or in other words - the choice of classifiers
that we will use for classification.

Here we propose three methods to choose from classifier
which we will use later in the classification.

The first method is to choose those classifiers that give the
weights closest to the aggregate value, i.e., those that are the
most distant from the aggregate value are rejected (method
WTS weight threshold selection), see Algorithm 2.

Algorithm 2: Classification of a test object by the WTS
classifier.

Input:
1) data set represented by decision table T = (U,A, d),

with card U = n,
2) collection C1, ..., Cm of classifiers,
3) test object u,
4) aggregation M ,
5) threshold parameter t, e.g., t = 0.6,
6) parameter ε, e.g., ε = 0.8.

Output: The membership of the object u to the main
class or to the subordinate class

1 begin
2 for i := 1 to m do
3 Compute a certain weight (”main class”

membership probability) for the given test object
u using the classifier Ci and assign it to pi

4 end
5 Determine the weight p′ for the object u by

aggregating (with a use of the aggregation operator
M e.g., arithmetic mean) the weights p1,...,pm.

6 for i := 1 to m do
7 Compute a distance di between p′ and pi for the

given test object u
8 end
9 Choose the classifiers for which di < ε. In this way

we receive the sets K = {Cs1 , ..., Csk}
10 Determine the final weight p for the object u by

aggregating (with a use of the aggregation operator
M ) the weights ps1 ,...,psk .

11 if p > t then
12 return u belongs to the ”main class”
13 else
14 return u belongs to the ”subordinate class”
15 end
16 end

Unfortunately, for small values of ε we can get an empty
set of K. That is why we suggest modifying this algorithm
by selecting a certain percentage of classifiers for each test



object. The selection method will be presented in Algorithm
3 (method WPS - weight percent selection).

Algorithm 3: Classification of a test object by the WPS
classifier.

Input:
1) data set represented by decision table T = (U,A, d),

with card U = n,
2) collection C1, ..., Cm of classifiers,
3) test object u,
4) aggregation M ,
5) threshold parameter t, e.g., t = 0.6,
6) parameter r ∈ (0, 1].

Output: The membership of the object u to the main
class or to the subordinate class

1 begin
2 for i := 1 to m do
3 Compute a certain weight (”main class”

membership probability) for the given test object
u using the classifier Ci and assign it to pi

4 end
5 Determine the weight p′ for the object u by

aggregating (with a use of the aggregation operator
M e.g., arithmetic mean) the weights p1,...,pm.

6 for i := 1 to m do
7 Compute a distance di between p′ and pi for the

given test object u
8 end
9 Choose 100 · r % classifiers that are closest to the

aggregate value p′. In this way we receive the sets
K = {Cs1 , ..., Csk}

10 Determine the final weight p for the object u by
aggregating (with a use of the aggregation operator
M ) the weights ps1 ,...,psk .

11 if p > t then
12 return u belongs to the ”main class”
13 else
14 return u belongs to the ”subordinate class”
15 end
16 end

The third construction, which differs from the previous
two, consists in the selection of classifiers that have been
recognized as the most stable based on the training set.
Based on training data, we determine accuracy, sensitivity and
specificity for each classifier(see Fig. 2). We choose those
for which the distance between the point of intersection of
sensitivity and specificity and the maximum value of accuracy
is the smallest. The selection method will be presented in
Algorithm 4 (method SSAS - sensitivity, specificity, accuracy
selection).

IV. EXPERIMENTS

According to the above algorithms, we have m classifiers
as input. Because of this, we need a set of classifiers to check

Fig. 2. Graph of dependence of accuracy, sensitivity and specificity on the
threshold parameter s

our algorithms. Here we will use k-NN classifiers. Therefore
we remind this concept.

