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Abstract—The article stems from distinct studies on arith-
metics of fuzzy numbers, orderings of fuzzy numbers, and metrics
on fuzzy numbers. Trying to capture the existing knowledge in
the mentioned areas and putting them together, we motivate the
construction of metric-like spaces on fuzzy numbers by desirable
connection to their arithmetics. The desirable “metric” should
be mapping pairs of fuzzy numbers again to fuzzy numbers and
thus, reflecting the vagueness of operation on fuzzy numbers. This
leads to developing all such areas under the joint umbrella and
connecting such basic notions as orderings of fuzzy numbers to
arithmetics and elementary “metrics” such as the absolute value
of the difference of two fuzzy numbers. This article focuses mainly
on the orderings and investigation of the preservation of their
most natural properties. However, links to further studies going
towards applications are also foreshadowed and referred to.

Index Terms—MI-algebras, extensional fuzzy numbers, simi-
larity relation, extensionality, orderings, approximate reasoning

I. INTRODUCTION

Fuzzy numbers formally representing vague quantities are
used in distinct areas of the theory (fuzzy approximation, fuzzy
interpolation, approximate reasoning, ranking, fuzzy regres-
sion) as well as in practical applications (automated control,
decision-making system, modeling economical behaviour of
companies and stocks changes). Plenty of research efforts has
been invested into this areas but still, the topic does not seem
to be exhausted and the area is not fully known. The main
motivation for us lies in the desirable connections between
distinct theoretical problems related to fuzzy numbers, that
are not interconnected yet.

A typical example of such two not fully connected problems
is the plenty of technically deeply elaborated arithmetics
of fuzzy numbers [1]–[4] on one side, and the problem of
orderings of fuzzy numbers [5]–[7] on the other side. As
mentioned above, both problems are rather deeply elaborated,
however, up to our best knowledge, we are not aware of a
scientific study that would directly connect problems areas
into a compact and tightly connected theory. The reason in
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our opinion lies in the missing umbrella topic that essentially
needs both problems to be closely connected, such as metric-
like functions operating on fuzzy numbers.

What do we mean by the above mentioned theme that,
at first sight, needs no attention as distinct metrics (e.g.
Hausdorff) can be defined for any sets and thus, consequently
α-cut wise extended to fuzzy sets too?

The above described approach uses a standard metric space
and standard metric function to map a pair of fuzzy numbers
to a real number. How intuitive is to say that the distance of
two quantities, that are only vaguely given to us, is precisely
some x ∈ R? And moreover, does this crisp distance expressed
in the real number x reflects our intuitive expectations?

Let us consider a simple example taken from [8]. Let a
fuzzy number A models the vague quantity “about 3” and let
a fuzzy number B models the vague quantity “about 5”, see
Figure 1. The Hausdorff distance [9] between fuzzy numbers
A and B equals to 4.18. Obviously, any human asked to her/his
expectation on the distance between “about 3” and “about 5”
would answer something like “about 2”, nobody would state
4.18. This result is mathematically fully correct yet not that
intuitive.

Fig. 1. Fuzzy numbers modeling the vague quantity “about 3” (A), and the
vague quantity “about 5” (B). Their Hausdorff distance equals 4.18 .

However, even the intuitive result can be obtained by a
mathematically fully correct way, in particular, by mimicking
how the distances are constructed on real numbers, which
means by the direct employment of the arithmetic of the reals.
It is sufficient to construct an absolute value of the difference
of the two fuzzy numbers A and B and to consider the
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result as a the “distance” between A and B. Formally, instead
of building a classical metric operating on fuzzy numbers
d : F(R)×F(R)→ R, we build a metric-like fuzzy function
that maps pairs of fuzzy numbers again to fuzzy numbers
d : F(R)×F(R)→ F(R).

This intuitive generalization of the classical approach, how-
ever, needs lot of work on the formal level. For instance,
the metric-like function defined fuzzy numbers should possess
four axioms mimicking the same properties as the axioms of
classical metric functions, including the triangle inequality.
The triangle inequality, in the environment of fuzzy num-
bers, will necessarily employ the ordering of fuzzy numbers.
Moreover, the ordering of fuzzy numbers is essential also
for the definition of the absolute value, that is required for
the construction of the most natural distance between fuzzy
numbers. Thus, the topic related to the distances does not
serves only as the motivation but possesses also the umbrella
theme role joining orderings and arithmetics of fuzzy numbers.

Our investigation adopts the particular arithmetic of exten-
sional fuzzy numbers [10], [11] that has been deeply elaborated
from the algebraic point of view [11]–[14]. The first work
initiating this direction towards metrics and orderings has
been presented in [15] and uncovered the potential of this
research as well as the next directions. Currently, we may refer
readers to a deeper study on the metrics of fuzzy numbers
in [8] and devote this article mainly to the orderings and
their properties. Note, that the importance of the orderings is
much higher than just in the metric-like spaces of extensional
fuzzy numbers, that allow to proceed further in areas such
as fuzzy approximation, mathematical analysis with vague
quantities, construction of limits, convergences etc., but also
in areas such as approximate reasoning. Indeed, the notion
of a monotone fuzzy rule base has been studied already in
[16]–[18] and for the implicative rule bases in [19], [20]. All
studies considered monotonicity of the fuzzy rule base with
respect interval orderings of α-cuts and the preservation of the
monotonicity in the resulting function was naturally studied
with respect to only crisp inputs and outputs. The fuzzy inputs
were considered later on only from the interpolation point
of view [21], [22]. Preservation of the monotonicity in the
case of a monotone fuzzy rule base and order fuzzy input is
a natural direct that can be approached only based on firm
theoretical foundations related to orderings of fuzzy sets (e.g.
fuzzy numbers).

II. PRELIMINARIES

A. Arithmetics of extensional fuzzy numbers

Let us briefly recall the arithmetic of extensional fuzzy
numbers. It is tightly connected to similarity relations and
extensional hulls. Let us note that these are fundamental no-
tions also in the investigations of orderings of fuzzy numbers
presented by Bodenhofer [5], [6] and thus, it foreshadows
that developing the arithmetic of extensional fuzzy numbers
and their orderings jointly is promisingly based on the same
foundations.

Let us recall, that a given t-norm ⊗, the similarity relation
(more precisely ⊗-similarity, or also fuzzy equivalence rela-
tion) [23] is binary relation on a given universe that is reflexive,
symmetric, and ⊗-transitive. As the purpose of similarity
relations in this study is to determine fuzzy sets of “close
values” to a given real number, we may freely restrict our
focus on similarity relations defined on real numbers, i.e., to
consider only S : R× R→ [0, 1] below.

Example 2.1: Binary fuzzy relations on R given by

Sp(x, y) = (1− p|x− y|) ∨ 0 , p > 0 (1)

are the ⊗-similarity relations where ⊗ is the Łukasiewicz t-
norm.

Binary fuzzy relations on R given by

Sp(x, y) = e−p|x−y| , p > 0 (2)

are the ⊗-similarity relations where ⊗ is the product t-norm.
A fuzzy set A on the same universe, i.e., A ∈ F(R), is

called extensional [24] w.r.t. the given similarity S if

A(x)⊗ S(x, y) ≤ A(y)

holds for arbitrary x, y ∈ R.
The least fuzzy superset of a given fuzzy set A ∈ F(R)

that is extensional with respect to the similarity S, is called
extensional hull of A and will be denoted as EXTS(A). It can
be constructed as follows:

EXTS(A)(x) =
∨
y∈R

(A(y)⊗ S(x, y)) (3)

and for more details, we refer readers to [25].
If we consider that each real number x ∈ R can be

represented as singleton x̃ ∈ F(R) (x̃(x) = 1, and x̃(y) = 0
for any y 6= x) and we neglect the difference between the
real number x and its singleton representation x̃, we may
construct the extensional hull of the real number. Such an
object – an element of F(R) – is called fuzzy point [25]–[27]
or extensional fuzzy number [10]–[12].