A. k-NN algorithm

In 1951 Fix and Hodges introduced a non-parametric
method for pattern classification that has since become known
as the k-nearest neighbor algorithm [15]. Next, some of the
formal properties of the k-nearest neighbor rule were obtained
[11]. The k-NN algorithm is a method for classifying objects
based on the k closest training examples in a feature space. An
object is classified by a majority vote of its neighbors, with the
object being assigned to the class most common amongst its
k nearest neighbors (k is a positive integer). If k = 1, then the
object is simply assigned to the class of its nearest neighbor.
It is a type of instance-based learning.

For classification also a useful technique can be used, to
assign weight to the contributions of the neighbors, so that
the nearer neighbors contribute more to the decision than the
more distant ones. For example, a common weighting scheme
consists in giving each neighbor a weight of 1/d, where d is
the distance to the neighbor ([13]). There were considered also
another methods [7], [17], [18]) and their applications ([5]).

B. Use of Algorithms

The experiments have been performed on the 9 data sets
obtained from UC Irvine (UCI) Machine Learning repository.
They are listed in the Table II.

To get the Ci classifiers we use the k-nearest neighbor
algorithm with different values of k. In this algorithm the
Euclidean metric is applied for measuring distances. Each data
set is divided into two training and test parts, in the proportion
of 50% to 50%. The training part of the data is used to
construct the Ci classifiers. Each experiment is repeated 10
times and the average AUC and standard deviation are reported
using test part of data. We assume that all analyzed data have
only two decision classes. In this work, we will mainly present
the results for the data from the sets diabetes and red wine.

Consecutively, Table III shows examples of experimental
results for diabetes data using Algorithms 2-4. Table IV and
V shows the average AUC for the results of experiments
for individual algorithms and Fig. 3, 4 shows the graphical
interpretation of these results.



Algorithm 4: Classification of a test object by the SSAS
classifier.

Input:
1) training data set represented by decision table

T = (U,A, d), with card U = n,
2) collection C1, ..., Cm of classifiers,
3) collection of weight thresholds T = {t1, ..., tz} used

during computation of ROC curve,
4) test object u,
5) aggregation M ,
6) threshold parameter t, e.g., t = 0.6,
7) parameter ε, e.g., ε = 0.8.

Output: The membership of the object u to the main
class or to the subordinate class

1 begin
2 for i := 1 to m do
3 For the Ci classifier, perform calculations such as

for determining the points of the ROC curve
based on the training table and the collection T ,
obtaining a list of points LPi = P1, ..., Pz;
assume that each point on this list is the triple
(sensitivity, specificity, accuracy).

4 Based on the list of LPi determine the point
Pss = {senss, specss, accss} ∈ LPi for which
the distance between sensitivity and specificity
is the smallest (closest to the point of
intersection of sensitivity and specificity)

5 Based on the list of LPi determine the point
Pa = {sena, speca, acca} ∈ LPi for which the
value of accuracy is the highest

6 Compute the distance di between senss+specss
2

and acca.
7 end
8 Choose ε ·m classifiers for which the distance di is

the smallest. In this way we receive the sets
K = {Cs1 , ..., Csk}

9 for i := 1 to k do
10 Compute a certain weight (”main class”

membership probability) for the given test object
u using the classifier Csi and assign it to psi

11 end
12 Determine the final weight p for the object u by

aggregating (with a use of the aggregation operator
M ) the weights ps1 ,...,psk .

13 if p > t then
14 return u belongs to the ”main class”
15 else
16 return u belongs to the ”subordinate class”
17 end
18 end

As we can see on the Fig. 3 and Fig. 4 the A4 method
gives the highest of all the AUC and is the most stable value

TABLE II
EXPERIMENTAL DATA SET DETAILS

UCI data Objects Attributes Classes
australian 690 15 2
biodeg 1055 43 2
breast cancer 699 11 2
diabetes 768 9 2
german 1000 25 2
ozone 2536 74 2
parkinson 1040 29 2
red wine 1599 12 2
rethinopathy 1151 20 2