The construction of the extensional fuzzy number is
straightforward and underlines their semantics – (number x
with closely neighboring numbers) – where the closeness is
given by the used similarity S.

Mathematically, the extensional fuzzy number with the
semantics “around x”, denoted by xS ∈ F(R), is given as
follows:

xS(y) = EXTS(x)(y)

and the particular calculation may be done as follows [11]:

xS(y) = S(x, y), y ∈ R.

Remark 2.1: For the purpose of this investigation, we restrict
our focus to such similarities that the fuzzy numbers xS
constructed as above are formed by α-cuts (xS)α that are
closed intervals in R.

In our opinion, there is not better representation of a vague
quantity that would be reflecting its semantics more appropri-
ately already in its construction. Moreover, the construction



allows to develop specific mathematical model of the arith-
metics, that was firstly proposed in [10], [12]. Algebraically,
the arithmetics led structures with more identity-like elements,
which gave them the name MI-algebras [11]. However, we
will omit more general algebraic perspective and stay with
the primary motivation for their rise – with arithmetics of
extensional fuzzy numbers based on systems of similarity
relations.

Let us consider a system of nested ⊗-similarity relations C
with the bottom element ⊥C and the set of all fuzzy numbers
that are extensional with respect to a similarity from the given
system:

FC(R) = {xS | x ∈ R and S ∈ C}.

For the purpose of this paper, we restrict ourselves to such
nested systems C that for any xS ∈ FC(R) the set (xS)α is a
closed interval in R for any α ∈ (0, 1].

Then the addition and the multiplication of two extensional
fuzzy numbers from FC(R) defined with help of any S, T ∈ C,
are given as

xS + yT = (x+ y)max(S,T ), xS · yT = (x · y)max(S,T ),

where the maximum of two similarities comes from the
inclusion ordering on C:

S ⊆ T if S(x, y) ≤ T (x, y) , x, y ∈ R .

The use of the maximum of two similarities is mathemat-
ically correct due to the assumption that C is a system of
nested similarities, which imposes the linearity assumption on
the ordering ⊆.

The proposed arithmetic brings several positive features.
First of all, it mimic how humans calculated with vague quan-
tities when, e.g., the summation of “around 50” and “around
40”, leads to the result “around 90”. Indeed, even humans
sum up numbers 50 and 40 in the first step, and additionally,
the human cognition realizes some tolerance to close values.
Secondly, the calculus is computationally extremely cheap.
Thirdly, the arithmetic operations do not widen the resulted
fuzzy numbers as it happens when the α-cut based arithmetic
obtained from the Zadeh’s extensional principle is applied.
Finally, we can preserve more of the desirable algebraic
properties known from the classical arithmetic [11].

The bottom element ⊥C is the “narrowest ” similarity
from C and its role for the arithmetics lies in the so-called
strong identity elements of both operations:

0 = 0⊥C = ⊥C(0, ·), 1 = 1⊥C = ⊥C(1, ·)

The inversions are obtained in the standard way, e.g., the
inversion of the addition is defined as follows −xS = (−x)S .
The (non-strong) identity elements, (pseudoidentities) are the
elements of FC(R) obtained by applying the operations to
elements and their inverses, for instance, the set of additive
pseudoidentities is given as:

I0C = {xS + (−x)S | S ∈ C}.

Distinct algebraic structures, such as MI-prefield
(FC(R),+, ·,−,−1 ) where many appropriate properties
including the distributivity are preserved, are studied in [11].
In this study, the main focus will be on the additive
MI-pregroups (FC(R),+,−).

Example 2.2: Consider an interval of positive parameters
p ∈ [`, r]. Then C = {Sp | p ∈ [`, r]} where the Sp is given
by (1) or (2) forms a system of nested Łukasiewicz (product)
similarities with the bottom element ⊥C = Sr.

The summation in the respective structure (FC(R),+,−) is
calculated as follows:

xSp
+ ySp′ = (x+ y)Sp′′ , p′′ = min{p, p′} .

Note, that the crisp equality “=” is an equivalence relation
and thus, it is also ⊗-similarity relation for any t-norm.
Therefore, it can be an element in the system of nested
similarities and in such case, it constitutes the bottom element.

Example 2.3: Consider an interval of positive parameters
p ∈ [`,+∞]. Then C = {Sp | p ∈ [`,+∞)} where the Sp is
given by (1) or (2) forms a system of nested Łukasiewicz
(product) similarities. Let S∞ be the crisp equality, i.e.,
S∞(x, y) = 1 if and only if x = y. Then C∞ = C ∪S∞ forms
the system of nested similarities with the bottom element
⊥C∞ = S∞.

Let us fix the denotation C∞ for a system containing the
crisp equality and let us call them systems of nested similarities
with the crisp bottom element.

III. ORDERINGS OF EXTENSIONAL FUZZY NUMBERS

As we stated above, one of the main motivations was the
intended construction of the metric-like functions operating on
FC(R) and mapping the values again to FC(R). As the last
axiom of metrics is the triangle inequality, that either holds
or not, it required to construct orderings of fuzzy numbers
in a sort of ”binary” style, yet, the construction should not
completely lose the vagueness information about the relation-
ship between the compared fuzzy numbers. Moreover, in most
cases, such binary orderings are not total anymore [28], which
might bring some complications for the metric-like spaces.
Typical example of such binary ordering that does not preserve
any further information about the vagueness is the ordering of
intervals

[a, b] ≤i [c, d] ⇔ a ≤ c and b ≤ d

applied to all α-cuts of the fuzzy numbers:

A ≤i B ⇔ Aα ≤i Bα ∀α ∈ (0, 1] . (4)

For some studies, it is fully sufficient and it can be very
helpful, e.g., in the investigation of monotone fuzzy rule bases
[18], [20], [29] and their interpolativity [21], [22]. However,
it is not a total ordering and, for example, two fuzzy numbers
depicted on Figure 1 are not comparable, although one would
intuitively expect that A is smaller than B, and the arithmetic
confirms that there is a significant difference between them.

Bodenhofer [5], [6] noticed this weakness and proposed a
sort of widening of the fuzzy numbers by constructing their



extensional hulls with respect to wider similarity relations.
The resulted extensional hulls are often already comparable
using the interval ordering. Still, we are on the level of crisp
ordering. In order to capture the vagueness, Bodenhofer also
developed an ordering preserving some degree up to which two
fuzzy sets are ordered. This interesting concept is very intuitive
and inspiring, however, for the metrics, preservation of some
type of binarity is essential. Therefore, we stem from the
Bodenhofer’s extension to hulls and we “store” the vagueness
in the truth and false values.

Mathematically, we construct “fuzzy truth values” and
“fuzzy falses” as extensional hulls of 0 and 1 and the designed
ordering will be a mapping from pairs of extensional fuzzy
numbers to these extended truth/false values. Due to the
bipolarity, that is, because we construct extensional hulls of 0
(truth) and 1 (false), we will refer to 0 and 1 as the “Boolean”
truth values, and as their extensional hulls use similarities from
the set C, we will refer to them as the C-Boolean valued truth
values.

Definition 3.1: [15] Consider a system C of nested ⊗-
similarities on R and S ∈ C. The fuzzy sets TS ,FS ∈
F([0, 1]):

TS = EXTS(1) , (5)

FS = EXTS(0) (6)

will be called C-Boolean valued truth, and C-Boolean valued
false, respectively. Furthermore, we will denote the sets:

TC = {EXTS(1) | S ∈ C} , (7)

FC = {EXTS(0) | S ∈ C} , (8)
TFC = TC ∪FC . (9)

Now, we can define the ordering as a mapping to the set of
fuzzy truth/false values.