TABLE III
EXAMPLE OF RESULTS OF EXPERIMENTS FOR DIABETES DATA SET

Method data reduction AUC STDDEV

WPS 0.5 0.813 0.002
SSAS 1.0 0.813 0.003
WTS 0.9 0.812 0.003
WTS 1.0 0.812 0.003
WPS 0.2 0.811 0.003
WPS 0.7 0.811 0.003
SSAS 0.8 0.811 0.004
WPS 0.8 0.81 0.002
SSAS 0.3 0.81 0.005
SSAS 0.6 0.81 0.003
SSAS 0.7 0.81 0.004
WTS 0.8 0.809 0.003
SSAS 0.4 0.809 0.004
SSAS 0.5 0.809 0.004
SSAS 0.9 0.809 0.002
SSAS 0.2 0.808 0.004
WPS 0.6 0.807 0.004

Fig. 3. The results of AUC for diabetes

without deviation up or down.

V. CONCLUSIONS

In this paper, we presented three concepts of selecting
classifiers to build a multi-classifier. During the experiments,
we show that Algorithm 4 is the most effective, and that
there are stable values obtained using Algorithm 4, while
the other methods have high AUC dispersion. Therefore, we
presented a method that allows to eliminate some classifiers



TABLE IV
THE AVERAGE AUC FOR INDIVIDUAL ALGORITHMS USING DATA SET

diabetes

Method average of AUC STDDEV

WAS 0,765 0,071
WTS 0,752 0,065
WPS 0,762 0,076
SSAS 0,778 0,027

TABLE V
THE AVERAGE AUC FOR INDIVIDUAL ALGORITHMS USING DATA SET red

wine

Method average of AUC STDDEV

WAS 0,781 0,081
WPS 0,768 0,062
WTS 0,782 0,078
SSAS 0,800 0,016

Fig. 4. The results of AUC for red wine

while increasing the quality of classification. In addition, if
the classifiers use different attributes, using the reduction of
classifiers we can decide which attributes are important and
which can be omitted.
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[12] P. Drygaś. On the structure of continuous uninorms. Kybernetika, 43,
2007, 183–196.

[13] S.A. Dudani. The distance-weighted k-nearest-neighbor rule. IEEE
Trans. Syst. Man Cybern., SMC 6, 1976, 325–327.

[14] T. Fawcett. An introduction to ROC analysis. Pattern Recognition
Letters 27 (8), 2006, 861–874.

[15] E. Fix, J.L. Hodges. Discriminatory analysis, nonparametric discrimi-
nation: Consistency properties, Technical Report 4, USAF School of
Aviation Medicine, Randolph Field, Texas, 1951.

[16] M. Grabisch, J.L. Marichal, R. Mesiar, and E. Pap. Aggregation Func-
tions, Encyclopedia of Mathematics and its applications, 127. Cambridge
University Press, New York, 2009.

[17] A. Jozwik. A learning scheme for a fuzzy k-nn rule. Pattern Recognition
Letters 1, 1983, 287–289.

[18] J.M. Keller, M.R. Gray, J.A. Givens. A fuzzy k-nn neighbor algorithm.
IEEE Trans. Syst. Man Cybern., SMC 15 (4), 1985, 580–585.

[19] E.P. Klement, R. Mesiar, and E. Pap. Triangular norms. Kluwer,
Dordrecht, 2000.

[20] D. Michie, D. J. Spiegelhalter, C. C. Taylor. Machine learning, neural
and statistical classification. Ellis Horwood Limited, England, 1994.

[21] Y. Narukawa and V. Torra. Modeling Decisions: Information Fusion
and Aggregation Operators, Springer, Berlin, Heidelberg, 2007.

[22] Z. Pawlak, A. Skowron. Rudiments of rough sets, Information Sciences
177, 2007, 3–27.

[23] J. A. Swets. Measuring the accuracy of diagnostic systems. Science
240, 1988, 1285–1293.

[24] R. R. Yager, A. Rybalov. Uninorm aggregation operators, Fuzzy Sets
Syst., 80(1) (1996) 111–120.

[25] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms, CRC
Press, 2012.