Definition 3.2: [15] Let (FC(R),+,−) be an MI-pregroup
of extensional fuzzy numbers with respect to a system C of
nested ⊗-similarities on R. A mapping ≤C : FC(R)×FC(R)→
TFC is called C-Boolean valued ordering if:
(i) (aS ≤C aT ) ∈ TC , (reflexivity)

(ii) (aS ≤C bT ) ∈ TC &(bT ≤C aS) ∈ TC ⇒ (aS − bT ) ∈
I0C , (anti-symmetry)

(iii) (aS ≤C bT ) ∈ TC &(bT ≤C cR) ∈ TC ⇒ (aS ≤C
cR) ∈ TC , (transitivity).

Convention 3.1: If there will be no need to consider the
particular width of the truth or false, we will use the following
shorter notation: proposed in [15]:

aS ≤C bT denotes (aS ≤C bT ) ∈ TC ,

aS 6≤C bT denotes (aS ≤C bT ) ∈ FC .

Let us recall some examples from [8] foreshadowed already
in [15].

Let (FC(R),+,−) be an MI-pregroup. Then

aS ≤max bT =

{
Tmax(S,T ), if a ≤ b,
Fmax(S,T ), otherwise.

is a C-Boolean valued ordering.
Mapping ≤max demonstrates a C-Boolean valued ordering

reflecting the arithmetic operations: the width of the result
of the arithmetic operations determines also the width of the
fuzzy truth of the order. If we mirror this idea into particular
arithmetics from Example 2.2, we get the following:

aSp
≤max bSp′ =

{
TSp′′ , p

′′ = min{p, p′}, if a ≤ b
FSp′′ , p

′′ = min{p, p′}, otherwise,

which is, for the system of Łukasiewicz similarities, demon-
strated on Figure 2.

Fig. 2. Fuzzy numbers xSp′
and ySp′′

determined by the Łukasiewicz
similarities from Example 2.2 based on values x = 4 and p′ = 0.8 (“left”
solid fuzzy set), y = 5.5 and p′′ = 0.3 (“right” solid fuzzy set). Fuzzy sets
xSp′

and ySp′′
cannot be ordered by ≤i of α-cuts however, if we use ≤max,

we obtain the dashed fuzzy sets EXTSp′′
(xSp′

) and EXTSp′′
(ySp′′

),
respectively, and the subsequent conclusion xSp′

≤max ySp′′
= TSp′′′

.

Another example of a C-Boolean valued orderings requires
the assumption that C has the greatest element >C (i.e. R ⊆
>C for all R ∈ C). Then ≤>C : FC(R)× FC(R)→ TFC may
be constructed as follows:

aS ≤>C bT =

{
T>C , if EXTR(aS) ≤i EXTR(bT ),

F>C , otherwise.

is a C-Boolean valued ordering too.
Let us consider, e.g., the product t-norm and

C = {Sp | p ∈ [1, 5] and Sp(x, y) = e−p|x−y|} .

The ordering ≤>C can be visually demonstrated by Figure 3
where one can see two extensional fuzzy numbers 4S2.5

and 5.5S1.2
(displayed by solid lines) and their extensional

hulls EXTS5
(4S2.5) = 4S5

(left dashed fuzzy set) and
EXTS5(5.5S1.2) = 5.5S5 (right dashed fuzzy set) that due to
their interval ordering 4S5 ≤i 5.5S5 allow to order the original
fuzzy numbers 4S2.5

≤>C 5.5S1.2
.

Assume that C has all infima, i.e., that inf{S ∈ C | S ∈
D} ∈ C exists for any D ⊆ C. Then, we can define the
ordering that seeks for the “narrowest” similarity relation that
is sufficient in order to get interval-ordered extensional hulls
of the given fuzzy numbers. In particular, such a C-Boolean



Fig. 3. Demonstration of the C-Boolean valued ordering ≤>C .

valued ordering, denoted by ≤inf , will seek for the intersection
of all such similarities:

aS ≤inf bT =

{
TE , ∃R ∈ C : EXTR(aS) ≤i EXTR(bT ),

F⊥C , otherwise,

where E = inf{R ∈ C | EXTR(aS) ≤i EXTR(bT )}. For the
illustration of the ordering, see Figure 4.

Fig. 4. Example of ≤inf applied to fuzzy sets from Figure 2.

In [15], the authors introduced the so-called pre-order
compatibility of a C-Boolean valued ordering as one of the
crucial properties. Let us recall the modified definition.

Definition 3.3: Let ≤C be C-Boolean valued ordering on an
MI-pregroup (FC(R),+,−). The ordering ≤C is called pre-
order compatible if, for any aS , bT ∈ FC(R) and R ∈ C,

(aS ≤C bT ) = TR ⇒ EXTR(aS) ≤i EXTR(bT ). (10)

The pre-order compatibility is a property ensuring that the
ordering is well-behaving in a sense elaborated by Bodenhofer
[5], [6]. By that we mean: reflecting the necessary extension
in the C-Boolean valued truth respecting the order on R.

The above recalled examples of C-Boolean valued orderings
were pre-order compatible. Let us show two cases of orderings
that are not pre-order compatible, the first one harms the
reflection of the necessary extension in the fuzzy truth:

aS ≤⊥C bT =

{
T⊥C , if a ≤ b,
F⊥C , otherwise,

the other one harms the expected respecting of the linear order
on R because it reverses the order:

aS ≤rev
max bT =

{
Tmax(S,T ), if b ≤ a
Fmax(S,T ), otherwise.

The ordering ≤⊥C is only a slight modification of ≤>C (i.e.,
>C is replaced by ⊥C) and it means that all the axioms of C-
Boolean valued ordering given by Definition 3.2 are clearly
satisfied. But the problem is that T⊥C does not reflect at all
how much we had to extend the compared fuzzy numbers in
order to obtain their extensional hulls that would be ordered
according to their intervals. Thus, the fuzzy truth value is
meaningless, it does not store any information. The other
example, namely ≤rev

max, stores the necessary extension in the
truth values but it ranks “about 4” below “about 2”.

Though the pre-order compatibility is a very important
property, later on, it turned out that for some proofs it is not
sufficient. Much stronger would be to require the equivalence
instead of the implication in (10). However, such a condition
would be too restrictive and the only order that would in
general meet such a requirement would be the ≤inf which
would reduce the investigation to a redundant game with
classes of orderings instead of a single sample.

However, it is not necessary. As we will show below, the
opposite implication need not reflect the particular similarity
and it is fully sufficient to require that the interval order of
extensional hulls of two extensional fuzzy numbers implies
that these fuzzy numbers are (arbitrarily) ordered by ≤C .

Definition 3.4: Let ≤C be C-Boolean valued ordering on an
MI-pregroup (FC(R),+,−). The ordering ≤C is called real-
order compatible if, for any aS , bT ∈ FC(R) and R ∈ C,

EXTR(aS) ≤i EXTR(bT )⇒ (aS ≤C bT ) ∈ TC . (11)

Moreover, if it is pre-order compatible and also real-order
compatible, it is said to be strongly compatible.

Let us note that the above-shown cases ≤max,≤>C , and
≤inf are strongly compatible and thus, they constitute exam-
ples of well-behaving C-Boolean valued orderings.

IV. PROPERTIES OF C-BOOLEAN VALUED ORDERINGS

A. Wang-Kerre properties of orderings of fuzzy numbers

There are distinct studies developing orderings of fuzzy
numbers. Many of them rely on the determination of indices
that are compared instead of comparing the fuzzy numbers
themselves [28]. In order to avoid partiality, some authors sug-
gest the use of multiple indices. It is not our goal to consider
and compare the dozens of existing methods for rankings of
fuzzy numbers as each of them has its own motivation. The
goal we have is to check whether our approach, that was moti-
vated by developing metric-like functions on extensional fuzzy
numbers and joining the topics of arithmetics of fuzzy numbers
and their rankings under the common umbrella allowing to
develop well-founded mathematical analysis on these objects,
preserve the most natural properties. In our task, we stem from
the work of Wang and Kerre [28], [30] who set up the most



intuitive properties of orderings of fuzzy numbers and made
a detailed analysis of existing methods to find out, whether
they preserve them or not. Our approach for constructing the
orderings cannot stay out of this test of the preservation.

Let us briefly recall the properties established by Wang
and Kerre for any ordering � as the expected ones. Note,
that the orderings based on indices often operate on a set
of fuzzy numbers, say on a finite subset G of the set of all
fuzzy numbers to which the ordering can be applied. It is
often because the construction of distinct orderings (indices)
compares the two ranked fuzzy numbers to a reference set.

Wang-Kerre properties: Let F(R) be the set of fuzzy
number on R and G,G1,G2 be arbitrary finite subsets of F(R).
Consider Supp(A) = {x ∈ R | A(x) ≥ 0}. Then

A1: A � A, for A ∈ G;
A2: A � B and B � A⇒ A ∼ B, for A,B ∈ G;
A3: A � B and B � C ⇒ A � C, for A,B,C ∈ G;
A4: sup Supp(A) ≤ inf Supp(B)⇒ A � B, for A,B ∈ G;
A5: Let A,B ∈ G1 ∩ G2. Then

A � B in G1 ⇔ A � B in G2;
A6: Let A � B in {A,B}. Then

A+ C � B + C in {A+ C,B + C};
A7: Let 0 ≤ h and A,B, h ·A, h ·B ∈ G. Then

A � B in {A,B} implies h ·A � h ·B in {h ·A, h ·B}.
Remark 4.1: Note, that properties A4 and A6 were published

also in their strict variants A4’ and A6’ working with the strict
ordering ≺ instead or �.

For the moment, we may abstract from the precise defi-
nitions of the symbols � and ∼ as we need to accompany
the meaning of the Wang-Kerre axioms into our formalism
anyhow, and we believe, that the meaning of the axioms is
very intuitive for the readers.

B. Preservation of the Wang-Kerre properties by C-Boolean
valued orderings

Let us consider the above recalled Wang-Kerre axioms
rewritten into the formalism of extensional fuzzy numbers and
their orderings ≤C , i.e., let us consider the following properties
for arbitrary aS , bT , cR ∈ FC(R).:

A1C : aS ≤C aS ;
A2C : aS ≤C bT and bT ≤C aS ⇒ (aS − bT ) ∈ I0C ;
A3C : aS ≤C bT and bT ≤C cR ⇒ aS ≤C cR;
A4C : sup Supp(aS) ≤ inf Supp(bT ) ⇒ aS ≤C bT ;
A6C : aS ≤C bT ⇒ aS + cR ≤C bT + cR;
A7C : 0 ≤ h and aS ≤C bT ⇒ h · aS ≤C h · bT ;

Remark 4.2: Note that A5C is not introduced as modification
of A5 makes no sense. The Wang-Kerre properties were
defined in such a way as many indices ranking fuzzy numbers
were dependent on the chosen reference set. The suggested
orderings ≤C of extensional fuzzy numbers do not have any
reference set and always operate on a non-reduced set of all
fuzzy reals.

Now, we will focus on the preservation of A1C-A4C , A6C ,
and A7C . First of all, let us present an important lemma.

Lemma 4.1: Let (FC(R),+,−,≤C) be a C-ordered MI-
pregroup such that ≤C is pre-order compatible. If aS ≤C bT
for certain S, T ∈ C then a ≤ b.
Proof: Since ≤C is pre-order compatible, then aS ≤C bT
implies the existence of R ∈ C such that

EXTR(aS) ≤i EXTR(bT ).

Consider α = 1, and assume that

EXTR(aS)(z) =
∨
y∈R

aS(y)⊗R(y, z) = 1

for a certain z ∈ R. But

1 =
∨
y∈R

aS(y)⊗R(y, z) =
∨
y∈R

S(a, y)⊗R(y, z) ≤∨
y∈R

max(S,R)(a, y)⊗max(S,R)(y, z) ≤ max(S,R)(a, z),

where max(S,R) ∈ C since C is a nested system.
As a consequence of separability property, we find that
max(S,R)(a, z) = 1 if and only if a = z. Thus, we
have EXTR(aS)1 = {a} and similarly EXTR(bT )1 = {b}.
From EXTR(aS)1 ≤ EXTR(bT )1, we obtain a ≤ b, which
concludes the proof. �

Proposition 4.2: Let ≤C be C-Boolean valued ordering on
FC(R). Then properties A1C , A2C , and A3C are satisfied.

Sketch of the proof: Directly follows from Definition 3.2. �

Proposition 4.3: Let ≤C be a real-order compatible C-
Boolean valued ordering. Then A4C is satisfied.

Sketch of the proof: From sup Supp(aS) ≤C inf Supp(bT )
we derive aS ≤i bT and thus, there exists R ∈ C such that

EXTR(aS) ≤i EXTR(bT ).

Then the assumption of the real-order compatibility suffices
to ensure that aS ≤C bT . �

Proposition 4.4: Let ≤C be a strongly compatible C-Boolean
valued ordering on FC(R). Then A6C is satisfied.

Sketch of the proof: From aS ≤C bT and the pre-order
compatibility, we get a ≤ b which implies a+ c ≤ b+ c and
consequently with help of the real-order compatibility, we may
prove (a + c)max(S,R) ≤C (b + c)max(T,R) which completes
the proof. �

Proposition 4.5: Let ≤C be a strongly compatible C-Boolean
valued ordering on FC(R) with the crisp bottom element. Then
A7C is satisfied.

Sketch of the proof: The crisp bottom element in C (crisp
equality) allows to deal with scalar multiplication:

h · aS = h⊥C · aS = (h · a)S

which together with the strong compatibility suffices to prove
the property. �



V. CONCLUSIONS – LINKS TO RELATED AND FUTURE
STUDIES

The C-Boolean valued orderings have been designed and
their properties investigated. The importance of this step is
many-fold. First of all, the above mentioned motivation to
define metric-like functions operating on extensional fuzzy
numbers and mapping again back to extensional fuzzy num-
bers. The intuitiveness of such an approach has been discussed
above and mainly in details in [8]. Indeed, if the metrics
will reflect human intuition in a sense that distance between
“about a” and “about b” will be equal to the absolute value
of their difference |“about a” - “about b”|, the approached
based on such metric will reflect human expectations. So,
the mathematical analysis that is intended to be developed
on such foundations should be as intuitive and reliable as
the standard mathematical analysis based on real numbers,
however, with the ability to capture and process vagueness
(imprecision, tolerance) through the whole calculations. Thus,
the next steps in this direction should go towards limits,
convergences, approximation methods, numerical algorithms,
and related problems.

Apart form focusing on mathematical analysis and related
subjects, already the ordering itself is an important notion
that leads to crucial studies. Recall, e.g., the studies on
monotonicity fuzzy rule based systems [17], [18]. Assuming
some ordering of fuzzy sets, it is rather intuitive to define
a monotonous fuzzy rule bases, i.e., a fuzzy rule bases
capturing the monotonous dependency of consequents on
antecedents. Then, the crucial thing is to investigate, whether
this monotonicity is preserved also for the resulting function,
i.e., whether the defuzzified outputs preserve the ordering of
the crisp inputs [20], [29].

The above considered monotonicity has been studied based
on the interval ordering of α-cuts. The natural question is
whether the monotonicity can be studied also more generally
for the C-Boolean valued orderings, that tolerate also small
harms of the interval orderings as long as the extensional hulls
are correctly ordered. Moreover, such a general setting may
also allow to study the preservation of the monotonicity in the
case of fuzzy inputs and defuzzification employed at the end
of the inference process.

These problems are also closely related to the interpolativity
that also works with fuzzy inputs and investigates, for more
details regarding the interpolativity of monotone fuzzy rule
bases, we refer readers to [21], [22]. However, also the inter-
polativity investigations stemmed from the interval ordering of
α-cuts that is too restrictive compared the proposed concept
of C-Boolean valued ordering.
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